
TYPE Original Research

PUBLISHED 16 May 2024

DOI 10.3389/fams.2024.1397374

OPEN ACCESS

EDITED BY

Marina Chugunova,

Claremont Graduate University, United States

REVIEWED BY

Youssri Hassan Youssri,

Cairo University, Egypt

Dudkin Mykola,

Kyiv Polytechnic Institute, Ukraine

*CORRESPONDENCE

Ivan Kovalyov

i.m.kovalyov@gmail.com

RECEIVED 07 March 2024

ACCEPTED 25 April 2024

PUBLISHED 16 May 2024

CITATION

Kovalyov I and Levina O (2024) Darboux

transformation of symmetric Jacobi matrices

and Toda lattices.

Front. Appl. Math. Stat. 10:1397374.

doi: 10.3389/fams.2024.1397374

COPYRIGHT

© 2024 Kovalyov and Levina. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Darboux transformation of
symmetric Jacobi matrices and
Toda lattices
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Informatics and Physics, Mykhailo Drahomanov Ukrainian State University, Kyiv, Ukraine

Let J be a symmetric Jacobi matrix associated with some Toda lattice. We find

conditions for Jacobi matrix J to admit factorization J = LU (or J = UL) with

L (or L) and U ( or U) being lower and upper triangular two-diagonal matrices,

respectively. In this case, theDarboux transformation of J is the symmetric Jacobi

matrix J(p) = UL (or J(d) = LU), which is associated with another Toda lattice. In

addition, we found explicit transformation formulas for orthogonal polynomials,

m-functions and Toda lattices associated with the Jacobi matrices and their

Darboux transformations.
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1 Introduction

Let a sequence of real numbers s = {sn}∞n=0 be associated with a measure µ on

(−∞,+∞), i.e.

sn =
+∞
∫

−∞

λndµ(λ), n ∈ Z+.

However, in the general case, s = {sn}∞n=0 is associated with a linear functionalS by

sn = S(λn), n ∈ Z+. (1.1)

We consider the sequence s = {sn}∞n=0 such that

Dn 6= 0, for all n ∈ N,

where Dn = det(si+j)
n−1
i,j=0. Note, if Dn > 0 for all n ∈ N, then there exists measure µ

associated with s = {sn}∞n=0, otherwise, the sequence s = {sn}∞n=0 is associated with only

linear functionalS.

On the other hand (see [1, 2]), the real sequence s = {sn}∞n=0 is associated with the

symmetric Jacobi matrix J and the sequence of orthogonal polynomials of the first kind

{Pn(λ)}∞n=0, which can defined by

P0(λ) ≡ 1 and Pn(λ) =
1

√
Dn−1Dn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s0 s1 . . . sn
s1 s2 . . . sn+1

. . . . . . . . . . . .

sn−1 sn . . . s2n−1

1 λ . . . λn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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[3, 4] Moreover, the sequence {Pn(λ)}∞n=0 satisfies a three-term

recurrence relation

λPn(λ) = an+1Pn+1(λ)+ bnPn(λ)+ anPn−1(λ) (1.2)

with the initial conditions

P−1(λ) ≡ 0 and P0(λ) ≡ 1. (1.3)

In the short form we can rewrite Equation (1.2) as

JP(λ) = λP(λ),

where P(λ) = (P0(λ), . . . , Pn(λ), . . .)
T and the symmetric Jacobi

matrix J is defined by

J =















b0 a1
a1 b1 a2

a2 b2
. . .

. . .
. . .















. (1.4)

On the other hand, the symmetric Jacobi matrix J is associated

with the moment sequence s = {sn}∞n=0, the following relation

holds (see [2, 5])

sn = (e0, J
ne0) for all n ∈ Z+, (1.5)

where e0 = (1, 0, . . .)T and m– function of Jacobi matrix is found

by

m(z) =
∫

R

dµ(λ)

λ − z
. (1.6)

There exist two type transformations of orthogonal

polynomials, which are the Christoffel and Geronimus

transformations. One are studied in the paper Zhedanov [6].

The Christoffel transformation is defined by

P̃(λ) =
Pn+1(λ)− AnPn(λ)

λ − α
, n ∈ Z+, (1.7)

where An =
Pn+1(α)

Pn(α)
and α is arbitrary parameter. Moreover,

Equation (1.7) can be rewritten as follows:

Theorem 1.1. ([7, Theorem 1.5]) Let {Pn(λ)}∞n=0 be the sequence

of the orthogonal polynomials associated with Equation (1.2). Then

the Christoffel–Darboux formula takes the following form

n
∑

i=0

Pi(x)Pi(t) = an+1

Pn+1(x)Pn(t)− Pn(x)Pn+1(t)

x− t
. (1.8)

The second transformation is a Geronimus transformation of

the orthogonal polynomials [6], one is defined by

P̃(λ) = Pn(λ)− BnPn−1(λ), Bn ∈ R and n ∈ N.

Toda lattice. The Toda lattice is a system of differential

equations

x′′n(t) = exn−1−xn − exn−xn+1 , n ∈ N, (1.9)

which was introduced in Toda [8].

We study the semi-infinite system with x−1 = −∞. [9, 10]

Flaschka variables are defined by

ak =
1

2
e
xk−1−xk

2 and bk = −
1

2
x′k. (1.10)

Therefore, we obtain the following system in terms of Flaschka

variables

a′k = ak(bk − bk−1) and b′k = 2(a2k+1 − a2k), a0 = 0. (1.11)

Hence, the semi-infinite Toda lattice is associated with the

symmetric Jacobi matrix J and Lax pair (J,A), such that

[J,A] = JA− AJ,

where thematrixA = J+−J−, where J+ and J− are upper and lower

triangular part of J, respectively and

A =















0 a1
−a1 0 a2

−a2 0
. . .

. . .
. . .















.

As is known (see [8, 11]), the system (1.11) is equivalent to the

following

J′ = −[J,A].

Darboux transformation of the monic classical and generalized

Jacobi matrices were studied in Bueno and Marcellán [12],

Derevyagin and Derkach [13], and Kovalyov [14, 15]. Darboux

transformation involves finding a factorization of a matrix from

a certain class such that the new matrix is from the same class.

There are two types of Darboux transformation: transformation

with and without parameter. Jacobi matrix is associated with

many objects. There are moment sequence, measure, linear

functional orthogonal polynomials and Toda lattice. Hence, in the

current paper, we study not only Darboux transformation of the

symmetric Jacobi matrices, but we also study the transformation

of the associated objects. Hence, we investigate the Darboux

transformation of the symmetric Jacobi matrices J and find

relations between associated Toda lattice, orthogonal polynomials,

moment sequences and m–functions. We obtain that the Darboux

transformationwithout parameter of the symmetric Jacobimatrices

has more additional existence conditions in contrast to case of

the monic Jacobi matrices. On the other hand, the Darboux

transformation with parameter of the symmetric Jacobi matrices

is generated more easily. The results obtained can be applied for

further research related to symmetric Jacobi matrices, Toda lattices

and inverse problems. Of course, it can also be applied to the Toda

lattice hierarchy.

Now, briefly describe the content of the paper. Section

2 contains Darboux transformation without parameter of the

symmetric Jacobi matrix J. We find LU–factorization of J and the

transformed matrix J(p). Relation between Toda lattices, moment

sequences andm–functions associated with the Jacobi matrices was

obtained. In this case, the orthogonal polynomials are transformed
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by the Christoffel formula (1.7). In Section 3, we study the

Darboux transformation with parameter of the symmetric Jacobi

matrix J. We find UL–factorization of J and transformed matrix

J(d). Moreover, the relations between orthogonal polynomials, m–

functions, moment sequence and Toda lattices are found according

to explicit formulas.

2 Darboux transformation without
parameter of symmetric Jacobi matrix

Now we study a Darboux transformation without parameter of

symmetric Jacobi matrix J. The goal is to find the transformations

of polynomials of the first kind, m-functions, measure, moment

sequence and Toda lattice, which are associated with the

transformed Jacobi matrix.

2.1 LU–factorization

Lemma 2.1. Let J be a symmetric Jacobi matrix. Then J admits

LU–factorization

J = LU, (2.1)

where L and U are lower and upper triangular matrices,

respectively, which are defined by

L =













1

l1 1

l2 1

. . .
. . .













and U =















u1 v1
u2 v2

u3
. . .

. . .















, (2.2)

if and only if the following system is solvable

b0 = u1, v1 = a1, vj = aj, ljuj = aj,

ljvj + uj+1 = bj, uj 6= 0 and lj 6= 0, j ∈ N.
(2.3)

Proof. Let us calculate the product LU

LU =















u1 v1
l1u1 l1v1 + u2 v2

l2u2 l2v2 + u3
. . .

. . .
. . .















.

Comparing the product LU with the Jacobi matrix J















b0 a1
a1 b1 a2

a2 b2
. . .

. . .
. . .















=















u1 v1
l1u1 l1v1 + u2 v2

l2u2 l2v2 + u3
. . .

. . .
. . .















,

we obtain the system (2.3).

If the system (2.3) is solvable, then J admits the factorization

J = LU of the form (2.1–2.3), where L and U are found uniquely.

Conversely, if J admit LU—factorization then the system (2.3) is

solvable. This completes the proof.

Lemma 2.2. Let J be the symmetric Jacobi matrix and let J =
LU be its LU– factorization of the form (2.1–2.3). Let Pj be the

polynomials of the first kind associated with the matrix J. Then

Pn(0)

Pn−1(0)
= −

1

ln
, n ∈ N. (2.4)

Proof. Let J admit the LU–factorization of the form (2.1–2.3).

Setting λ = 0 in Equation (1.2), we obtain

an+1Pn+1(0)+ bnPn(0)+ anPn−1(0) = 0.

By induction, we prove Equation (2.4).

1. Let n = 0, then

a1P1(0)+ b0P0(0)+ a0P−1(0) = 0

and due to the initial condition (1.3) and (2.3), we get

a1P1(0)+ b0P0(0) = 0 ⇒
P1(0)

P0(0)
= −

b0

a1
= −

u1

l1u1
= −

1

l1
.

2. Let n = 1, then

a2P2(0)+ b1P1(0)+ a1P0(0) = 0

and by Equation (2.3), we have

P2(0)

P1(0)
+

b1

a2
+

a1

a2

P0(0)

P1(0)
= 0 ⇒

P2(0)

P1(0)

= −
b1

a2
+

a1l1

a2
=

− l21u1 − u2 + l21u1

l2u2
= −

1

l2
.

3. Let Equation (2.4) hold for n = k− 1.

4. Let us prove Equation (2.4) for n = k, we obtain

ak+1Pk+1(0)+ bnPk(0)+ akPk−1(0) = 0.

Pk+1(0)

Pk(0)
+

bk

ak+1
+

ak

ak+1
·
Pk−1(0)

Pk(0)
= 0.

Consequently

Pk+1(0)

Pk(0)
= −

bk

ak+1
−

ak

ak+1
·
Pk−1(0)

Pk(0)
= {by Section (2.3)}

=
− bk + aklk

ak+1
=

− l2
k
uk − uk+1 + l2

k
uk

lk+1uk+1
= −

1

lk+1
.

So, Equation (2.4) is proven. This completes the proof.

Corollary 2.3. Let J be the symmetric Jacobi matrix and let J =
LU be its LU–factorization of the form (2.1–2.3). Let Pj be the

polynomials of the first kind associated with the matrix J. Then

Pn(0) = (−1)n
n
∏

i=1

1

li
. (2.5)
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Proof. Let J admit the LU–factorization of the form (2.1–2.3) and

let Pj be the polynomials of the first kind associated with J. By

Lemma 2.2, Equation (2.4) holds and we obtain

Pn(0) =
Pn(0)

Pn−1(0)
·
Pn−1(0)

Pn−2(0)
· . . . ·

P1(0)

P0(0)
= (−1)n

n
∏

i=1

1

li
.

So, Equation (2.5) is proven. This completes the proof.

Corollary 2.4. Let J be the symmetric Jacobi matrix and let J =
LU be its LU–factorization of the form (2.1–2.3). Let Pj be the

polynomials of the first kind associated with the matrix J. Then

Pn(0) = (−1)k
1

ln
·

1

ln−1
· . . . ·

1

ln−(k−1)
Pn−k(0). (2.6)

Proof. Let J admit the LU–factorization of the form (2.1–2.3). By

Lemma 2.2, we obtain

Pn(0) =
Pn(0)

Pn−1(0)
·
Pn−1(0)

Pn−2(0)
· . . . ·

Pn−k−1(0)

Pn−k(0)
· Pn−k(0)

= (−1)k
1

ln
·

1

ln−1
· . . . ·

1

ln−(k−1)
Pn−k(0).

Hence, Equation (2.6) is proven. This completes the proof.

Theorem 2.5. Let J be the symmetric Jacobi matrix and let Pj be

the polynomials of the first kind associated with J. Then J admits

LU—factorization of the form (2.1–2.3) if and only if

Pj(0) 6= 0 for all j ∈ Z+. (2.7)

Furthermore,

b0 = u1, vj = aj, lj = −
Pj−1(0)

Pj(0)
and uj = −

ajPj(0)

Pj−1(0)
.

(2.8)

Proof. Let Pj(0) 6= 0 for all j ∈ Z+. By Lemma 2.2 the system

(2.8) is equivalent to the system (2.3). Consequently, by Lemma 2.1

the Jacobi matrix J admits LU—factorization of the form (2.1–2.3).

Conversely, if the Jacobi matrix J admits LU—factorization of the

form (2.1–2.3), then by Lemma 2.1 and Lemma 2.2 the polynomials

of the first kind Pj satisfy (2.7). This completes the proof.

2.2 Transformed Jacobi matrix J(p) = UL

Definition 2.6. Let the symmetric Jacobi matrix J admit LU—

factorization of the form (2.1–2.3). Then a transformation

J = LU → UL = J(p)

is called a Darboux transformation without parameter of the

symmetric Jacobi matrix J.

Theorem 2.7. Let J be the symmetric Jacobi matrix (1.4) and let

J = LU be its LU–factorization of the form (2.1–2.3). Then the

Darboux transformation without parameter of the matrix J is the

symmetric Jacobi matrix

J(p) = UL =















b1 a1
a1 b2 a2

a2 b3
. . .

. . .
. . .















(2.9)

if and only if

uj = b0 and
a2j + b20

b0
= bj for all j ∈ N. (2.10)

Proof. Calculating UL, we obtain

J(p) = UL =















u1 v1
u2 v2

u3
. . .

. . .



























1

l1 1

l2 1

. . .
. . .













=

=















u1 + v1l1 v1
l1u2 u2 + v2l2 v2

l2u3 u3 + v3l3
. . .

. . .
. . .















= { by Equation (2.3)}

=















u1 + v1l1 a1
l1u2 u2 + v2l2 a2

l2u3 u3 + v3l3
. . .

. . .
. . .















.

Consecuently, J(p) is the symmetric Jacobi matrix if and only if

ljuj+1 = aj for all j ∈ N. (2.11)

Comparing Equation (2.3) with Equation (2.11), we get

ljuj = aj = ljuj+1 ⇒ uj = uj+1 ⇒ uj = b0 for all j ∈ N.

By Equation (2.3), uj + vjlj = bj for all j ∈ N, we obtain

Equations (2.9, 2.10) and J(p) is the symmetric Jacobi matrix. This

completes the proof.

Theorem 2.8. Let the symmetric Jacobi matrix J satisfy (2.7) and let

J = LU be its LU–factorization of the form (2.1–2.3). Let J(p) = UL

be the Darboux transformation without parameter of J. Then the

polynomials of the first kind P
(p)
n associated with J(p) can be found

by Christoffel–Darboux formula

P
(p)
n (λ) =

1

Pn(0)

Pn+1(λ)Pn(0)− Pn(λ)Pn+1(0)

λ
, (2.12)

where Pj are the polynomials of the first kind associated with the

symmetric Jacobi matrix J.
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Proof. Let the Jacobi matrix J satisfy (2.7) and admit LU–

factorization of the form (2.1–2.3). Calculating the inverse matrix

of L, we obtain

L−1 =































1

−l1 1

l1l2 −l2 1

−l1l2l3 l2l3 −l3 1

. . .
. . .

. . .
. . .

. . .

(−1)n
n
∏

i=1
li (−1)n−1

n
∏

i=2
li . . . ln−1ln −ln 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .































.

On the other hand,

J(p)P(λ) = ULP(p)(λ) = λP(p)(λ) ⇒

⇒ LULP(p)(λ) = J
(

LP(p)(λ)
)

= λ

(

LP(p)(λ)
)

= λP(λ).

Consequently, we obtain the relation between the polynomials

of the first kind

P(p)(λ) = L−1P(λ) =

















1

−l1 1

l1l2 −l2 1

−l1l2l3 l2l3 −l3 1

. . .
. . .

. . .
. . .

. . .

































P0(λ)

P1(λ)

P2(λ)

P3(λ)
...

















=

















P0(λ)

P1(λ)− l1P0(λ)

P2(λ)− l2P1(λ)+ l1l2P0(λ)

P3(λ)− l3P2(λ)+ l2l3P1(λ)− l1l2l3P0(λ)
...

















=



















P
(p)
0 (λ)

P
(p)
1 (λ)

P
(p)
2 (λ)

P
(p)
3 (λ)
...



















.

By Corollary 2.4, we obtain

P
(p)
n (λ) = Pn(λ)+

n−1
∑

i=0

(−1)n−iPi(λ)

n
∏

j=i+1

lj = Pn(λ)+
n−1
∑

i=0

Pi(0)

Pn(0)
Pi(λ).

(2.13)

However, we can rewrite Equation (2.13) and by Christoffel–

Darboux formula (1.8), we obtain

P
(p)
n (λ) = Pn(λ)+

n−1
∑

i=0

Pi(0)

Pn(0)
Pi(λ) =

1

an+1Pn(0)

n
∑

i=0

Pi(0)Pi(λ) =

=
1

Pn(0)

Pn+1(λ)Pn(0)− Pn(λ)Pn+1(0)

λ
.

Hence, Equation (2.12) holds. This completes the proof.

In the following statements we find the connection between

orthogonal polynomials, moment sequences, measures, linear

functionals, m–functions and Toda lattices according to the

transformation Darboux transformation without parameter of the

symmetric Jacobi matrix.

Proposition 2.9. Let the symmetric Jacobi matrix J admit LU–

factorization of the form (2.1–2.3) and let the symmetric Jacobi

matrix J(p) = UL be the Darboux transformation without

parameter of J. Let s = {sn}∞n=0 and s
(p) = {s(p)n }∞n=0 be the moment

sequences associated with the matrices J and J(p), respectively.

Then the moment sequence s(p) = {s(p)n }∞n=0 can be found by the

following formula

s
(p)
n−1 =

sn

b0
for all n ∈ N. (2.14)

Proof. Let the symmetric Jacobi matrix J admit LU–factorization of

the form (2.1–2.3) and let the symmetric Jacobi matrix J(p) = UL be

its Darboux transformation without parameter. By Equation (1.5),

we obtain

sn = (e0, J
ne0) = (e0, (LU)ne0) = (e0, L(UL)

n−1Ue0) =

= (LTe0, (J
(p))n−1b0e0) = b0(e0, (J

(p))n−1e0) = b0s
(p)
n−1.

Consequently, the moments s
(p)
n−1 can be found by

Equation (2.14). This completes the proof.

Corollary 2.10. Let the symmetric Jacobi matrix J admit

LU–factorization of the form (2.1)–(2.3) and let the

symmetric Jacobi matrix J(p) = UL be the Darboux

transformation without parameter of J. Let S and S
(p) be

the linear functionals associated with the matrices J and J(p),

respectively. Then

S
(p) =

λ

b0
S. (2.15)

Proof. Let S and S
(p) be the linear functionals associated with

the symmetric Jacobi matrices J = LU and J(p) = UL,

respectively, where L and U are defined by Equations (2.1–2.3). By

Equation (1.1), we obtain

S
(p)(λn−1) = s

(p)
n−1 =

sn

b0
=

1

b0
S(λn) for all n ∈ N.

Consequently, Equation (1.19) holds. This completes

the proof.

Corollary 2.11. Let the symmetric Jacobi matrix J admit

LU–factorization of the form (2.1–2.3) and let the

symmetric Jacobi matrix J(p) = UL be the Darboux

transformation without parameter of J. Let dµ and dµ(p)

be the measures associated with the matrices J and J(p),

respectively. Then

dµ(p)(λ) =
λ

b0
dµ(λ). (2.16)

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2024.1397374
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Kovalyov and Levina 10.3389/fams.2024.1397374

Proof. Let µ and µ(p) be the measures associated with the

symmetric Jacobi matrices J = LU and J(p) = UL, respectively,

where L and U are defined by Equation (2.1–2.3). Then

+∞
∫

−∞

λn−1dµ(p)(λ) = s
(p)
n−1 =

sn

b0
=

1

b0

+∞
∫

−∞

λndµ(λ) for all n ∈ N.

Consequently, we find transformation of the measure and

Equation (2.16) holds. This completes the proof.

Proposition 2.12. Let the symmetric Jacobi matrix J admit LU–

factorization of the form (2.1–2.3) and let the symmetric Jacobi

matrix J(p) = UL be the Darboux transformation without

parameter of J. Let m and m(p) be them–functions associated with

the matrices J and J(p), respectively. Then

m(p)(z) =
s0 + zm(z)

b0
. (2.17)

Proof. By Equation (1.6)

m(p)(z) =
+∞
∫

−∞

dµ(p)(λ)

λ − z
=

=
1

b0

+∞
∫

−∞

λdµ(λ)

λ − z
=

1

b0

∫

R

λ − z

λ − z
dµ(λ)+

1

b0

+∞
∫

−∞

zdµ(λ)

λ − z

=
1

b0

+∞
∫

−∞

1dµ(λ)+
z

b0

+∞
∫

−∞

dµ(λ)

λ − z
=

s0 + zm(z)

b0
.

Hence, m–function is transformed by Equation (2.17). This

completes the proof.

Toda latice. The last statement is the following theorem of

this section. One is described the Toda lattice associated with the

symmetric Jacobi matrices J(p).

Theorem 2.13. Let the symmetric Jacobi matrix J admit LU–

factorization of the form (2.1–2.3) and J be associated with the Toda

lattice (1.9–1.11). Let the symmetric Jacobi matrix J(p) = UL be

the Darboux transformation without parameter of J. Then J(p) is

associated with the following Toda lattice

x′′k (t) = exk−1−xk − exk−xk+1 , (2.18)

ak =
1

2
e
xk−1−xk

2 and bk+1 = −
1

2
x′k. (2.19)

a′k = ak(bk+1−bk) and b′k+1 = 2(a2k+1−a2k), a0 = 0. (2.20)

Furthermore, the matrix A does not change.

Proof. Let the symmetric Jacobi matrix be associated be associated

with the Toda (1.9–1.11) and let J = LU, where L andU are defined

by Equations (2.2, 2.3, 2.10). Consequently, the symmetric Jacobi

matrix J(p) = UL is the Darboux transformation without parameter

of J. By Equation (2.9), we obtain J+ = J
(p)
+ , J− = J

(p)
− and the

matrix A does not change in the Lax pair, i.e.

A = J+ − J− = J
(p)
+ − J

(p)
− .

Moreover, similar to Equation (1.9–1.11), the

symmetric Jacobi matrix J(p) = UL is associated

with the Toda lattice (2.18–2.20). This completes

the proof.

3 Darboux transformation with
parameter of the Jacobi matrix

The next step is the Darboux transformation with parameter

of the symmetric Jacobi matrix J. We study the transformations

of the polynomials of the first kind, m–functions, measure,

moment sequence and Toda lattice, which are associated with the

transformed Jacobi matrix.

3.1 UL–factorization

Theorem 3.1. Let J be the symmetric Jacobi matrix and let

S0 be a some real parameter. Then J admits the following

UL–factorization

J = UL, (3.1)

where L and U are lower and upper triangular matrices,

respectively, which are defined by

L =





















1

S0 + b0

a1
1

S1 + b1

a2
1

. . .
. . .





















and U =















−S0 a1
−S1 a2

−S2
. . .

. . .















, (3.2)

if and only if the following system is solvable

Si(Si−1 + bi−1) = −a2i , Si−1 + bi−1 6= 0 and Si−1 6= 0,

for all i ∈ N. (3.3)

Proof. Let J be the Jacobi matrix. Let L and U are defined

by Equation (3.2), where the parameter S0 ∈ R \ {0,−b0}.
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Calculating the product UL, we obtain

UL =















−S0 a1
−S1 a2

−S2
. . .

. . .



































1

S0 + b0

a1
1

S1 + b1

a2
1

. . .
. . .





















=





















b0 a1

−
S1(S0 + b0)

a1
b1 a2

−
S2(S1 + b1)

a2
b2

. . .

. . .
. . .





















Comparing the product UL with the Jacobi matrix J, we obtain

the system (3.3). This completes the proof.

3.2 Transformed Jacobi matrix J(d) = UL

Definition 3.2. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3). Then a transformation

J = UL → LU = J(d)

is called a Darboux transformation with parameter of the Jacobi

matrix J.

Theorem 3.3. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3) with parameter S0 ∈ R\{0,−b0}.
Then the Darboux transformation with parameter of the Jacobi

matrix J is the symmetric Jacobi matrix

J(d) =















−S0 a1
a1 b0 a2

a2 b1
. . .

. . .
. . .















(3.4)

if and only if

S0 = Si for all i ∈ N. (3.5)

Proof. Let J admit UL—factorization of the form (3.1–3.3).

Calculating the product LU, we obtain

J(d) = LU =





















−S0 a1

−
S0(S0 + b0)

a1
S0 + b0 − S1 a2

−
S1(S1 + b1)

a2
S1 + b1 − S2

. . .

. . .
. . .





















.

Hence, J(d) is the symmetric Jacobi matrix if and only if

−Si−1(Si−1 + bi−1) = a2i for all i ∈ N.

On the other hand, by Equation (3.3), we know

−Si(Si−1 + bi−1) = a2i for all i ∈ N.

Consequently, we obtain Equation (3.5). This completes

the proof.

Theorem 3.4. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3) and let J(d) = LU be its Darboux

transformation with parameter. Then the polynomials of the first

kind transform by the Geronimus formula

P
(d)
0 (λ) ≡ P0(λ) and P

(d)
i (λ) = Pi(λ)+

S0 + bi−1

ai
·Pi−1(λ), i ∈ N,

(3.6)

where Pi and P
(d)
i are polynomials of the first kind associated with

the matrix J and J(d), respectively.

Proof. Let J admit UL—factorization of the form (3.1–3.3) and let

J(d) = LU be its Darboux transformation with parameter. Then

JP(λ) = λP(λ) ⇒ ULP(λ) = λP(λ) ⇒ LULP(λ) = λLP(λ) ⇒

⇒ J(d)P(d)(λ) = λP(d)(λ),

where

P(d)(λ) = LP(λ) =





















1

S0 + b0

a1
1

S0 + b1

a2
1

. . .
. . .





































P0(λ)

P1(λ)

P2(λ)

P3(λ)
...

















=





























P0(λ)

P1(λ)+
S0 + b0

a1
P0(λ)

P2(λ)+
S1 + b1

a2
P1(λ)

P3(λ)+
S2 + b2

a3
P2(λ)

...





























=



















P
(d)
0 (λ)

P
(d)
1 (λ)

P
(d)
2 (λ)

P
(d)
3 (λ)
...



















.

So, the polynomials of the first kind are transformed by

the Geronimus formula and Equation (3.6) holds. This completes

the proof.

Proposition 3.5. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3) and let the symmetric Jacobi

matrix J(d) = LU be the Darboux transformation with

parameter of J. Let s = {sn}∞n=0 and s
(d) = {s(d)n }∞n=0 be

the moment sequences associated with the matrices J and J(d),

respectively. Then the moment sequence s
(d) = {s(d)n }∞n=0 can be

found by

s
(d)
0 = 1 and s(d)n = −S0sn−1 for all n ∈ N. (3.7)

Proof. Let the symmetric Jacobi matrix J admit UL—factorization

of the form (3.1–3.3) and let the symmetric Jacobi matrix J(d) = LU
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be its Darboux transformation with parameter. By Equation (1.5),

we obtain

s
(d)
0 = (e0, (J

(d))0e0) = (e0, e0) = 1

and

s(d)n = (e0, (J
(d))ne0) = (e0,LU

ne0) = (e0,L(LU)
n−1

Ue0)

= (LTe0, (J)
n−1(−S0)e0) = −S0(e0, (J)

n−1e0) = −S0sn−1

for all n ∈ N.

Hence, Equation (3.7) holds. This completes the proof.

Corollary 3.6. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3) and let the symmetric Jacobi

matrix J(d) = LU be the Darboux transformation with parameter

of J. Let s = {sn}∞n=0 and s
(d) = {s(d)n }∞n=0 be the moment sequences

associated with the matrices J and J(d), respectively. Then

s
(d)
1 = −S0. (3.8)

Proof. By Equation (3.7) and s0 = 1, we obtain

s
(d)
1 = −S0s0 ⇒ s

(d)
1 = −S0.

So, Equation (3.8) holds. This completes the proof.

Corollary 3.7. Let the symmetric Jacobi matrix J admit

UL—factorization of the form (3.1–3.3) and let the

symmetric Jacobi matrix J(d) = LU be the Darboux

transformation with parameter of J. Let S and S
(d) be the

linear functionals associated with the matrices J and J(d),

respectively. Then

S
(d)(p(λ)) = −S0S

(

p(λ)− p(0)

λ

)

+ p(0), p(λ) ∈ C[λ]. (3.9)

Proof. Let S and S
(d) be the linear functionals associated with

the symmetric Jacobi matrices J = UL and J(d) = LU,

respectively, where L and U are defined by Equations (3.2, 3.3). By

Equation (1.1), we obtain

S
(d)(λn) = s(d)n = −S0sn−1 = −S0S

(

λn−1
)

, for all n ∈ N.

Consequently, Equation (3.9) holds. This completes the proof.

Corollary 3.8. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3). and let the symmetric Jacobi

matrix J(d) = LU be the Darboux transformation with parameter

of J. Let dµ and dµ(d) be the measures associated with the matrices

J and J(d), respectively. Then

dµ(λ) = −
λ

S0
dµ(d)(λ). (3.10)

Proof. Let J = UL and J(d) = LU, where the matrices L and U are

defined by Equations (3.2, 3.3, 3.5). The measures dµ and dµ(d) are

associated with the matrices J and J(d), respectively. Then

−S0

+∞
∫

−∞

λn−1dµ(λ) = −S0sn−1 = s(d)n =
+∞
∫

−∞

λndµ(d)(λ).

Consequently,

+∞
∫

−∞

λn−1dµ(λ) = −
+∞
∫

−∞

λn−1
λ

S0
dµ(d)(λ).

Hence, Equation (3.10) holds. This completes the proof.

Proposition 3.9. Let the symmetric Jacobi matrix J admit UL—

factorization of the form (3.1–3.3) and let the symmetric Jacobi

matrix J(d) = LU be the Darboux transformation with parameter

of J. Let m and m(d) be m–functions associated with the matrices J

and J(d), respectively. Then

m(d)(z) =
1

z
+

S0m(z)

z
. (3.11)

Proof. Let J = UL and J(d) = LU, where the matrices L and U

are defined by Equations (3.2, 3.3, 3.5). Then m–functions of the

matrices J and J(d) are related by

m(z) =
+∞
∫

−∞

dµ(λ)

λ − z
= −

1

S0

+∞
∫

−∞

λdµ(d)(λ)

λ − z

= −
1

S0

+∞
∫

−∞

λ − z

λ − z
dµ(d)(λ) +

1

S0

+∞
∫

−∞

zdµ(d)(λ)

λ − z

= −
s
(d)
0

S0
+

zm(d)(z)

S0
.

On the other hand

zm(d)(z)

S0
= m(z)+

s
(d)
0

S0
⇒ m(d)(z) =

s
(d)
0

z
+

S0m(z)

z
.

By Equation (3.7), s
(d)
0 = 1 and Equation (3.11) holds. This

completes the proof.

Toda latice. There is the last target of our investigation.

Theorem 3.10. Let the symmetric Jacobi matrix J admit UL–

factorization of the form (3.1–3.3) and J be associated with the Toda

lattice (1.9–1.11). Let the symmetric Jacobi matrix J(d) = LU be

the Darboux transformation without parameter of J. Then J(d) is

associated with the following Toda lattice

x′′k (t) = exk−1−xk − exk−xk+1 , (3.12)

ak =
1

2
e
xk−1−xk

2 , S0 =
1

2
x′0 and bk−1 = −

1

2
x′k. (3.13)

a0 = 0, a′1 = a1(b0 + S0), a′k = ak(bk−1 − bk−2),

− S′0 = 2(a21 − a20) and b′k−1 = 2(a2k+1 − a2k), k ∈ N.

(3.14)

Furthermore, the matrix A does not change.
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Proof. Let the symmetric Jacobi matrix J be associated with the

Toda lattice (1.9–1.11) and let J = UL, where L and U are defined

by Equations (3.2, 3.3, 3.5). Consequently, the symmetric Jacobi

matrix J(d) = LU is the Darboux transformation with parameter of

J. By Equation (3.4), we obtain J+ = J
(d)
+ , J− = J

(d)
− and the matrix

A does not change in the Lax pair, i.e.

A = J+ − J− = J
(d)
+ − J

(d)
− .

Moreover, similar to Equations (1.9–1.11), the symmetric

Jacobi matrix J(d) = LU is associated with the Toda lattice (3.12–

3.14). This completes the proof.
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