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Beta transformation of the
Exponential-Gaussian
distribution with its properties
and applications

Kumlachew Wubale Tesfaw* and Ayele Taye Goshu

Department of Mathematics, Kotebe University of Education, Addis Ababa, Ethiopia

This study introduces a five-parameter continuous probability model named

the Beta-Exponential-Gaussian distribution by extending the three-parameter

Exponential-Gaussian distribution with the beta transformation method. The

basic properties of the new distribution, including reliability measure, hazard

function, survival function, moment, skewness, kurtosis, order statistics, and

asymptotic behavior, are established. Using the acceptance-rejection algorithm,

simulation studies are conducted. The new model is fitted to the simulated and

real data sets, and its performance is reported. The Beta-Exponential-Gaussian

distribution is found to be more flexible and has better performance in many

aspects. It is suggested that the new distribution would be used in modeling data

having skewness and bimodal distribution.
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Ex-Gaussian distribution, Beta-Ex-Gaussian distribution, beta-generator, acceptance-
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1 Introduction

The beta distribution family gained popularity a few years ago, and various studies

have been conducted on beta compounding with other distributions such as Beta-

Frechet [1], Beta-Gumbel [2], Beta-Pareto [3], Beta-Gamma [4], Beta-Gompertz [5],

Beta-Normal[6], Beta-Power [7], Beta-Weibull [8], Beta-Exponentiated Weibull [9], Beta-

Modified Weibull [10], Beta-Extended Weibull[11], the Beta-Generalized Logistic [12],

Beta-Log-Logistic [13], Beta-Exponential [14], Beta-Generalized Exponential [15], Beta-

Moyal [16], Beta-Generalized Half-Normal [17], Beta-Dagum [18], Beta-Laplace [19],

Beta-Burr XII [20], Beta-Generalized Pareto [21], Beta-Cauchy [22], Beta-Half-Cauchy

[23], Beta-Exponentiated Pareto [24], Beta-Log-Logistic [13], Beta-Type I Generalized

Half Logistic [25], Beta-Bessel Distributions [26], Beta-Rayleigh Distribution [27], Beta-

Exponentiated Lindley [28], Beta-Lindley [29], Beta-Lindley-Poisson Distribution [30],

and Beta-Lindley Geometric Distribution [31].

This study presents a five-parameter distribution called the Beta-Exponential-Gaussian

distribution, which extends the Ex-Gaussian distribution by adding two additional

parameters to control its skewness and kurtosis.

In cognitive psychology research, the Ex-Gaussian distribution is used to examine

the semantic stroop effect [32], reading eye movements [33], and response time

distributions [34]. Additionally, it is utilized to mimic fixation lengths [35], which

are frequently employed in eye-tracking research as a gauge of cognitive processes.
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This investigation unfolds to examine the new Beta-Ex-

Gaussian distribution. In Section 2, a parent sub-model, the

basic Ex-Gaussian distribution is introduced. The transformation

technique for the proposed distribution is explained in Section

3. Methodically, Section 4 examines the Beta-Ex-Gaussian

distribution. Advancing to Section 5, visual representations

of the probability density function (PDF) and cumulative

distribution function (CDF) of the Beta-Ex-Gaussian distribution

are presented. Section 6 investigates statistical distinctions

by deriving expressions for moments. The discourse within

Section 7 explores the sphere of order statistics. Survival and

hazard functions are scrutinized in Section 8. In Section 9,

attention is directed toward estimation methodologies, with an

emphasis on maximum likelihood. Section 10 offers simulation

results from a comprehensive acceptance-rejection process.

Section 11 expounds on four practical applications. Finally,

Section 12 provides a conclusive conclusion, thereby concluding

the article.

2 Basic exponential-Gaussian
distribution

The exponential-Gaussian (Ex-Gaussian), also called the

exponentially modified Gaussian (EMG) distribution, is a

probability distribution that convolutions exponential and

normal random variables and is used in signal processing,

finance, and neuroscience for skewness and heavy tails

data. It has a closed-form probability density function and a

cumulative distribution function, making it useful for statistical

analysis [36–39]. For ∀µ ∈ R, σ , λ > 0, and ∀x ∈ R, its

PDF, CDF, Hazard, and Survival functions are given in the

Equations (1–4), respectively.

f (x;µ, λ, σ ) = λ
2 exp

(
λ
2 (2µ + λσ 2 − 2x)

)
erfc

(
µ+λσ 2−x

σ
√
2

)
(1)

F(x;µ, λ, σ )
= 1

2 erfc
(

µ−x

σ
√
2

)
− 1

2 exp
(

λ
2 (2µ + λσ 2 − 2x)

)

erfc
(

µ+λσ 2−x

σ
√
2

)
(2)

h(x) = f (x)
1−F(x)

=
λ
2 exp

(
λ
2 (2µ+λσ 2−2x)

)
erfc

(
µ+λσ2−x

σ
√
2

)

1− 1
2 erfc

(
µ−x

σ
√
2

)
+ 1

2 exp
(

λ
2 (2µ+λσ 2−2x)

)
erfc

(
µ+λσ2−x

σ
√
2

) (3)

S(x) = 1− F(x) = 1− 1
2 erfc

(
µ−x

σ
√
2

)
(4)

+ 1
2 exp

(
λ
2 (2µ + λσ 2 − 2x)

)
erfc

(
µ+λσ 2−x

σ
√
2

)

where erfc is the complementary error function defined by

erfc(x) = 2√
π

∫∞
x e−t2 dt.

3 Transformation techniques

Many transformation methods were applied to generate new

probability distributions. This study uses the beta-generated (B-

G) approach to generate continuous probability distributions. This

technique modifies a base distribution using a generator function,

resulting in a variety of shapes and characteristics. The beta

distribution is used as the generator, adding more parameters to

fit different shapes and determining skewness by the sum of all

forms [40].

Let f (x;2) and F(x;2) be the probability density function and

the cumulative distribution function (cdf) of a random variable X,

respectively, where 2 is a p × 1 parameter vector, and then the

cumulative distribution function is generated by applying [6, 29]

G(x;α,β ,2) = 1
B(α,β)

F(x;2)∫
0

tα−1(1− t)β−1dt = B(F(x;2);α,β)
B(α,β)

= IF(x;2)(α,β), −∞ < x < ∞, (5)

where α > 0 and β > 0 are two additional parameters

whose role is to introduce skewness and vary the tail weight.

B(α,β) =
1∫
0

tα−1(1 − t)β−1dt = Ŵ(α)Ŵ(β)
Ŵ(α+β)

is the beta function,

B(y;α,β) =
y∫
0

tα−1(1 − t)β−1dt is the incomplete beta function

with B(α,β) = B1(α,β), and Iy(α,β) = B(y;α,β)
B(α,β)

is the incomplete

beta function ratio. The corresponding probability density function

of Equation (5) is then given as follows:

g(x) = 1

B(α,β)
F(x)α−1(1− F(x))β−1f (x), −∞ < x < ∞, (6)

This family of distributions can be considered as generalization

of the distribution of order statistics [40] for the random variable X

with CDF F(x). When α and β are integers, Equation (6) is the αth

order statistic of the random sample of size (α + β − 1).

4 The new Beta-Ex-Gaussian(BExG)
distribution

Let F(x;2) be the baseline CDF of an Ex-Gaussian, a

continuous random variable, with 2 = (µ, σ , λ) as parameter

vectors. We now introduce the five-parameter Beta-Ex-Gaussian

(BExG) distribution by taking G(x) from Equation (5), the CDF

of Equation (6). Substituting F(x;2) in Equation (5) by the CDF

Equation (2) yields the CDF of the BExG as follows:

G(x) = 1

B(α,β)

F(x;2)∫

0

tα−1(1− t)β−1dt = IF(x;2)(α,β)

= 1

B(α,β)

∫ 1
2 erfc

(
µ−x

σ
√
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)
− 1

2 exp
(

λ
2 (2µ+λσ 2−2x)

)
erfc

(
µ+λσ2−x

σ
√
2

)

0

tα−1(1− t)β−1dt

= I 1
2 erfc

(
µ−x

σ
√
2

)
− 1

2 exp
(

λ
2 (2µ+λσ 2−2x)

)
erfc

(
µ+λσ2−x
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√
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) (α,β)
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G(x) = 1

B(α,β)
B

(
1

2
erfc
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µ − x

σ
√
2

)
−1

2
exp

(
λ

2
(2µ + λσ 2−2x)

)

erfc

(
µ + λσ 2 − x

σ
√
2

)
;α,β

)
(7)

where α > 0 and β > 0 are new parameters that controls the

skewness and kurtosis of the distribution, i.e., the distribution’s

shape, and ∀µ ∈ R, σ , λ > 0, and ∀x ∈ R are the

location, scale, and rate parameters, respectively. A random

variable X with the CDF Equation (7) is said to have a BExG

distribution and will be denoted by X ∼ BExG(8), where 8 =
(µ, σ , λ,α,β).

For any values of α and β , we can write Equation (5) in terms

of the well-known hypergeometric function (see [1, 5, 7]) given as

follows:

G(x) = F(x)α

αB(α,β)
2F1(α, 1− β ,α + 1; F(x)) (8)

Theorem 1. The new random variable X for x ∈ R, λ > 0,

µ ∈ R, σ > 0, α > 0, and β > 0 having cumulative distribution

function (CDF) and probability density function (PDF) expressed

as follows:

1. Cumulative distribution function (CDF):
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1
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√
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(9)

2. Probability density function (PDF):

g(x) = 1
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1
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(10)

(a) g(x) ≥ 0

(b)
∫∞
0 g(x)dx = 1

where 2F1(a, b, c, z) =
∑∞

k=0
((a)k(b)k)
((c)kk!)

zk and (a)k = a(a +
1) · · · (a+ k− 1).

Proof. 1. Using Equation (8), we can prove for

G(x) in Equation (9) and substituting the given

expression for F(x) in Equation (2) into Equation (8),

we get:

G(x) =(
1
2 erfc

(
µ−x

σ
√
2

)
− 1

2 exp
(

λ
2 (2µ + λσ 2 − 2x)

)
erfc

(
µ+λσ 2−x

σ
√
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))α
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2
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2. The proof of the probability density function in Equation (10)

involves a substitution method. This is achieved by substituting

the expressions for F(x) and f (x) from Equations (1, 2) into

Equation (6). The resulting expression for g(x) is provided as

follows:

g(x) = 1

B(α,β)

(
1

2
erfc

(
µ − x

σ
√
2

)

−1

2
exp

(
λ

2
(2µ + λσ 2 − 2x)
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erfc

(
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σ
√
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(
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(
µ − x

σ
√
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− exp

(
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erfc
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√
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(

λ
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exp

(
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2
(2µ + λσ 2 − 2x)
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(
µ + λσ 2 − x
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√
2
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This function, g(x) in (2a), is always non-negative, which is

trivial to prove, and

∫ ∞

−∞
g(x)dx = 1 =

∫ 0

−∞
g(x)dx+

∫ ∞

0
g(x)dx

= 0+
∫ ∞

0
g(x)dx = 1 ∀x ∈ R

To prove (2b) integrates is 1 over the real number, we used

Equation (6) for g(x)

∫ ∞

0
g(x)dx =

∫ ∞

0

1

B(α,β)
F(x)α−1(1− F(x))β−1f (x)dx

Use integration by substitution: u = F(x) and differentiate u

with respect to x, yielding:

∫ ∞

0
g(x)dx =

∫ ∞

0

1

B(α,β)
uα−1(1− u)β−1du

= 1

B(α,β)

∫ ∞

0
uα−1(1− u)β−1du

The integral
∫∞
0 uα−1(1 − u)β−1du is a special case of the

beta function, defined as:

B(α,β) =
∫ 1

0
uα−1(1− u)β−1du
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TABLE 1 Some closed-form expansions for Equation (5) distribution based on real, non-integer, or integer parameters.

No. Cumulative distribution function Parameter Source

1.
F(x)α

αB(α,β)
2F1(α, 1− β ,α + 1; F(x)) For any values of α and β [5, 7]

2.
Ŵ(α + β)

Ŵ(α)

∞∑

j=1

(−1)jF(x)α+j

Ŵ(β − j)j!(α + j)
For real non integer β [1]

3.
F(x)α

Ŵ(α)

β−1∑

j=0

Ŵ(α + j)(1− F(x))j

j!
For integer β [1]

4. 1− (1− F(x))β

Ŵ(β)

α−1∑

j=0

Ŵ(β + j)

j!
F(x)j For integer α [1]

Table 1 shows that some closed-form expansions for

Equation (5) distribution based on real, non-integer, or integer

parameters.

Now, by changing variables, let t = u
1−u we get u = t

1+t . To

change limit of integration from 0 to ∞, consider t −→ 0, u −→
0; t −→ 1, u −→ ∞.

Therefore, we have:

1

B(α,β)

∫ 1

0
uα−1(1− u)β−1du

= 1

B(α,β)

∫ ∞

0

(
t

1+ t

)α−1 (
1− t

1+ t

)β−1( 1

1+ t

)2

dt

= B(α,β)

B(α,β)
= 1

Therefore, we have shown that
∫∞
0 g(x)dx = 1

Corollary 1.1. Asymptotic properties:

i. limx→∞ G(x) = 1

ii. limx→∞ g(x) = 0

Proof. To prove (i), the property for the confluent hypergeometric

function 2F1 from the book [41] is:

2F1(α, 1− β;α + 1; 1) = Ŵ(α + 1)Ŵ(β)

Ŵ(α + β)

and αB(α,β) = Ŵ(α + 1)Ŵ(β)

Ŵ(α + β)
.

where Ŵ(·) is the Gamma function and the properties of the beta

function, respectively.

Then,

lim
x→∞

G(x)

= lim
x→∞

(
1
2 erfc

(
µ−x

σ
√
2

)
− 1

2 exp
(

λ
2 (2µ+λσ 2−2x)

)
erfc

(
µ+λσ 2−x

σ
√
2

))α

αB(α,β)
×

2F1

(
α, 1− β ,α + 1; 1

2
erfc

(
µ − x

σ
√
2

)

− 1

2
exp

(
λ

2
(2µ + λσ 2 − 2x)

)
erfc

(
µ + λσ 2 − x

σ
√
2

))

lim
x→∞

G(x) = (1)α

αB(α,β)
× 2F1 (α, 1− β ,α + 1; 1)

= 2F1 (α, 1− β ,α + 1; 1)
αB(α,β)

= 1

We have demonstrated conclusively that:

lim
x→∞

G(x) = 1

To prove (ii)

lim
x→∞

g(x)

= lim
x→∞

1

B(α,β)

(
1

2
erfc

(
µ − x

σ
√
2

)
−1

2
exp

(
λ

2
(2µ + λσ 2−2x)

)

erfc

(
µ + λσ 2 − x

σ
√
2

))α−1

×
(
1− 1

2

[
erfc

(
µ − x

σ
√
2

)
− exp

(
λ

2
(2µ + λσ 2 − 2x)

)

erfc

(
µ + λσ 2 − x

σ
√
2

)])β−1

×
(

λ

2
exp

(
λ

2
(2µ + λσ 2 − 2x)

)
erfc

(
µ + λσ 2 − x

σ
√
2

))

= 1

B(α,β)

(
1

2
× 2−1

2
× 0× 2

)α−1

×
(
1−1

2

[
2− 0× 2

])β−1

×
(

λ

2
× 0× 2

)
= 1

B(α,β)
× 0 = 0

Therefore, limx→∞ g(x) = 0.

4.1 Special cases

The following are some special cases of the BExG distribution

that we examine:

1. When both α = β = 1, the BExG distribution Equation (10)

simplifies to the Ex-Gaussian distribution Equation (1). This

distribution is characterized by parameters µ, σ , and λ as

derived from the study mentioned in Golubev [39].

2. In the scenario where α = β = 1 and λ → ∞, the

BExG distribution Equation (10) transforms into the Gaussian

distribution. This transformation is described by the parameters

µ and σ proposed by the study mentioned inMarmolejo-Ramos

et al. [37].
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3. When β = 1, the BExG distribution Equation (3.2) reduces

to the generalized exponential-Gaussian distribution. This

reduction is governed by parameters λ,µ, σ , and α according

to the study mentioned in Marmolejo-Ramos et al. [37].

4. In the case where β = 1, λ → ∞, and α 6= 1, the

BExG distribution Equation (6) conforms to the power-normal

distribution. This distribution is characterized by parameters

µ, σ , and α, as studied by Chen et al. [42] andMarmolejo-Ramos

et al. [37].

5 Plots of the probability distribution

In this section, the BExG probability density function

(PDF) and cumulative distribution function (CDF) plots in the

Figures 1–5 are presented, showcasing various selected parameter

values.

A bimodal PDF (Figure 5) shows two different peaks or

modes, indicating the possibility of two unique processes or

sub-populations with various traits. The relative heights of each

peak indicate the frequencies and separations between them,

while each peak itself represents a mode or cluster within

the data.

Some of the shape properties of the uni-modal Beta-Ex-

Gaussian distribution include:

• The proposed distribution is a right-skewed distribution when

α > β . As α increases with β fixed, the degree of right

skewness increases.

• Conversely, the distribution demonstrates left-skewness when

α < β . As β increases with α fixed, the degree of left skewness

increases.

• Notably, when α 6= β , the distribution demonstrates

skewness.

• In the case where α = β , the distribution attains symmetry.

• When both α > 1 and β > 1, the distribution is characterized

as leptokurtic, exhibiting a higher peak.

• Conversely, when both α < 1 and β < 1, the distribution

assumes a platykurtic form, featuring a heavier tail.

• Specifically, when α = 1, β = 1, and λ → ∞, the

distribution is categorized as mesokurtic, closely resembling

a normal distribution.

In general, the new distribution provides more flexible and

versatile shapes that are different from those of normal and

exponential-normal distributions.

6 Moments of the Beta-Ex-Gaussian

In probability and statistics, expectations of powers are

moments of random variables, where the first is the expectation and

the second is the variance, or the second central moment [43].

For β ∈ R \ Z, we have the power series

(
1− F(x)

)β−1 =
∞∑

j=0

(−1)j

(
β − 1

j

)
F(x)j (11)

If β ∈ Z, the index j in the sum stops at β − 1 [7].

For α ∈ R \ Z, F(x)α+j−1 can be expanded:

F(x)α+j−1 =
[
1−

(
1− F(x)

)]α+j−1

=
∞∑

i=0

(−1)i

(
α + j− 1

i

)
(
1− F(x)

)i

=
∞∑

i=0

i∑

r=0

(−1)i+r

(
α + j− 1

i

)(
i

r

)
F(x)r (12)

Theorem 2. When α and β are integers, the nth moment of the

Beta-Ex-Gaussian random variable BExG(α,β ,µ, σ , λ) is given in

the Equation (13) as follows:

E
(
Xn
)
=

1

B(α,β)

β−1∑

j=0

(−1)j

(
β − 1

j

){
∑α+j−1

k=0
(−1)k

(
α + j− 1

k

)
In,k

}

(13)

where

In,k =
∫ ∞

0
xnf (x)

(
1− F(x)

)k
dx

Proof. The book [44] explains that for a random variable X in Ln,

the nth moment, themean, and the central moment respectively are:

E
[
Xn
]
=
∫
xnd GX(x) =

∫
xn gX(x)dx

E[X] =
∫
x gX(x)dx

E[(X − E[X])n] =
∫
[(X − E[X])n] gX(x)dx

Using Equations (11, 12), and Karr [44] we can prove it as

follows:

E
[
Xn
]
=
∫

xnd GX(x) =
∫

xn gX(x)dx

E
(
Xn
)
=
∫ ∞

0
xngX(x)dx

=
∫ ∞

0
xn

1

B(α,β)
F(x)α−1[1− F(x)]β−1f (x)dx

= 1

B(α,β)

β−1∑

j=0

(−1)j

(
β − 1

j

)∫ ∞

0
xnF(x)α−1F(x)jf (x)dx

= 1

B(α,β)

β−1∑

j=0

(−1)j

(
β − 1

j

)∫ ∞

0
xnF(x)α+j−1f (x)dx

= 1

B(α,β)

β−1∑

j=0

(−1)j

(
β − 1

j

)

∫ ∞

0
xn[1− (1− F(x))]α+j−1f (x)dx

= 1

B(α,β)

β−1∑

j=0

(−1)j

(
β − 1

j

)

{
∑α+j−1

k=0
(−1)k

(
α + j− 1

k

)
In,k

}

where

In,k =
∫ ∞

0
Xnf (x)

(
1− F(x)

)k
dx
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FIGURE 1

The probability density function (pdf) and cumulative distribution function (cdf) of the BExG distribution are depicted for selected parameter values,

with µ = 0, σ = 1, and λ = 1.

FIGURE 2

The probability density function (pdf) and cumulative distribution function (cdf) of the BExG distribution are depicted for selected parameter values,

with µ = 0, σ = 1, and λ = 1.

FIGURE 3

The probability density function (pdf) and cumulative distribution function (cdf) of the BExG distribution are depicted for selected parameter values,

with µ = 0 and β = 0.05.
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FIGURE 4

The probability density function (pdf) and cumulative distribution function (cdf) of the BExG distribution are depicted for selected parameter values,

with µ = 0, σ = 0.1, and λ = 1.

FIGURE 5

The bimodal probability density function and distribution function of the BExG distribution for selected parameter σ and λ values, with fixed

µ = 0,α = 0.1, and β = 0.05.

The variance, skewness, and kurtosis measures can be

calculated and related using the study mentioned in Jafari et al. [5]

and Bury [43] in the Equations (14–16) respectively.

Var(X) = E(X2)− E(X)2 (14)

Skewness(X) = E

(
X − µ

σ

)3

=
E
(
X3
)
− 3E(X)E

(
X2
)
+ 2E(X)3

Var(X)3/2

(15)

Kurtosis(X) = E

(
X − µ

σ

)4

=
E
(
X4
)
− 4E(X)E

(
X3
)
+ 6E

(
X2
)
E(X)2 − 3E(X)4

Var(X)2

(16)

The skewness and kurtosis measures are controlled mainly by

the parameters α and β , and Figure 6 illustrates their variation

using µ = 0, σ = 1, and λ = 1.

The skewness and kurtosis measures are controlled mainly

by the parameters α and β , and Figures 6–10 illustrates their

variation using various parametric values for µ, σ , and λ.

More figures are illustrated in Appendix A. The skewness and

kurtosis demonstrate strictly increasing, strictly decreasing, and U-

shaped behaviors, which are interesting in some applications of

the model.

Moreover, Tables 2, 3 illustrate how the mean and median

values of a distribution offer insights into its central tendency.

Skewness gauges the asymmetry of the distribution, with

positive values suggesting longer or fatter right tails and

negative values indicating the opposite. Kurtosis, on the other

hand, measures the tailedness of the distribution, with higher

values indicating heavier tails or more outliers. Additionally,

the impact of α on the distribution’s skewness and kurtosis

can be observed; a higher α value may result in a more

asymmetric distribution.

7 Order statistics

The density of the ith order statistic Xi : n, gi : n(x) say, in a

random sample of size n from the BExG distribution is obtained
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FIGURE 6

Skewness and kurtosis measures vs. α = 1, 1.5, · · · , 20 and β = 1, 1.5, · · · , 20 for the beta Ex-Gaussian distribution using µ = 0, σ = 1, and λ = 1.

FIGURE 7

Skewness and kurtosis measures vs. α = 1, 1.5, · · · , 20 and β = 1, 1.5, · · · , 20 for the beta Ex-Gaussian distribution sing µ = 1, σ = 1, and λ = 1.

from the well-known formula [7] is given in the Equation (17) as

follows.

gi : n(x) =
gi : n(x)

B(i, n− i+ 1)
G(x)i−1

(
1− G(x)

)n−i
(17)

Or let X1,X2, ...,Xn be a random sample of size n from

BExG(µ, σ 2, λ,α,β). Then the pdf and cdf of the ith order statistic,

say Xi : n, are given by Jafari et al. [5]

gi : n(x) = 1

B(i, n− i+ 1)

n−i∑

m=0

(−1)m

(
n− i

m

)
g(x)Gi+m−1(x)

(18)

Gi : n(x) =
∫ x

0
gi : n(t)dt

= 1

B(i, n− i+ 1)

n−i∑

m=0

(−1)m

m+ i

(
n− i

m

)
Gi+m(x) (19)
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FIGURE 8

Skewness and kurtosis measures vs. β = 1, 1.5, · · · , 10 for the beta Ex-Gaussian distribution: µ = 1, σ = 1, and λ = 1.5.

FIGURE 9

Skewness and kurtosis measures vs. α = 1, 1.5, · · · , 10 for the beta Ex-Gaussian distribution.

respectively, whereGi+m(x) =
(∑∞

r=0 brF(x)
r
)i+m

. Here, we use an

equation by Gradshteyn and Ryzhik [45] and Jafari et al. [5], for a

power series raised to a positive integer n

( ∞∑

r=0

bru
r

)n

=
∞∑

r=0

cn,ru
r

where the coefficients cn,r (for r = 1, 2, ...) are easily determined

from the recurrence Equation (20)

cn,r =
(
rb0
)−1

r∑

m=1

[m(n+ 1)− r]bmcn,r−m (20)
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FIGURE 10

Skewness and kurtosis measures vs. α = 1, 1.5, · · · , 20 and β = 1, 1.5, · · · , 20 for the beta Ex-Gaussian distribution using µ = 1.5, σ = 1, and λ = 1.

where cn,0 = bn0 . The coefficient cn,r can be calculated from

cn,0, ..., cn,r−1 and hence from the quantities b0, ..., br .

The Equations (18, 19) can be written as follows:

gi : n(x) = 1

B(i, n− i+ 1)

n−i∑

m=0

∞∑

r=1

1

m+ i
(−1)mrci+m,rf (x)F

r−1(x)

Gi : n(x) = 1

B(i, n− i+ 1)

n−i∑

m=0

∞∑

r=0

1

m+ i
(−1)mci+m,rF

r(x)

Therefore, the sth moment of Xi : n is as follows

E
[
Xs
i : n

]
= 1

B(i, n− i+ 1)

n−i∑

m=0

∞∑

r=1

1

m+ i
(−1)mrci+m,r

∫ +∞

0
tsf (t)Fr−1(t)dt

which cannot be an explicit expression.

8 Survival and hazard functions

In this section, we refer to Klein and Moeschberger [46]

to underscore the fundamental significance of the likelihood

of an individual surviving beyond time x as a key metric in

characterizing time-to-event events. The survival function, denoted

by the random variable X, is described in the Equation (21) as

follows (see Klein and Moeschberger [46] for details).

S(x) = P(X > x) = 1− G(x) (21)

Furthermore, the hazard function, also referred to as the

conditional failure rate, is a critical parameter in survival

analysis with broad applications in fields such as economics,

epidemiology, demography, and stochastic processes. For a

continuous random variable X, the hazard function is defined

as follows:

h(x) = g(x)

S(x)
= g(x)

1− G(x)
(22)

Theorem 3. The survival function and hazard

function for the new random variable are

as follows:

1. Survival function:

S(x)

= 1−

(
1
2 erfc

(
µ−x

σ
√
2

)
− 1

2 exp
(

λ
2 (2µ + λσ 2 − 2x)

)
erfc

(
µ+λσ 2−x

σ
√
2

))α

αB(α,β)

× 2F1

(
α, 1− β;α + 1; 1

2
erfc

(
µ − x

σ
√
2

)

− 1

2
exp

(
λ

2
(2µ + λσ 2 − 2x)

)
erfc

(
µ + λσ 2 − x

σ
√
2

))
(23)

2. Hazard function:

h(x)

= Ŵ(α + β)

Ŵ(α)Ŵ(β)

(
1

2
erfc

(
µ − x

σ
√
2

)
− 1

2
exp

(
λ

2
(2µ + λσ 2 − 2x)

)
erfc

(
µ + λσ 2 − x

σ
√
2

))α−1

×
(
1− 1

2
erfc

(
µ − x

σ
√
2

)
+ 1

2
exp

(
λ

2
(2µ + λσ 2 − 2x)

)
erfc

(
µ + λσ 2 − x

σ
√
2

))β−1

×
(

λ

2
exp

(
λ

2
(2µ + λσ 2 − 2x)

)
erfc

(
µ + λσ 2 − x

σ
√
2

))

×
(
1−

Ŵ(α + β)
(

1
2
erfc

(
µ−x

σ
√
2

)
− 1

2
exp

(
λ

2
(2µ + λσ 2 − 2x)

)
erfc

(
µ+λσ 2−x

σ
√
2

))α

αŴ(α)Ŵ(β)

× 2F1

(
α, 1− β;α + 1; 1

2
erfc

(
µ − x

σ
√
2

)
− 1

2
exp

(
λ

2
(2µ + λσ 2 − 2x)

)

erfc

(
µ + λσ 2 − x

σ
√
2

)))−1

(24)
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TABLE 2 The mean, variance, median, standard deviation, skewness, and kurtosis for µ = 0,λ = 1, and σ = 1.

β α Mean Median Std Dev Variance Skewness Kurtosis

3 0.290 0.147 0.476 0.226 1.995 6.462

4 0.176 0.084 0.349 0.122 2.472 9.399

5 1 0.112 0.051 0.264 0.070 3.008 13.142

6 0.073 0.033 0.204 0.042 3.606 18.080

10 0.016 0.007 0.081 0.007 6.870 60.531

3 0.633 0.063 0.620 0.384 1.007 –2.719

4 0.433 0.033 0.497 0.247 1.226 0.791

5 2 0.305 0.019 0.407 0.166 1.491 3.119

6 0.219 0.011 0.337 0.113 1.788 5.061

10 0.064 0.002 0.164 0.027 3.294 15.304

3 0.934 0.030 0.662 0.439 0.637 –20.380

4 0.688 0.014 0.559 0.312 0.721 –10.548

5 3 0.520 0.007 0.482 0.232 0.865 –4.784

6 0.398 0.004 0.419 0.175 1.042 –1.255

10 0.146 0.001 0.242 0.058 1.958 6.057

3 1.180 0.016 0.666 0.444 0.497 –55.500

4 0.912 0.007 0.576 0.332 0.488 –34.682

5 4 0.722 0.003 0.511 0.261 0.547 –20.967

6 0.579 0.002 0.458 0.210 0.646 –12.291

10 0.251 0.000 0.302 0.091 1.253 1.265

3 2.018 0.002 0.630 0.396 0.534 –629.522

4 1.723 0.000 0.544 0.295 0.408 –602.938

5 10 1.507 0.000 0.489 0.240 0.326 –535.531

6 1.336 0.000 0.452 0.204 0.270 –456.325

10 0.885 0.000 0.367 0.135 0.178 –199.409

Proof. Equations (21, 22) can be used to easily obtain the proof for

Equations (23, 24), respectively.

Corollary 3.1. Asymptotic behaviors:

limx→∞ S(x) = 0

Proof.

limx→∞ S(x)

= limx→∞


1−

(
1
2 erfc

(
µ−x

σ
√
2

)
− 1

2 exp
(

λ
2 (2µ+λσ 2−2x)

)
erfc

(
µ+λσ2−x

σ
√
2

))α

αB(α,β)
×

2F1

(
α, 1− β;α + 1; 1

2 erfc
(

µ−x

σ
√
2

)
− 1

2 exp
(

λ
2 (2µ + λσ 2 − 2x)

)
erfc

(
µ+λσ 2−x

σ
√
2

)))

= 1−

(
1
2 erfc

(
µ−∞
σ
√
2

)
− 1

2 exp
(

λ
2 (2µ+λσ 2−∞)

)
erfc

(
µ+λσ2−∞

σ
√
2

))α

αB(α,β)

× 2F1

(
α, 1− β;α + 1; 1

2 erfc
(

µ−∞
σ
√
2

)
− 1

2 exp
(

λ
2 (2µ + λσ 2 −∞)

)
erfc

(
µ+λσ 2−∞

σ
√
2

))

= 1−
(
1
2 erfc(−∞)− 1

2 exp(−∞) erfc(−∞)
)α

αB(α,β)

× 2F1
(
α, 1− β;α + 1; 1

2 erfc (−∞) − 1
2 exp

(
−∞)

)
erfc (−∞)

)

= 1−
(
1
2 ×2− 1

2 ×0×2
)α

αB(α,β)
× 2F1

(
α, 1− β;α + 1; 1

2 × 2− 1
2 × 0× 2

)

= 1− 2F1(α,1−β;α+1;1)
αB(α,β)

= 0

Therefore, limx→∞ S(x) = 0.

Here, we establish a series of plots to visually represent the

hazards and survival functions of the BExG distribution. This

distribution is characterized by varying parameter values, including

α, β , µ, σ , and λ. Through these plots, we aim to provide insights

into the probability density and hazards associated with the random

variable under consideration.

Based on parameter values, the hazard function can take on a

variety of shapes, including monotonically increasing, decreasing,

bimodal, parabolas, and bumping shapes. The hazard rate function

appears to converge to a fixed value over a large range of

x. Figures 11–16 reveal that larger α and β values result in

higher hazard rates compared with those of the base distribution.

Overall, the new distribution manifests shapes and patterns that

are distinct from the base distribution. Specifically, the shape

parameters play a crucial role in generating the interesting

shapes observed in the new BExG probability distribution. The

instantaneous rate of an event of interest is described by a

bimodal hazard function, where each peak denotes a higher

risk period.

Now, we go into the analysis of specific hazard function plots

(Figure 16) derived from the BExG distribution across a range of
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TABLE 3 The mean, variance, median, standard deviation, skewness, and kurtosis for µ = 0,λ = 1, and σ = 1.

β α Mean Median Std Dev Variance Skewness Kurtosis

1 3 2.207 0.329 1.285 1.651 1.072 –46.946

4 2.498 0.249 1.278 1.633 1.092 –82.296

5 2.723 0.200 1.273 1.619 1.114 –120.255

6 2.905 0.167 1.269 1.611 1.131 –158.980

10 3.410 0.100 1.266 1.603 1.160 –310.309

2 3 1.334 0.080 0.831 0.691 0.683 –36.037

4 1.602 0.049 0.825 0.681 0.640 –81.185

5 1.813 0.033 0.816 0.666 0.651 –142.007

6 1.986 0.024 0.808 0.654 0.675 –214.260

10 2.471 0.009 0.794 0.630 0.744 –559.040

3 3 0.934 0.030 0.662 0.439 0.637 –20.380

4 1.180 0.016 0.666 0.444 0.497 –55.500

5 1.380 0.009 0.659 0.435 0.460 –111.550

6 1.547 0.006 0.651 0.424 0.464 –187.607

10 2.018 0.002 0.630 0.396 0.534 –629.522

4 3 0.688 0.014 0.559 0.312 0.721 –10.548

4 0.912 0.007 0.576 0.332 0.488 –34.682

5 1.102 0.003 0.575 0.330 0.391 –78.069

6 1.263 0.002 0.568 0.322 0.362 –143.753

10 1.723 0.000 0.544 0.295 0.408 –602.938

10 3 0.146 0.001 0.242 0.058 1.958 6.057

4 0.251 0.000 0.302 0.091 1.253 1.265

5 0.368 0.000 0.341 0.116 0.821 –4.991

6 0.486 0.000 0.362 0.131 0.543 –16.548

10 0.885 0.000 0.367 0.135 0.178 –199.409

FIGURE 11

The hazard function (h(x)) and survival function (S(x)) of the BExG distribution are depicted for selected parameter values, with µ = 0, σ = 1, and λ = 1.
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FIGURE 12

The hazard function (h(x)) and survival function (S(x)) of the BExG distribution are depicted for selected parameter values, with µ = 0 and β = 0.05.

FIGURE 13

The hazard function (h(x)) and survival function (S(x)) of the BExG distribution are depicted for selected parameter values, with µ = 0 and β = 0.05.

FIGURE 14

The bimodal hazard function (h(x)) and survival function (S(x)) of the BExG distribution are depicted for selected parameter values, with µ = 0,

β = 0.05, and α = 0.1.
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FIGURE 15

The hazard function (h(x)) and survival function (S(x)) of the BExG distribution are depicted for selected parameter values, with µ = 0, σ = 0.1, and

λ = 1.

FIGURE 16

The BExG distribution’s hazard functions are depicted in various subplots, each representing a di�erent combination of parameters (σ and α),

providing valuable insights into the associated random variable, with β = 0.05,µ = 0, and λ = 1.

parameter values, with particular attention to the scale (σ ) and

shape (α) parameters. Our aim is to elucidate their influence on

the hazard profiles of the distribution and their implications for

practical applications.

9 Parameter estimation

Let X1,X2, · · · ,Xn be n i.i.d. random observations generated

from the new distribution g(x;8).

The likelihood and log-likelihood function for the

new BExG distribution are given by Equations (25,

26), respectively.

L(8|x) = L(α,β ,µ, σ , λ|x) =
n∏

i=1

g(xi|α,β ,µ, σ , λ) (25)

ℓ(8|x) = (α − 1)

n∑

i=1

ln

(
1

2
erfc

(
µ − xi

σ
√
2

)

−1

2
exp

(
λ

2
(2µ + λσ 2 − 2xi)

)
erfc

(
µ + λσ 2 − xi

σ
√
2

))

+(β − 1)

n∑

i=1

ln

(
1− 1

2
erfc

(
µ − xi

σ
√
2

)

+1

2
exp

(
λ

2
(2µ + λσ 2 − 2xi)

)
erfc

(
µ + λσ 2 − xi

σ
√
2

))

+
n∑

i=1

ln

(
λ

2
exp

(
λ

2
(2µ + λσ 2 − 2xi)

)

erfc

(
µ + λσ 2 − xi

σ
√
2

))
− n lnB(α,β) (26)
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FIGURE 17

Simulated distribution and its corresponding density estimate for a case of the BExG distribution with specific parameters.

FIGURE 18

Simulated distribution and its corresponding density estimate for a case of the BExG distribution with specific parameters.
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FIGURE 19

Simulated distribution and its corresponding density estimate for a case of the BExG distribution with specific parameters.

Here, 8 = {α,β ,µ, σ , λ}.
The Maximum Likelihood Estimate (MLE), denoted as 8̂

or α̂, β̂ , σ̂ , λ̂, is the set of parameter values, which maximizes

the likelihood function or, equivalently, the log-likelihood

function [47]

8̂ = argmax
8∈�

L(8|x) = argmax
8∈�

ℓ(8|X)

Let 8 = {α,β ,µ, σ , λ} and the log-likelihood function be

denoted as ℓ(8|x).
TheMaximum Likelihood Estimator (MLE) for each parameter

is obtained by taking partial derivatives of the log-likelihood

function and setting the equation equal to zero. i.e.,

8̂ =





α̂ = ∂ℓ
∂α

=
∑n

i=1
∂ ln(g(xi|α,β ,µ,σ ,λ))

∂α
= 0

β̂ = ∂ℓ
∂β

=
∑n

i=1
∂ ln(g(xi|α,β ,µ,σ ,λ))

∂β
= 0

µ̂ = ∂ℓ
∂µ

=
∑n

i=1
∂ ln(g(xi|α,β ,µ,σ ,λ))

∂µ
= 0

σ̂ = ∂ℓ
∂σ

=
∑n

i=1
∂ ln(g(xi|α,β ,µ,σ ,λ))

∂σ
= 0

λ̂ = ∂ℓ
∂λ

=
∑n

i=1
∂ ln(g(xi|α,β ,µ,σ ,λ))

∂λ
= 0

Since it was not easy to determine the estimated parameters

analytically, we used numerical optimization approaches.

10 Simulations

This section explores the use of the acceptance-rejection

algorithm, a fundamental method in statistical simulation used

to produce random samples from probability distributions

that are difficult to sample directly. In particular, we

study the Beta-Ex-Gaussian (BExG) distribution, which

is a probabilistic complex that combines elements of the

beta, exponential, and Gaussian distributions. The most

important steps in the acceptance-rejection algorithm by

the study mentioned in Robert and Casella [48] are as

follows:

Step 1. Generate a random variable Y from a proposal density

function g(y).

Step 2. Generate a uniform random variable, U, which is

independent of Y.

Step 3. If U ≤ f (y)
Mg(y)

, accept the proposed Y and set X = Y ;

otherwise, go to step 1.

where g(y) is a known distribution close to f (y), and M

is a constant number that is the upper bound such that
f (y)
g(y)

< M. In our case, f (y) is the new Beta-Ex-Gaussian

density function.

The simulation involves generating N = 10,000 samples

from the target distribution. Subsequently, the algorithm visually

presents the simulated samples through density plots and

histograms to illustrate their distribution, as illustrated in

Figures 17–19. The histograms show that the distribution can be

skewed distribution depending on the parameter values.

To assess the effectiveness of Maximum Likelihood

Estimators (MLEs) for the parameters of the Beta-Ex-Gaussian
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TABLE 4 Maximum likelihood estimates (MLE), mean squared errors (MSE), and bias of simulated data across di�erent sample sizes and cases.

Case I Case II Case III

n Params. MLE MSE Bias MLE MSE Bias MLE MSE Bias

100 α 1.997 0.00001 –0.003 4.557 0.196 –0.443 1.914 0.0074 –0.086

β 1.535 0.2164 –0.465 1.568 0.1868 –0.432 5.498 0.2521 –0.502

µ 0.502 0.2520 0.502 0.086 0.0074 0.086 0.061 0.0037 0.061

σ 1.040 0.0016 0.040 1.699 0.4881 0.699 0.582 0.1746 –0.418

λ 0.010 0.9799 –0.990 0.008 0.9832 –0.992 0.792 0.0432 –0.208

200 α 1.729 0.1879 –0.433 4.567 0.1938 –0.440 1.917 0.0068 –0.083

β 1.628 0.1893 –0.435 1.565 0.2877 –0.536 5.497 0.2526 –0.503

µ –0.329 0.0133 0.115 0.115 0.034 0.186 0.061 0.0038 0.061

σ 1.146 0.5172 0.719 1.719 0.104 –0.323 0.584 0.1734 –0.416

λ 0.024 0.9887 –0.994 0.006 0.8055 –0.897 0.788 0.0452 –0.212

500 α 1.858 0.0201 –0.14 4.571 0.184 –0.429 1.910 0.0081 –0.09

β 1.596 0.1636 –0.404 1.560 0.1936 –0.44 5.498 0.2515 –0.502

µ 0.223 0.0499 0.223 0.134 0.018 0.134 0.036 0.0013 0.036

σ 1.008 0.0001 0.008 1.739 0.5459 0.739 0.591 0.1675 –0.409

λ 0.105 0.8009 –0.895 0.009 0.981 –0.991 0.793 0.043 –0.207

1,000 α 1.864 0.0184 –0.136 4.569 0.1853 –0.431 1.914 0.0073 –0.086

β 1.5881 0.1695 –0.412 1.553 0.1998 –0.447 5.498 0.2523 –0.502

µ 0.163 0.02661 0.163 0.252 0.0636 0.252 0.041 0.0017 0.041

σ 1.067 0.00447 0.067 0.829 0.0291 –0.171 0.592 0.1667 –0.408

λ 0.096 0.81689 –0.904 0.160 0.7049 –0.84 0.786 0.0457 –0.214

(BExG) distribution, we conduct simulations across varying

sample sizes. The evaluation encompasses three distinct

cases characterized by the true parameter sets denoted as

8true = (α,β ,µ, σ , λ):

• Case I: α = 2,β = 2,µ = 0, σ = 1, λ = 1,

• Case II: α = 5,β = 2,µ = 0, σ = 1, λ = 1, and

• Case III: α = 2,β = 6,µ = 0, σ = 1, λ = 1

The MLE, 8̂ for each parameter can be evaluated using

two accuracy measures: the bias and the mean square

error (MSE).

Table 4 shows biases, MSE, and MLE for simulated data. Larger

sample sizes indicate closer convergence toward true parameter

values, while lower MSE values indicate better estimation accuracy.

Bias represents systematic estimation method overestimation or

underestimation, while MSE measures estimator accuracy. In

general, from Table 4, we find that the randomness of the sample

size affects the fluctuation estimation accuracy, MSE, and bias of

model parameters.

In our study, a simulated dataset to evaluate the goodness-

of-fit of the Beta-Ex-Gaussian distribution using various metrics.

The results showed that the new proposed distribution fits better

than its base Ex-Gaussian distribution, as shown in Table 5

and Figure 20.

11 Applications

In this part, we analyze four actual data sets to demonstrate

that the Beta-Ex-Gaussian (BExG) distribution fits better than the

Ex-Gaussian (Ex-G) distribution.

To test, measures of goodness-of-fit can be applied in

comparison to some other models. Mainly, we use Log-likelihood,

statistic Cramer-von misses (W), statistic Anderson Darling

(A), Akaike information criterion (AIC), the corrected Akaike

information criterion (CAIC), Bayesian information criterion (BIC),

and HannanQuinn information criterion (HQIC).

Data set 1: plasma concentrations-Indometh data

The Indometh data, a set of pharmacokinetic data from plasma

concentrations of the indometacin vector, is an R-built-in data

frame used in our study as data set 1 and is given as follows:

1.5, 0.94, 0.78, 0.48, 0.37, 0.19, 0.12, 0.11, 0.08, 0.07, 0.05, 2.03,

1.63, 0.71, 0.7, 0.64, 0.36, 0.32, 0.2, 0.25, 0.12, 0.08, 2.72, 1.49, 1.16,

0.8, 0.8, 0.39, 0.22, 0.12, 0.11, 0.08, 0.08, 1.85, 1.39, 1.02, 0.89, 0.59,

0.4, 0.16, 0.11, 0.1, 0.07, 0.07, 2.05, 1.04, 0.81, 0.39, 0.3, 0.23, 0.13,

0.11, 0.08, 0.1, 0.06, 2.31, 1.44, 1.03, 0.84, 0.64, 0.42, 0.24, 0.17, 0.13,

0.1, and 0.09.

Data set 2: carbon fiber data

Data set 2 consists of observations on the breaking stress of

carbon fibers. The data set that was studied was used by the study

mentioned in Kuttan Pillai et al. [49] to study a new generalization
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TABLE 5 The ML estimates, W, A, log-likelihood, BIC, AIC, and CAIC for simulated data.

Model MLE W A Value AIC BIC CAIC HQIC

Ex-G µ̂ = 0.491 0.100 0.976 336.695 679.391 692.035 679.439 684.353

σ̂ = 0.105

λ̂ = 1.421

BExG µ̂ = 0.497 0.084 0.835 243.178 496.3562 517.429 496.478 504.625

σ̂ = 0.041

λ̂ = 1.218

α̂ = 2.539

β̂ = 2.446

FIGURE 20

Plots (density and distribution) of fitted BExG and Ex-Gaussian distributions for the simulated data.

of Pareto distribution and its applications. We fit to this data into

the new model, BExG and Ex-Gaussian, and compare the results.

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11 4.42 2.41 3.19

3.22 1.69 3.28 3.09 1.87 3.15 4.90 3.75 2.43 2.95 2.97 3.39 2.96 2.53

2.67 2.93 3.22 3.39 2.81 4.20 3.33 2.55 3.31 3.31 2.85 2.56 3.56 3.15

2.35 2.55 2.59 2.38 2.81 2.77 2.17 2.83 1.92 1.41 3.68 2.97 1.36 0.98

2.76 4.91 3.68 1.84 1.59 3.19 1.57 0.81 5.56 1.73 1.59 2.00 1.22 1.12

1.71 2.17 1.17 5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38 1.84 0.39 3.68

2.48 0.85 1.61 2.79 4.70 2.03 1.80 1.57 1.08 2.03 1.61 2.12 1.89 2.88

2.82 2.05 3.65.

Data set 3: survival times (in days) of 72 guinea pigs

Data on the survival times (in days) of 72 guinea pigs infected

with virulent tubercle bacilli, observed, reported, and used by the

study mentioned in Mukherjee et al. [50] to study estimators of

the PDF and CDF of the one-parameter polynomial exponential

distribution.

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96,

1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13,

1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44,

1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95,

1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51,

2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58,

and 5.55.

Data set 4: Kevlar 49/epoxy strand failure time data (pressure

at 90%)

Life data set that displays the stress rupture life in hours of

Kevlar 49/epoxy strands under continuous, sustained stress level

pressure until failure. The data set has been previously used in the

study mentioned in Al-Aqtash et al. [51] to illustrate the usefulness

of the Gumbel–Weibull distribution (GWD) when compared with

the exponentiated-Weibull, beta normal, and generalized half

normal. 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07,

0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20,

0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54,

0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79,

0.80, 0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05,

1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45,

1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80,

1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, and 7.89.

The BExG distribution yields the smallest values of W,

A, Log-likelihood function, AIC, BIC, CAIC, and HQIC

statistics, as shown in Tables 6–9. Based on these statistics,
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TABLE 6 MLEs, W, A, log-likelihood, BIC, AIC, and CAIC for data set 1.

Model MLE W A Value AIC BIC CAIC HQIC

Ex-G µ̂ = 0.017 0.554 3.350 131.318 268.637 275.206 269.025 271.233

σ̂ =0.615

λ̂ = 0.231

BExG µ̂ = 0.081 0.326 2.080 43.796 97.592 108.541 98.592 101.919

σ̂ = 0.131

λ̂ = 0.807

α̂ = 1.108

β̂ = 2.058

TABLE 7 MLEs, W, A, log-likelihood, BIC, AIC, and CAIC for data set 2.

Model MLE W A Value AIC BIC CAIC HQIC

Ex-G µ̂ = 0.493 0.217 1.142 176.287 358.574 366.390 358.824 361.737

σ̂ = 0.377

λ̂ = 0.512

BExG µ̂ = 0.483 0.112 0.574 147.257 304.514 317.540 305.152 309.786

σ̂ = 1.080

λ̂ = 0.825

α̂ = 2.706

β̂ = 1.368

TABLE 8 MLEs, W, A, log-likelihood, BIC, AIC, and CAIC for data set 3.

Model MLE W A Value AIC BIC CAIC HQIC

Ex-G µ̂ = 0.496 0.056 0.373 96.177 198.355 205.185 198.708 201.074

σ̂ = 0.296

λ̂ = 0.794

BExG µ̂ = 0.314 0.082 0.468 93.298 196.597 207.980 197.506 201.128

σ̂ = 0.527

λ̂ = 0.717

α̂ = 2.255

β̂ = 1.908

it can be concluded that the BExG model outperforms the

Ex-Gaussian distribution in fitting the data. The plots of

the densities (alongside the data histogram) and cumulative

distribution functions (with an empirical distribution function)

are provided in Appendix B. These plots demonstrate also

that the BExG model offers a superior fit compared with the

Ex-Gaussian model.

12 Conclusion

The aim of this study is to develop a new five-parameter

continuous probability distribution, named the Beta-Exponential-

Gaussian (BExG) distribution using the method of beta generator.

The BExG distribution includes Ex-Gaussian, generalized

Ex-Gaussian, normal, and power-normal probability distributions

as special cases. It is a new contribution to the Statistical and

Probability theory. The research contributes to enhancing

modeling capabilities of the base Exponential-Gaussian

distribution by proposing the new Beta Exponential-Gaussian

distribution which is found to be a promising alternative for

data analysis in different application areas including survival and

reliability. The basic properties of the new distribution, including

reliability measure, hazard function, survival function, moment,

skewness, kurtosis, order statistics, and asymptotic behavior, are

established. The acceptance-rejection algorithm for simulation

is presented. The new model is fitted to the simulated and real

data sets, and its performance is revealed. The distribution can

model data sets having a distributional nature of various skewness,

kurtosis, heavier tails, uni-model, bi-modal, and asymmetric
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TABLE 9 MLEs, W, A, log-likelihood, BIC, AIC, and CAIC for data set 4.

Model MLE W A Value AIC BIC CAIC HQIC

Ex-G µ̂ = 0.391 0.681 4.570 181.071 368.142 375.987 368.389 371.318

σ̂ = 1.945

λ̂ = 1.191

BExG µ̂ = 0.052 0.181 1.239 113.605 237.210 250.285 237.841 242.503

σ̂ = 0.129

λ̂ = 0.523

α̂ = 0.953

β̂ = 1.784

properties. The Beta-Exponential-Gaussian distribution is

found to be more flexible, and so, we recommend it to be used

for applications.
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