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We consider a continuous-time model of optimal consumption and pension

insurance for a consumer with an uncertain lifetime. In the model, the consumer

earns a stochastic wage income during her working life and optimally allocates

her income between personal consumption, pension insurance, and securities

with a deterministic dynamic return. Due to the weak development of the

stock market in developing countries, employees’ income comes mainly from

wages and interest on savings from banks, that are discussed in this paper. The

consumer’s utility and bequest functions are constant absolute risk aversion

(CARA). By characterizing the optimality condition of the consumer’s problem

using the Hamilton-Jacobi-Bellman equation, we find the optimal consumption

and pension insurance as a function of wealth in closed form. We consider an

application of the model while estimating its key elements using real-life data on

age-specific population size, labor income, and interest rates. We show that as

the absolute risk aversion for consumption increases, consumption and wealth

move in the opposite direction. We also present a novel finding that wealth and

consumption can be negatively related across consumers with di�erent levels of

consumption risk aversion.

KEYWORDS

stochastic optimal control, optimal consumption, pension insurance, relative risk

aversion, bequest, force of mortality, Hamilton-Jacobi-Bellman equation

1 Introduction

Beginning in the 1960s, numerous researchers have constructed models to analyze

the life insurance and the investment behavior of individuals with an uncertain lifetime.

Yaari [1] is among the first to explore the life insurance demand in such an environment.

Merton [2, 3] developed a continuous time model for optimal consumption and financial

investment portfolio. By building on work of Yaari [1] and Merton [2, 3], Richard [4]

and Pliska and Ye [5] consider a dynamic programming problem of the life insurance,

consumption, and investment of a consumer with an uncertain lifetime. They obtain

explicit solutions for the consumer’s decision under the constant relative risk aversion

(CRRA) utility function. More recent contributions of Chang [6] and Jinchun [7] also

consider CRRA utility functions.
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The analysis considered in the current paper is closely related to

that of Pliska and Ye [8] who analyze a stochastic optimal control

problem of consumption, the pension insurance, and investment

under an uncertain lifetime. Our work deviates from theirs along

three important dimensions. First, unlike the CRRA utility function

considered by Pliska and Ye [8], the utility function considered in

this paper is CARA (constant absolute risk aversion). Second, in

our model, the wage is stochastic throughout the working life of the

consumer, which is consistent with data. Third, the hazard function

considered in our model is more flexible.

Our specification is highly flexible in the sense that it allows

us to capture the shape of the age-specific population size.

Specifically, Pliska and Ye [8] model the hazard function as a linear

function with two parameters.1 We specify the hazard function

as a piece-wise log quadratic function, with 12 parameters (see

Equation 31). The parameters are estimated using the age-specific

population size.

Pioneering work of De Moivre [9] modeled the force of

mortality as a rational function of age, while Gompertz [10]

introduced an exponential model of the force of mortality as

a function of age. Makeham [11] extended Gompertz [10] by

including age-independent mortality risks. It should be noted that

Gompertz [10] and Makeham [11] focus on only adult mortality.

Perks [12] modified Gompertz [10] by considering a more flexible

logistic mortality. Heligman and Pollard [13] and Thatcher [14]

consider a richer setup with eight-parameter logistic mortality that

covers the entire age range of the consumer.2 In a related setting,

Anson [16] specifies the humanmortality rate as an age polynomial

of degree 5. Over the past 180 years, the earlier models have been

applied to data across many countries.

The key advantage of the earlier models is the analytical

solution. However, one of the main limitations of these models

is their underlying assumption that the population pyramid takes

the traditional (expanding) shape. Therefore, these models are not

directly applicable to a wide array of countries with declining

population growth or a contracting population pyramid.3 To

capture more realistic population pyramids, one needs to consider

a highly flexible force of mortality. For this reason, we specify

the logarithm of the force of mortality as a piecewise smooth

continuous function of the third-order B-spline4 while using the

approach proposed by Oirov [18].

The remainder of the paper is organized as follows. In the

Section 2 we present the model, where in the Section 3 we

demonstrate the solution of the consumer’s problem. Section 4

considers an application of the model to real-life data on the

mortality force, the wage process and the interest rate. And finally

Section 5 draws the conclusions of the paper.

1 Pliska and Ye [8] use the following hazard function: λ(t) = γ0 + γ1 t, where

t is the consumer’s age and the parameters γ0 , γ1 are strictly positive.

2 Weibull [15] models equipment failures that occur due to wear and tear.

Many elements of his model are adopted by researchers to model human

mortality rates.

3 Saroha [17].

4 A spline of order n is a piecewise polynomial function of degree n − 1 in

a variable τ .

FIGURE 1

Timing of the events.

2 The model

2.1 Setup

Consider a continuous-time economy that consists of three

markets: goods, labor and insurance markets. Let t denote the time,

where t ∈ R+. Consider a consumer who is born at t = 0.

Throughout the paper, this consumer will also be referred to as

“she" or “the worker," interchangeably.

The consumer’s lifetime, denoted by τ , is a random variable.

The maximum age the consumer can reach is T and, therefore, 0 ≤

τ ≤ T. The consumer starts working at time tw (or, equivalently, at

age tw) and retires at time tr . The timing of the main life events of

the consumer is shown in Figure 1.

While employed, the consumer receives the stochastic wage

Y(t), t ∈ [tw, tr]. The consumer allocates her current income

Y(t) among (i) current consumption, (ii) purchasing a pension

insurance policy, and (iii) savings. The interest rate on savings is

deterministic (i.e. risk-free). The risk-free interest rate is given by

the following continuous, smooth function: r(t) :R → R+.

2.2 The wage process

The wage process Y(t) : [tw, tr] → R+ is Borel measurable and

satisfies

tr∫

tw

E((Y(t))2)dt <∞.

We suppose that the wage process Y(t) is defined by

dY(t) = µY (t)dt + σY (t)dB(t), tw ≤ t ≤ tr . (1)

Here, µY (t) is the average wage function, σY (t) is the wage

volatility function, and B(t) denotes the Brownian motion.

2.3 Wealth

LetW(t) denote the consumer’s wealth at t. At tw, the consumer

is endowed with the initial wealth Wtw . Let c(t) denote the

consumption rate, P(t) the amount of insurance purchased, and

ϑ(t) the insurance premium rate at time t. Then, the wealth

accumulation process can be written as

dW(t) = r(t)W(t)dt+dY(t)−c(t)dt−ϑ(t)P(t)dt, tw ≤ t ≤ tr . (2)
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2.4 The distribution of the lifetime

Assume that τ is a continuous random variable whose

distribution function is F, i.e., F(t) = Pr(τ ≤ t), 0 ≤ t ≤ T.

Then, the survival function is S(t) = 1 − F(t). Let λ(t) denote the

function of the force of mortality, i.e.,

λ(t) = −
S′(t)

S(t)
.

The survival function can be expressed in terms of the force of

mortality:

S(t) = exp

(
−

t∫

0

λ(ξ )dξ

)
.

Then, the cumulative distribution and probability density

functions can be written as

F(t) = 1− S(t) = 1− exp

(
−

t∫

0

λ(ξ )dξ

)

and

f (t) = λ(t) exp

(
−

t∫

0

λ(ξ )dξ

)
.

2.5 Lifetime utility

Let U denote the utility function, where U(c(t)) is the utility

drawn from consumption c(t). Also, let Z(τ ) be the contingent

bequest at the end of the lifetime, while the utility drawn from the

bequest is8(τ ,Z(τ )).

If the consumer’s lifetime were deterministic, his or her lifetime

utility would be given by

ψ(τ ) =

τ∫

0

exp

{
−

∫ t

0
ρ(ξ )dξ

}
U(c(t))dt +8

(
τ ,Z(τ )

)
,

where ρ is the discount rate function, i.e., ρ(t) : [0,T] → R+.

However, since in our model, the lifetime is uncertain, we need to

take into account the distribution of the lifetime. Specifically, the

expected lifetime utility of the consumer at birth is given by the

following weighted integral:

Efψ(T) =

T∫

0

[ t∫

0

exp

(
−

ω∫

0

ρ(ξ )dξ

)
U(c(ω))dω+8

(
t,Z(t)

)
]
f(t)dt.

Using integration by parts, one can obtain the following

expected lifetime utility:

Efψ(T) =

T∫

0

[
f (t)8

(
t,Z(t)

)
+ S(t) exp

(
−

t∫

0

ρ(ξ )dξ

)
U
(
c(t)

)
]
dt.

2.6 The consumer’s problem

As stated earlier, tw is the time at which the consumer starts

earning a wage and tr is the retirement age. That is, the pension

insurance payment starts at age tw and ends at tr . Therefore, the

time period that is relevant for the consumer’s problem is t ∈

[tr , tw].

Recall that the consumer is endowed with the initial wealthWtw

at age tw.

W(tw) = Wtw . (3)

Substituting Equation (2) into Equation (1), the change of

wealth is defined by the following equation:

dW(t) =
(
r(t)W(t)+ µY (t)− c(t)− ϑ(t)P(t)

)
dt + σY (t)dB(t).

(4)

The bequest at t = τ is given by the sum of the wealth and the

amount of insurance available at τ :

Z(τ ) = W(τ )+ P(τ ). (5)

Since consumer’s problem covers the period of t ∈ [tw, tr], the

mortality probability is defined by below conditional probability

f̃ (t, tw, tr) =
f (t)

F(tr)− F(tw)
=

f (t)

S(tw)− S(tr)

F̃(t, tw, tr) =
F(t)− F(tw)

F(tr)− F(tw)
=

S(tw)− S(t)

S(tw)− S(tr)
(6)

S̃(t, tw, tr) = 1− F(t, tw, tr) =
S(t)− S(tr)

S(tw)− S(tr)

λ̃(t, tw, tr) =
f̃ (t, tw, tr)

S̃(t, tw, tr)

The consumer’s problem is given by the following stochastic

optimal control problem:

max
{c(t),P(t), tw→tr}

{ tr∫

tw

[
f̃ (t, tw , tr)8(t,Z(t))+ S̃(t, tw , t) exp

(
−

t∫

tw

ρ(ξ )dξ

)
U
(
c(t)

)]
dt

}
, (7)

Substituting Equation (6) into Equation (7), the consumer’s

problem is defined by the following stochastic optimal control

problem:

max
{c(t),P(t), tw→tr}

{
1

S(tw)− S(tr )

tr∫

tw

[
f (t)8(t, Z(t))+ (S(t)− S(tw)) exp

(
−

t∫

tw

ρ(ξ )dξ

)
U
(
c(t)

)]
dt

}
,

subject to Equations (3–5).
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2.7 Value function

The lifetime utility at age t ∈ [tw, tr] is given by the following

value function:

J(tw, tr , W(tw)) =

max
{c(t), P(t), tw→tr}

E

{
1

S(tw)− S(tr)

[ tr∫

tw

f (t)8
(
t, Z(t)

)

+(S(t)− S(tw)) exp

(
−

t∫

tw

ρ(ξ )dξ

)
U
(
c(t)

)
]
dt

}
,

where tw ≤ t ≤ tr . Here, the consumer’s wealth increases

with the rates of the riskless asset and the wage, but decreases

with consumption and the insurance premium. The consumer

maximizes the value of the utility function of consumption and

bequest,

J(tw, tr , W(tr)) = Jtr = 0.

The expected lifetime utility at t > tw is written as

J(t, tr , W(t)) =

max
{c(t), P(t),t→tr}

E

{
1

S(tw)− S(tr)

tr∫

t

[
f (ξ ) 8

(
ξ , Z(ξ )

)

+(S(ξ )− S(tw))U
(
c(ξ )

)
exp

(
−

ξ∫

tw

ρ(ν)dν

)]
dξ

}
,

where t ≤ ξ ≤ tr .

3 Solution

We characterize the optimality condition of the consumer’s

problem specified in the previous section by using the Hamilton-

Jacobi-Bellman equation.

3.1 The Hamilton-Jacobi-Bellman
equation

Theorem: Suppose that the value function J(t, tr , W(t)) is of

class C2. Then J(t, tr , W(t)) satisfies the Hamilton-Jacobi-Bellman

equation

0 = max{c(t), P(t), t→tr}{[
λ̃(t, tw, tr)(S(t)− S(tw))

8(t,Z(t))+ (S(t)− S(tw))U(c(t)) exp

(
t∫

tw

ρ(ξ )dξ

)]

· 1
(S(tw)−S(tr))

+
[
r(t)W(t)+ µY (t)− c(t)− ϑ(t)P(t)

]
JW

+ Jt +
1
2σ

2
Y (t)JWW

}
. (8)

Proof:

J(t, tr , W(t)) = max
{c(t), P(t), t→tr}

E

{
1

S(tw)− S(tr)

tr∫

t

[
f (ξ ) 8

(
ξ , Z(ξ )

)

+(S(ξ )− S(tw))U
(
c(ξ )

)
exp

(
−

ξ∫

tw

ρ(ν)dν

)]
dξ

}

= max
{c(t), P(t), t→tr}

E

{
1

S(tw)− S(tr)

( t+1t∫

t

[
f (ξ ) 8

(
ξ , Z(ξ )

)

+(S(ξ )− S(tw))U
(
c(ξ )

)
exp

(
−

ξ∫

tw

ρ(ν)dν

)]
dξ+

t∫

t+1t

[
f (ξ ) 8

(
ξ , Z(ξ )

)

+(S(ξ )− S(tw))U
(
c(ξ )

)
exp

(
−

ξ∫

tw

ρ(ν)dν

)]
dξ

)}

= max
{c(t), P(t), t→t+1t}

E

{
1

S(tw)− S(tr)

t+1t∫

t

[
f (ξ ) 8

(
ξ , Z(ξ )

)

+(S(ξ )− S(tw))U
(
c(ξ )

)
exp

(
−

ξ∫

tw

ρ(ν)dν

)]
dξ

+ max
{c(t), P(t), t+1t→tr}

E

{
1

S(tw)− S(tr)

t∫

t+1t

[
f (ξ ) 8

(
ξ , Z(ξ )

)

+(S(ξ )− S(tw))U
(
c(ξ )

)
exp

(
−

ξ∫

tw

ρ(ν)dν

]
dξ

)}}
,

(9)

Using the mean value theorem at the first integral, we get

following equation.

t+1t∫

t

[
f (ξ ) 8

(
ξ , Z(ξ )

)
+ (S(ξ )− S(tw))U

(
c(ξ )

)

exp

(
−

ξ∫

tw

ρ(ν)dν

)]
dξ

=

[
f (t + θ ·1t)8

(
t + θ ·1t, Z(t + θ ·1t)

)
+

(
S(t + θ ·1t)− S(tw)

)

· U
(
c(t + θ ·1t)

)
exp

(
−

t+θ ·1t∫

tw

ρ(ν)dν

)]
·1t
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Here, 0 ≤ θ ≤ 1, θ1t ∈ [0, 1t], 1t → 0, follows that

f (t + θ1t) ·8(t + θ1t, Z (t + θ1t))+

S
(
t + θ1t)− S(tw)

)
U
(
c(t + θ1t)

)
exp

(
−

t+θ1t∫

tw

ρ(ν)dν

)

→ f (t)8(t, Z(t))+ (S(t)− S(tw))U
(
c(t)

)
exp

(
−

t∫

tw

ρ(ν)dν

)
.

By definition, the second integral is

max
{c(t), P(t), t+1t→tr}

E

{
1

S(tw)− S(tr)

t∫

t+1t

[
f (ξ ) 8

(
ξ , Z(ξ )

)
+

(S(ξ )− S(tw))U
(
c(ξ )

)
exp

(
−

ξ∫

tw

ρ(ν)dν

)]
dξ

}

= J

(
t +1t, tr , W (t +1t)

)
.

Now rewriting, Equation (9)

J

(
t, tr , W(t)

)
= max

{c(t), P(t), t→t+1t}

E

{
1

S(tw)− S(tr)

[
f (t + θ1t)8(t + θ1t, Z(t + θ1t))+

(
S(t + θ1t)− S(tw)

)
U
(
c(t + θ1t)

)
·

exp


−

t+θ1t∫

tw

ρ(ν)dν



]
1t + J

(
t +1t, tr , W(t +1t)

)}
.

From the last equation, we obtain that

0 = max
{c(t), P(t), t→t+1t}

E

{
1

S(tw)− S(tr)

[
f (t + θ1t)8(t + θ1t,

Z(t + θ1t))+
(
S(t + θ1t)− S(tw)

)

U
(
c(t + θ1t)

)
· exp


−

t+θ1t∫

tw

ρ(ν)dν



]
1t+

J
(
t +1t, tr , W(t +1t)

)
− J

(
t, tr , W(t)

)}
.

Using the Ito’s lemma, we obtain that

J
(
t +1t, tr , W(t +1t)

)
− J(t, tr , W(t)) = Jt1t + JW1W+

1

2
JWW(1W)2 + o(1t).

Here, Jt , JW , JWW are first and second derivatives from

J(t, tr , W) function. Then, expected value of the Equation (10) is

defined by

E

{
J
(
t +1t, tr , W(t +1t)

)
− J(t, tr , W(t))

}
=

Jt1t + JWE(1W)+
1

2
JWWE(1W)2 + o(1t).

(10)

Here, from Equation (4)

E(1W) = (r(t)W(t)+ µY (t)− c(t)− ϑ(t)P(t)) ·1t

E(1W)2 = σ 2
Y (t)1t

(11)

Substituting Equation (11) into Equation (10), then dividing by

1t and letting 1t go to zero we obtain the Equation (8). Proved

theorem.

We choose the value and bequest functions as follows:

J(tw, t, W(t)) = exp

(
−

t∫

tw

(
ρ(ξ )+ λ̃(ξ , tw, tr)

)
dξ

)
V(t, W(t)),

(12)

8(t, Z(t)) =
1

λ̃(t, tw, tr)
ϕ(t, Z(t)) exp

(
−

t∫

tw

ρ(ξ )dξ

)
,

(13)

where V(·, ·) and ϕ(·, ·) are the future (time-specific) values

associated with J(·, ·) and 8(·, ·). Substituting Equations (12, 13)

into Equation (8), we obtain

0 = max
{c(t), P(t)}

{ 1

S(tw)− S(tr)

[
ϕ(t,Z(t))+ U(c(t))

]
−

(
ρ(t)+ λ̃(t, tw, tr)

)
V(t, W(t))+

[
r(t)W(t)+ µY (t)− c(t)− ϑ(t)P(t)

]
VW(t, W(t))

+Vt(t, W(t))+
1

2
σ 2
Y (t)VWW(t, W(t))

}
.

(14)

Then, from Equation (14), the first-order conditions associated

with the optimal control problem are derived as

1

S(tw)− S(tr)
U ′
c(c(t))− VW(t, W(t)) = 0, (15)

1

S(tw)− S(tr)
ϕ′Z(t, Z(t))− ϑ(t)VW(t, W(t)) = 0, (16)

where tw ≤ t ≤ tr .

3.2 The utility and bequest functions

Let us choose the following forms of the utility function of

consumption and bequest:

U(c(t)) = −
α

β
exp{−β · c(t)}, (17)

ϕ(t,Z(t)) = −
A(t)

k
exp{−k · Z(t)}, (18)

where the parameters α,β , k are all greater than zero, and the

functions A(·) and Z(·) are yet to be determined.

In Equations (17, 18), the two key parameters are β and k,

which denote, respectively, the absolute risk aversion coefficients

of the utility and bequest functions. Below, in the numerical

application, we will focus on the impact of these two risk aversion

coefficients, i.e., on the impact of parameters β and k.
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Given the specifications in Equations (17, 18), the value

function takes the following form:

V(t,W(t)) = −
b(t)

a(t)
exp{−a(t)W(t)}. (19)

In Equation (19), the two functions, a(·) and b(·), fully

determine how the value function depends on wealth. The

positive deterministic function a(·) captures the extent of the

relative risk aversion of the value function. The function b(·)

is also positive and deterministic. However, the coefficients of

b(·) are allowed to be time-varying. Below, in our numerical

implementation below, we determine these functions using the

method of undetermined coefficients.

Let’s define the optimal consumption and premium as a

function of u(t, c(t)) and ϕ(t, Z(t)). By using the first-order

condition in Equation (15), we have the following optimal

consumption function:

c∗(t) =
1

β

{
a(t)W(t)− ln

[
b(t)

(
S(tw)− S(tr)

)

α

]}
. (20)

Furthermore, by applying the first-order condition in Equation

(16), we have

A(t) = ϑ(t)b(t)
(
S(tw)− S(tr)

)
, (21)

P∗(t) =

(
a(t)

k
− 1

)
W(t). (22)

By substituting Equations (20–22), Vt , VW and VWW into

Equation (14), the Hamilton-Jacobi-Belman equation is simplified

to

0 =−
ϑ(t)b(t)

k
−

b(t)

β
+
(
ρ(t)+ λ̃(t, tw, tr)

) b(t)
a(t)

−
b′(t)

a(t)
+

b(t)a′(t)

a2(t)
+

b(t)a′(t)

a(t)
W(t)+ r(t)b(t)W(t)+ µY (t)b(t)−

a(t)b(t)

β
W(t)+

b(t)

β
ln

[
b(t)(S(tw)− S(tr))

α

]
−

ϑ(t)a(t)b(t)

k
W(t)+ ϑ(t)b(t)W(t)−

1

2
σ 2
Y (t)a(t)b(t).

Hence we can find the Bernoulli equation for a(t) as

a′(t)+ (r(t)+ ϑ(t))a(t) =

(
1

β
+
ϑ(t)

k

)
a2(t). (23)

It follows that

a(t) =

[
exp

( t∫

tr

(
r(ξ )+ ϑ(ξ )

)
dξ

)
×

{
consta −

t∫

tr

(
1

β
+
ϑ(ξ )

k

)
exp

(
−

ξ∫

tr

(r(η)+ ϑ(η))dη

)
dξ

}]−1

and

[
ln b(t)

]′
−

a(t)

β
ln b(t) = D(t), (24)

where

D(t) = ρ∗(t)− r(t)− ϑ(t)+ µY (t)a(t)−
1

2
σ 2
Y (t)a

2(t)+

a(t)

β
ln

(
S(tw)− S(tr)

α

)
,

(25)

ρ∗(t) = ρ(t)+ λ̃(t, tw, tr). (26)

Here, ρ∗(t) is the effective discount rate associated with the

nominal lifetime utility value of time t (also, see Equation 12).

Since Equation (24) is a linear differential equation, its solution

can be found as

b(t) = exp



exp

( t∫

tr

a(ξ )

β
dξ

)

×

(
constb +

t∫

tr

D(ξ )

(
exp

(
−

ξ∫

tr

a(η)

β
dη

))
dξ

)
 .

From Equations (20, 22), it can be seen that the extent to

which the optimal consumption and the optimal insurance amount

depend on wealth is influenced by the function a(·). As with any

dynamic programming problem, the consumer’s current decision

amounts to maximizing the value function associated with the

remaining lifetime. Furthermore, the key element driving the risk

aversion of the value function is the risk aversion coefficient of

the bequest function. Given these considerations, we make the

following assumption:

a(t) = k ξ (t) for all t. (27)

Under such a specification, the function ξ (·) can be retrieved

fromEquation (23). Inserting Equation (27) into Equation (23), one

can obtain the following so-called Bernoulli’s equation:

ξ ′(t)+
(
r(t)+ ϑ(t)

)
ξ (t) =

(
k

β
+ ϑ(t)

)
ξ 2(t). (28)

The solution of Equation (28) is given by

c∗(t) =
1

β

(
kξ (t)W(t)− ln

(
b(t)

α

))
, (29)

P(t) = (ξ (t)− 1)W(t). (30)

For the type of analyses such as ours, one of the most frequent

assumptions in the literature is the constant relative risk aversion

(CRRA). Consistently, we also consider the CRRA for both the

utility and bequest functions. This specification allows us to solve

the stochastic optimization problem specified in Section (2.6)

analytically.

Equations (29, 30) imply that the optimal consumption level

and optimal insurance amount are both linear in wealth. Moreover,

the slope of the optimal consumption as a function of wealth

depends on one the ratio of the two RRA coefficients k/β . These

results are in line with those obtained by Richard [4] using

CRRA functions.
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However, our analysis differs from the existing literature in

one important way. The earlier studies are usually concerned with

obtaining an analytical solution and drawing general conclusions

from the analytical solution. Our analysis goes a step further.

Specifically, using the analytical solution, we conduct a set of

numerical experiments and have a deeper look into the impact of

the risk aversion parameters.

3.3 Di�erence scheme

Using the difference scheme, the Equations (24, 25, 28) can be

written in the discrete-time setting as follows:

b(t + 1) = b(t)

[
1+

kξ (t)

β
ln(b(t))+ D(t)

]
,

D(t) = ρ∗(t)− r(t)− ϑ(t)+

(
µY (t)+

1

β
ln

(
S(tw)− S(tr)

α

))

kξ (t)−
σ 2
Y (t)k

2ξ 2(t)

2
,

ξ (t + 1) = (1− r(t)− ϑ(t))ξ (t)+

(
k

β
+ ϑ(t)

)
ξ 2(t).

4 Application

As an important contribution of our analysis to the current

literature, we apply the model to real-life data and examine both

the qualitative and quantitative effects of the parameters. For this

purpose, we need to construct deterministic functions such as the

mortality force, the wage process, and the interest rate. We estimate

these functions using data on aggregate and age-specific data from

Mongolia. The data used in our estimation are available from

the Mongolbank (the central bank of Mongolia) and the National

Statistical Office (NSO) of Mongolia.

As with many post-communist countries, Mongolia’s

population pyramid had experienced dramatic changes during

its transition period, which lasted throughout the 1990s and

early 2000s. Consequently, the age distribution of the population

can not be adequately captured by standard distributions. We

overcome this challenge by using the piece-wise cubic spline

method developed by Oirov [18].

4.1 B-spline functions

Consider a set of nth order B-spline functions defined on a set

of knots qk,n = (q1, q2, . . . , q2n+k). Suppose that the knots are set

up in the following manner:

η = q1 = q2 = . . . = qn < qn+1 < . . . < qn+k < qn+k+1 =

. . . = q2n+k = ζ ,

where 0 ≤ η < ζ <∞.

Also, let

Gk = {g(t, θ , qk,n) : θ ∈ R
n+k, qk,n ∈ R

2n+k}.

The B-splines are defined on the set through the following

recurence relation:

g(t; θ , qk,n) =

p∑

j=1

θjBj,n(t, qk,n),

where ⊺ denotes the transpose of a matrix.

One can specify λ(t) = g(t, θ , qk,n). However, such a

specification will complicate the analysis by imposing an additional

constraint that g(t; θ , qk,n) > 0 for all t. We consider an alternative

specification where no such additional constraint is required.

Specifically, we set

ln(λ(t)) = g(t; θ , qk,n).

4.2 Estimation of force of mortality

To estimate the logarithm of the force of mortality, we

use a third-order B-spline function. We determine the B-

spline parameters using maximum likelihood estimation, where

the criterion is the modified chi-squared goodness of the fit

statistic. In doing so, we develop an algorithm for the Sequential

Procedure of the modified chi-squared goodness of the fit testing.

In our estimation, we assume that T, the maximum age, is

100 years.

The estimation based on the 2019 Mongolian population data

yields the following logarithm of the force of mortality:

ln(λ(t)) =





+2.355×10−3t2 − 0.066t − 3.346, 0 ≤ t < 30;

+0.070×10−3t2 − 12.797t − 3.049, 30 ≤ t < 59;

−9.300×10−3t2 + 3.398t + 179.514, 59 ≤ t < 62;

+1.800×10−3t2 − 0.234t + 5.457, 62 ≤ t ≤ 100.

(31)

The Figure 2 depicts the estimated function by a red solid line.

In the figure, the empirical values are depicted by the blue stars.

Using the estimated force of mortality, we find the survival and

density functions.

4.3 The interest rate and wage functions

The interest rate function r(·) is estimated by using the annual

savings rates of 2008–2021 tabulated by Mongolbank at By fitting

the savings rates to a linear trend, we obtain the following function

for the interest rate:

r(t) = 0.1− 0.002(t − tw).

Our simulation assumes that the consumer begins to purchase

the insurance policy at age tw = 25 and retires at age tr = 60.

The average wage function µY (·) and the wage volatility function

σY (·) are estimated using real average wage series from 1995-2020,

which is available from the NSO.We fit the age-specific average

annual wages to a linear trend. Our empirical analysis shows that

the average wage function exhibits strong monotonicity while the
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wage volatility function is virtually constant. Specifically, we obtain

the following estimates for the wage process:

{
µY (t) = 0.22+ 0.11(t − tw),

σY (t) = 0.21,
(32)

where 25 = tw ≤ t ≤ tr = 60. The simulated wage process used in

our application is illustrated in Figure 3.

FIGURE 2

The estimation is based on the 2019 age-specific population

available from the NSO of Mongolia. See Equation (31) for further

details.

FIGURE 3

The figure shows the wage process that is simulated using Equation

(1) and estimates in Equation (32). The vertical axis is in million units

of the national currency, tugriks.

4.4 Discount and insurance premium rates

Our empirical analysis reveals that in Mongolia, the force of

mortality for those aged 60 is ∼0.11. Based on this number, we set

ρ∗(t) = 0.15 for all t. Then, using Equation (26), the discount rate

becomes

ρ(t) = 0.15− λ̂(t, tw, tr),

where λ̂(t, tw, tr) is given by Equation (31). Furthermore, for the

insurance premium rate, we adopt the following specification from

Richard [4]:

ϑ(t) = λ̂(t, tw, tr)+
0.9

t
.

4.5 The parameter values

Given the estimated functions, we conduct a set of

numerical experiments by assuming specific values for the

remaining parameters.

The values of β considered in our analysis are guided by

the extensive empirical literature on relative risk aversion. Brown

[19] argues that the RRA coefficient ranges between 0.5 and 3.0,

depending on an individual’s age and occupation. Gourinchas and

Parker [20] and Lin [21] report slightly wider ranges: the range of

the RRA coefficient in Gourinchas and Parker [20] is 0.15–5.30,

while that in Lin [21] is 0.8–5.3.5 It is from these ranges that the

values of the relative risk aversion coefficient of the utility function

are chosen. Specifically, in our numerical experiments, we consider

two values of β : 0.5 and 1.0.

We consider two values of the ARA coefficient for the

bequest function: 0.01 and 0.02. These values guarantee plausible

differences in consumption and pension insurance between

different types of consumers considered in the analysis.

4.6 Consumer types

In our analysis, we consider three types of consumers referred

to as

TABLE 1 Key parameters of the utility and bequest functions.

The consumer’s
type

β
(relative risk

aversion of the
Utility function)

k
(relative risk

aversion of the
Bequest
function)

The high ARAB

consumer

0.5 0.02

The median consumer 0.5 0.01

The high ARAC

consumer

1.0 0.01

5 See Outreville [22] for a comprehensive survey of the empirical literature

on risk aversion (and risk behavior) with a particular focus on insurance

demand or consumption.
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(i) the consumer with high ARA for bequest (hereafter the high

ARAB consumer);

(ii) the median consumer; and

(iii) the consumer with high ARA for consumption (hereafter the

high ARAC consumer).

The ARA parameters of their utility and bequest functions are

shown in Table 1.

The difference between the median and high ARAB consumers

is that the ARA parameter k of the bequest function is higher

for the high ARAB consumer. That is, compared to the median

consumer, the high ARAB consumer is more averse to the volatility

of the bequest. The difference between the median and high ARAC

consumers is that the ARA parameter β of the utility function is

higher for the high ARAC consumer. In other words, compared to

the median consumer, the high ARAC consumer is more averse to

the volatility of her own consumption.

4.7 Simulation results

Figure 4 displays the age-specific wealth, consumption, the

pension insurance and the bequest of the three consumers. Table 2

summarizes the overall level of wealth, consumption and the

pension insurance, as well as the amount of bequest at the

retirement age.

Despite the same income process, the same mortality risk,

and the same interest rate, the high ARAC consumer has

substantially lower consumption. This happens because of her

higher absolute risk aversion for consumption: a marginal increase

in consumption has a stronger negative impact on her marginal

utility of consumption.

The high ARAC consumer’s absolute risk aversion (ARA) for

the bequest is much lower than her ARA for consumption. In other

words, an increase in the bequest has a lower negative effect on her

marginal utility than an increase in consumption. Therefore, the

TABLE 2 Wealth, consumption, pension insurance, and bequest.

The consumer’s type

High ARAB Median High ARAC

Average wealth over

lifetime

34.06 13.9 35.74

Average consumption

over lifetime

3.44 3.31 1.81

Average pension

insurance over lifetime

4.74 5.24 9.25

Bequest at the retirement

age

47.80 2.01 69.80

FIGURE 4

Wealth, consumption, pension insurance, and bequest by age.
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high ARAC consumer has the highest average wealth and pension

insurance over her lifetime.

Analogously, the high ARAB consumer’s absolute risk aversion

(ARA) for consumption is lower than her ARA for the bequest.

Consequently, the high ARAB consumer has higher consumption

and lower pension insurance over her lifetime.

What is more remarkable is that although the high ARAC

consumer has the lowest consumption level, her wealth is the

highest. This important quantitative finding implies that wealth

and consumption are not necessarily positively related.

Hungary, a post-communist country similar to Mongolia with

different age structure of the population, was selected for the model

calibration. Comparing the Mongolian and Hungarian results, we

find that the general characteristics of the three consumer types

are similar.

See Appendix for the Hungarian results. In Mongolia,

there were strong changes in the age structure of the

population during the transition years. The consumption

of consumers in Mongolia was stable for three consumer

types, while the dynamics of insurance and wealth were

unstable.

For consumers in Hungary, insurance and wealth dynamics are

relatively stable, as the population structure changed only slightly

during the transition years, but their trends are more determined

by consumption dynamics.

Consumption and life insurance strategies seem to be strongly

correlated with the force of mortality.

5 Conclusion

In this paper, we consider a stochastic, dynamic programming

problem of the optimal consumption and pension insurance

purchase of a consumer with an uncertain lifetime and

stochastic wage income. We establish that when the utility

and bequest functions are CARA, the consumer’s optimal

consumption and pension insurance purchase can be solved

analytically in closed form. We show that the consumer’s

optimal consumption and pension insurance purchase can be

characterized as linear functions of wealth with time-varying

coefficients.

We consider an application of the model while estimating

the key functions, such as the force of mortality, the stochastic

wage process, and the interest rate, using real-life data. We

capture the key features of age-specific population data by

specifying the logarithm of the force of mortality as a piecewise

continuous function of the third-order B-spline using the chi-

squared test. The stochastic wage process and the interest

rate function are estimated using economic and financial time

series.

We show that the profiles of consumption and pension

insurance purchases over the lifetime exhibit considerable variation

across consumers with different absolute risk aversion coefficients

of the utility (or, equivalently, consumption) and bequest functions.

The numerical results show that a consumer with a relatively

high absolute risk aversion for consumption has lower lifetime

consumption. Moreover, the results reveal that as the absolute risk

aversion for consumption increases, consumption and wealthmove

in the opposite direction. Finally, the model shows that wealth and

consumption are not necessarily positively related across different

types of consumers.
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