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The weight matrix is one of the most important things in Generalized Space–
Time Autoregressive (GSTAR) modeling. Commonly, the weight matrix is 
built based on the assumption or subjectivity of the researchers. This study 
proposes a new approach to composing the weight matrix using the minimum 
spanning tree (MST) approach. This approach reduces the level of subjectivity in 
constructing the weight matrix since it is based on the observations. The spatial 
dependency among locations is evaluated through the centrality measures of 
MST. It is obtained that this approach could give a similar weight matrix to the 
commonly used, even better in some ways, especially in modeling the data with 
higher variability. For the study case in traffic problems, the number of vehicles 
entering the Purbaleunyi toll was modeled by GSTAR with several weight 
matrix perspectives. According to Space–Time ACF-PACF plots, GSTAR(1;1), 
GSTAR(1,2), and GSTAR(2;1,1) models are the candidates for appropriate models. 
Based on the root mean square errors and mean absolute percentage errors, 
it is concluded that the GSTAR(2,1,1) with MST approach is the best model to 
forecast the number of vehicles entering the Purbaleunyi toll. This best model is 
followed by GSTAR(1,1) with an MST approach of spatial weight matrix.
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1 Introduction

The Generalized Space–Time Autoregressive (GSTAR) is one of the methods to analyze 
the space–time series. This model adapted the vector autoregressive model, which, instead of 
involving many variables, considered time series in many locations simultaneously. The 
development of the GSTAR model in Indonesia is very fast, both in theory and application. 
The theory includes process stationarity properties using inverse autocovariance matrix in (1) 
and the kernel approach in (2); the GSTAR with heteroscedastic effect in (3, 4); and the weight 
matrix construction of the GSTAR model using the kernel approach in (5) and graph in (6). 
The development of the GSTAR model with correlated errors is in (7, 8). The GSTAR model 
with exogenous variables and outliers is in (9), the Poisson GSTAR in (10), the optimal spatial 
aggregation of GSTARMA model in (11), the higher order model in (12), and the GSTAR for 
discrete data in (13). The application of the GSTAR model has been carried out on economic 
data in (14), tea plantation production in (15), oil palm production in (16), commodity prices 
of red chilies in (17), rainfall data of West Java in (18), number of dengue fever cases in (19), 
“Begal” criminal cases in Medan, North Sumatera, in (20), variation of Northern Ethiopia’s 
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temperature in (21), and the number of COVID-19 cases in Java island 
in (6, 22).

This model’s basic assumption is the existence of spatial 
dependence among observed locations. In addition to the spatial 
autoregressive parameters, the dependence among locations is 
described by the spatial weight matrix. Most of the time, this matrix 
is simply composed based on the researcher’s subjectivity. This matrix 
can be classified as uniform, binary, and non-uniform weight matrix 
(23). The development of a weight matrix using the kernel approach 
is to less subjectivity (5). The weight matrix is composed based on the 
observations. Thus, the obtained weight matrix can be considered 
more objective than the conventional weight matrix. This study 
proposes another way to construct the weight matrix using the 
observations. This method constructs the minimum spanning tree 
(MST) graph to obtain the spatial dependence among locations 
through its adjacency matrix.

To obtain the description of this new approach application, the 
number of vehicles entering the Purbaleunyi toll gates of Bandung—
West Java data is used. As the capital city of West Java, Indonesia, 
Bandung is one of the busiest cities on Java Island. Bandung is well-
known as the center of art and music, education, business, culinary, 
and tourism. However, its citizens experience traffic jams every day, 
and the peak congestion occurs on the weekends because many people 
come from outside Bandung. Due to its geographic location, land 
transportation is more favorable to access this city. Thus, the 
Purbaleunyi toll gates are crowded by numerous vehicles passing 
every day. The space–time analysis is applied to capture this 
phenomenon since the occurrences are related to time and locations. 
There are eight toll gates involved, and the locations of those eight 
gates can be seen in Figure 1. It can be seen that all toll gates are 
connected to each other with various distances and eccentricities. 
Thus, the traffic route modeling of those toll gates satisfies the basic 
graph properties necessary to make use of MST. Some research studies 
regarding traffic flow forecasting with different methods are the neural 
network bagging ensemble hybrid modeling (24), threshold 
autoregression (TAR) (25), stacked autoencoder (SAE) of deep 
learning model (26), GSTAR model with time-correlated errors (27), 
segment-based data imputation (28), queueing networks (29), long 

short-term memory network (LSTM) (30), and multi-view travel time 
prediction (MVPPT) (31).

This study aims to determine the best space–time model that can 
be used to predict the number of vehicles entering the Purbaleunyi 
toll. There are eight toll gates involved: Padalarang (PDL), Pasteur 
(PST), Baros (BAR), Pasir Koja (PKJ), Kopo (KPO), M. Toha (MTH), 
Buah Batu (BBT), and Cileunyi (CLY). First, the new procedure is 
applied to obtain the spatial weight matrix using the adjacency matrix 
and MST graph approach. The novelty of this research is that both 
theory and application are new in statistical space–time modeling. 
This procedure is explained in Section 2. Then, in Section 3, the model 
selection improvement is investigated by checking the stationarity of 
all possible models using the inverse of autocovariance matrix (IAcM). 
Finally, the case study is discussed in Section 4.

2 Materials and methods

2.1 The spatial weight matrix

2.1.1 The spatial lag and conventional weight 
matrix

The spatial lag is constructed for all observation locations and can 
be obtained in many ways. A well-known method is applying the 
radius system, as illustrated in Figure 2. The locations closer to the 
reference location (s0s0) will have a smaller spatial lag, distinguished 
by a fixed distance, d0d0. The distinct configuration of each spatial lag 
order may give different weight matrices.

The weight matrix is a square matrix of size N , with the following 
properties: (i) the diagonal entries of weight matrix W  are zeros, (ii) 

the sum of weight values in one row must equal to zero or 
j

N
ijw

=
∑

1
 = 1. 

For all locations Si, i N= …1 2, , , and (iii) every weight value is 
non-negative, or wij ≥ 0.

In general, there are three weight matrix types: binary, uniform, 
and non-uniform. The binary weight matrix consists of 0 and 1 values 
in off-diagonal entries, of which 1 represents the most influential 

FIGURE 1

Map of eight gates in Purbaleunyi Toll (source: www.jasamarga.com/public/id/infolayanan/TOLl/ruas.aspx, Accessed 29 April 2018).
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neighbor. The element in the uniform weight matrix is defined 
as follows:

 

w n
j i

ij i

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where ni
( ) represents the number of neighbors for location i in 

th spatial lag.
There are some ways to determine the non-uniform weight 

matrix. The simplest way is by involving the distance between 
locations, such as inverse distance weight, that is

 

w
d

d

j i
ij

ij

j
N

ij







( )

( )

= ( )
=

+

+
∑

1

1

1

1
1

, is the neighbor of in th ordder

otherwise0,















 

(2)

for location i and j in th spatial lag which Euclidean distance is 
dij
( ). Since the distance is fixed, then the obtained weight matrix is also 

fixed. This construction could not accommodate some changes that 
happened in the observations. The new approach is constructed to 
accommodate the pattern of the observations by using an MST graph. 
Some previous research studies regarding the MST approach for 
spatial weight matrix have been investigated by (6, 32).

2.1.2 Minimum spanning tree
A graph (G) is not an empty set that makes a node at the endpoint 

vertices. The G is a simple graph if there are no circles and two lines 
that merge into a pair of vertices. If an edge can combine every vertice 
in a simple graph, it is called a completed graph. A tree (T) is a 
connecting graph without any repetition/cycle. Thus, every two vertices 
will be connected by one unique path. The minimum spanning tree 
(MST) is a connected and undirected graph. MST is a collection of 
lines and dots with a line consisting of an undirected weight that 
connects all vertices and does not contain a cycle that produces the 

smallest value (33). Some methods to construct the MST include the 
Prim and Kruskal algorithms. The common idea of both algorithms is 
selecting the graph with the smallest weight and connected vertices 
that do not form a circle. Kruskal’s algorithm is formed by adding the 
smallest weight of lines into the tree one by one, while the Prim 
algorithm is built by minimizing the weight of the connected lines. 
Both algorithms are simple and popular methods for constructing 
MST. However, they produce only an MST from all possible MSTs; 
thus, the uniqueness of MST could not be obtained. Therefore, an 
algorithm was proposed to construct a forest graph consisting of all 
possible MSTs using fuzzy relations (34). This algorithm is called 
sub-dominant ultrametric (SDU).

One of the important steps in MST construction is defining the 
weight of lines. Here, the weight is determined by using a distance 
matrix. This distance matrix can be extracted from the correlation 
matrix. For example, supposedly two random variables are X and Y, 
then, the correlation between both variables is defined as follows:

 

ρX Y corr X Y
E XY E X E Y

E X E X E Y E Y
, = ( ) = [ ] − [ ] [ ]





 − [ ]( ) 



 − [ ]( )

,
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The correlation represents the linear dependence between 
variables, with values in 0 1≤ ≤| |ρX Y, . If both variables have strong 
linear dependence, the correlation values tend to be one and otherwise 
zero. In space–time data, the random variables are represented by the 
time series of each location. Consider N locations with time series 
realizations z t i Ni ( ){ } = …, , , , }1 2 , then the correlation between series 
in locations i and j is defined as follows:

 

c i j
z z z z

z z z z

i j i j

i i j j
,( ) = −

− −2 2 2 2

with zi is the average of z ti ( ). The c i j,( ) can be  a sample 
correlation between series in locations i and j. The distance matrix 
D ,= ( ){ }d i j  is symmetric whose entries are defined as follows:

 d i j c i j, ,( ) = − ( )( )2 1

for all i j N, , , ,= …1 2 . This distance matrix is symmetric and anti-
reflexive fuzzy.

2.1.3 Spatial lag classification using MST
The spatial lag membership for a reference location using MST is 

based on the number of lines connected from the reference location 
to its neighbors. If a location is directly connected to a reference 
location, that location is in the first spatial lag. Thus, if ℓ lines connect 
the neighbor to the reference location, then this neighbor is classified 
as the member of spatial lag th of the reference location.

Figure 3 shows the procedure of this spatial lag classification using 
MST. If the Pasir Koja toll gate is considered as the reference location, 
then the Pasteur toll gate is a member of its first spatial lag, and 
Padalarang, Kopo, M. Toha, and Baros are the members of the second 
spatial lag. Finally, the Cileunyi toll gate will be in the third spatial lag, 
and Buah Batu is the only member of the fourth spatial lag. After 
determining the number of memberships in the spatial lag th for 

FIGURE 2

The radius system in determining the spatial lag. The neighbors of a 
reference location are classified in the same spatial lag if they lie in 
the same radius (23).
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location i (ni
( )), the spatial weight can be  composed using 

Equations 1, 2, consecutively to obtain MST uniform and MST inverse 
distance weight matrix.

2.2 The generalized STAR modeling

The GSTAR model is obtained through Box-Jenkins’ three-stage-
iterative model identification, parameter estimation, and diagnostic 
checking (23). First, all appropriate models can be identified through 
Space–Time ACF and PACF or named STACF and STPACF. This 
identification stage has been derived briefly in Pfeifer and Deutsch 
(35). Then, all possible models may be identified by observing the 
STACF and STPACF plot pattern, as stated in Table 1.

The observation at location i and time t , Z ti ( ) follows the GSTAR 
model if there is a linear combination of past observations for both 
time and spatial indices. Suppose, a random vector process {Z t( )}, 
Z t Z t Z t Z tN( ) = ( ) ( ) … ( )( )′1 2, , ,  with time t T= …{ }1 2, , ,  follows 
GSTAR p p; , , ,λ λ λ1 2 …( )  model, then Z t( ) can be  expressed 
as follows:
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The W ( ) is th order weight matrix whose main diagonal is zero 

and the sum of each row is one, ΦΦk k k k
Ndiag



  

= …( )( ) ( ) ( )φ φ φ1 2
, , ,  is 

(N×N) diagonal matrix which presents autoregressive parameter of kth 
time order and th spatial order for each location i N= …1 2, , , , and 
εε t t t tN( ) = ( ) ( ) … ( )( )ε ε ε1 2, , ,  is (N ×1)-dimensional vector of 
errors that is assumed which has i.i.d. normal distribution with null 

mean and constant variance. Thus, for each location i N= …1 2, , , , the 
model can be written as follows:
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Another important representation of the GSTAR model is the 
linear model. This form is indispensable when using the least-
square (LS) method for parameter estimation. For each location 

i Equation 4 can be represented by a linear model Y = +i i i iX φ εε ,  
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The linear model for all locations is defined as Y = +Xφ εε , with 
Y = Y Y Y1 2

′ ′ ′…( ), , , N , X X X X= …( )diag 1 2, , , N , φ φ φ φ= 1 2
′ ′ ′ ′

…( ), , , N , 
and εε εε εε εε= 1 2

′ ′ ′ ′
…( ), , , N . Thus, least-square estimators are 

obtained by φ


= Y′ ′( )−X X X1 .
In the diagnostic checking stage, the error assumption is 

examined through the normality and uncorrelated test of residuals. 
The best appropriate model is also obtained by evaluating the 
model whose residual is minimum. The minimum Akaike 
information criterion (AIC) and Bayesian information criterion 
(BIC) may be  assessed to choose the best model. Here, the 
stationarity of the process is reevaluated using parameter 
estimations to obtain the most appropriate model. Mukhaiyar and 
Pasaribu (1) introduced the inverse of the autocovariance matrix 
(IAcM) for evaluating the GSTAR model stationarity through the 
following propositions.

Proposition 1: Suppose that (N N× )-dimensional matrix 𝚨 = 𝚽𝟏𝟎 
+ 𝚽𝟏𝟏𝐖 and IAcM, 𝐌𝟏 = 𝐈𝑁 − 𝐀′𝐀, has elements which consist of the 
parameters of GSTAR(1;1) process, the GSTAR(1;1) model is 
stationary if the determinants of all the leading principal submatrices 
of IAcM are positive.

Proposition 2: For GSTAR(1;λ1) models with λ1 ≥ 0, define 

A W=
=

( )∑






0

1

1λ
ΦΦ  and IAcM, 𝐌𝟏 = 𝐈𝑁 − 𝐀′𝐀, the model is stationary 

if the determinants of all the leading principal submatrices of M1 
are positive.

FIGURE 3

MST in determining: (A) First and (B) Second spatial lag for Pasir Koja. 
Since Pasteur has a direct line connected to Pasir Koja, it becomes a 
neighbor in the first lag spatial of Pasir Koja.

TABLE 1 STACF and STPACF theoretical patterns in identifying space–
time model.

Model STACF STPACF

G-STAR(p; λ1, λ2,…,λp) (tail-off) exponentially 

decreases or sinus wave.

(cutoff) cut after lag time 

pth, and lag spatial λpth

GSTMA(q; λ1, λ2,…,λq) (cutoff) cut after lag time 

qth, and lag spatial λqth

(tail-off) exponentially 

decreases or sinus wave.

GSTARMA(p; λ1, λ2,…,λp; 

q; λ1, λ2, …,λq)

(tail-off) exponentially 

decreases or sinus wave.

(tail-off) exponentially 

decreases or sinus wave
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Proposition 3: For GSTAR(2; λ1, λ2) model, define 

A Wk k
k

=
=

( )∑






0

λ
ΦΦ , k =1 2,  and IAcM, 

M
I A A A A A

A A A I A A
2

2 2 1 2 1

1 1 2 2 2

=
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− − −
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









′ ′ ′

′ ′
N

N
.  The models are stationary if 

the determinants of all the leading principal submatrices of its IAcM 
are positive.

The proofs of those propositions have been evaluated by 
Mukhaiyar and Pasaribu (1).

3 Results and discussion

The GSTAR model is obtained through Box-Jenkins’ three-stage-
iterative model identification, parameter estimation, and diagnostic 

checking. First, a weight matrix should be  developed; thus, all 
appropriate models can be investigated through Space–Time ACF and 
PACF or named STACF and STPACF. Then, since the error assumption 
is uncorrelated and has constant mean and variance, the ordinary 
least-square method is applied for parameter estimation.

To get an overview of the GSTAR modeling using the MST weight 
matrix and its comparison to other approaches, the number of vehicles 
entering Bandung city through the eight toll gates was investigated. 
The data retrieved are from January to December 2018, and the plot 
series and boxplot of each location can be seen in Figure 4. Based on 
Figure 4, the busiest toll gate is Cileunyi, followed by Pasteur and 
Padalarang gates. However, some trends are found in some periods 
(Figure 4A), which means the process is not stationary. Meanwhile, in 
Figure 4B, some outliers are found in every toll gate, but they will 
be ignored and still be involved in data analysis. Figure 5 shows the 
correlation matrix among toll gates observations and its visualization 
through scatter plots.

FIGURE 4

(A) The daily number of vehicles entering Bandung city through eight toll gates. Some trends found in all locations in some periods indicate a non-
stationary process. (B) The boxplot for each gate shows the different mean and variability of observations. Some outliers are found in every gate.
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The highest correlations were obtained among the Baros, Pasir 
Koja, and Kopo toll gates. These three gates have closer distances in an 
exact line of the middle toll’s route (see Figure  1). These highest 
correlations indicate the highest spatial dependencies among other toll 
gates. It can be seen in the weight matrix (see Table 2). Meanwhile, 
although Baros’ and Pasteur’s gates are closer, the correlation is the 
smallest. It is possible since both gates are not in the same line.

The first stage in modeling is identification, in which a plot of 
STACF and STPACF is performed. To construct both plots, data 
should be  stationary. Then, to make data weak and stationary, 
differentiation is applied. However, it is not enough, so log 
transformation is used. Thus, the modeling is carried out to this 
log-differencing data. After that, a spatial weight matrix should 
be composed.

There are two types of weight matrices to be applied. Both are 
uniform and non-uniform (inverse distance), and each type has two 
approaches, namely, radius system and MST. To build the matrix, the 
number of neighbors for each location in every spatial lag (there are 
four spatial lags to be used) must be investigated for each approach 
as follows:

 a The radius system way needs the distance (mileage) among toll 
gates and uses a radius (d0) equal to 10 km (see Figure 2) to 
obtain the configuration of neighbors.

 b MST way needs a correlation matrix to define the distance 
matrix based on Equation 3. The distance is the weight in the 
graph that connects all toll gates. Based on the graph, the MST 
is obtained every month, and the overall period of observations 
is consecutively illustrated in Figures 3, 6.

The majority of the months have a similar configuration to 
MST. In contrast, Pasteur toll gate is most frequently the center from 

February until April and July until December. In addition to the 
Pasteur toll gate, Padalarang and Cileunyi are also the centers, 
consecutively in January and June. As a result, those three toll gates 
are the top three busiest among the observed locations.

The most interesting configuration happened in May, since there 
are almost no connected graphs among locations, except for Cileunyi, 
Kopo, and Pasteur, which are connected with a line, and Kopo is the 
center. It is indicated that the observations’ dependence on toll gates is 
not significant. There was a long holiday (Eid Al-Fitr celebration) this 
month, and people simultaneously went in and out of Bandung for 
homecoming. These observations can also be seen in Figure 4A, during 
161–177 days. From both approaches, the configuration of neighbors 
for every location and spatial lag is obtained as shown in Table 3.

However, the radius system and the MST approach have different 
neighbor configurations. For example, as shown in Table  3, the 
Padalarang gate, using the radius system and MST approach 
consecutively, has one (3:Baros) and two (2:Pasteur and 8:Cileunyi) 
neighbors in the first spatial lag and four and five neighbors in the 
second spatial lag. Meanwhile, in the third and fourth spatial lags, for 
each, there is only one neighbor obtained using the radius system but 
no neighbor for the MST approach. Overall, there is a significant 
difference in the number of neighbors for every spatial lag between 
the radius system and the MST approach. Therefore, it will have an 
impact on weight matrix construction.

Based on neighbors’ configurations, the uniform and inverse 
distance weights are composed using Equations 1, 2. The obtained 
weight matrices for each spatial lag are concluded in Table 2. It shows 
a significant difference between the weight matrix’s radius system and 
the MST approach in line with the configuration.

From the weight matrix, the STACF and STPACF can 
be calculated. The significance of the autocorrelation is illustrated in 
Table 4 with symbols “X” for significance and “0” for no significance. 

FIGURE 5

Scatter plot and correlation matrix among toll gate observations.
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TABLE 2 Uniform and inverse distance weight matrix for each approach, radius system, and MST.

W
1( )

W
2( )

W
3( )
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Here, the significance value used is 5%. It can be seen from Table 4 
that the STACF gives a tail-off pattern because the values are 
significant for many first lags. Meanwhile, the STACF is cut off in 
some lags. Therefore, it is indicated that the autoregressive GSTAR 
model should be  considered. Since the pattern of cutoff is quite 
random, then it is suggested to use the GSTAR model with various 
simple orders. It is recommended to consider GSTAR(1;1), 
GSTAR(1,2), and GSTAR(2;1,1) to be involved in the next steps of 
modeling. After identifying the model, the next step is estimating the 
model parameters. These parameters were estimated using the least-
square method. The estimators were obtained for all parameters of the 
GSTAR (1; 1), GSTAR (1; 2), and GSTAR (2;1,1) models.

Table 5 shows the parameter estimators using the MST weight 
matrix. The uniform and inverse distance weight matrix gives similar 
estimators in some locations, and it depends on the order of the 
model. It is suspected that larger orders will show less dissimilarity 
among both types of matrices, especially in a location with low to 
intermediate variability.

After obtaining the estimated parameters, the stationarity of the 
process can be  detected by the inverse of autocovariance matrix 
(IAcM). This step is part of diagnostic checking. Based on Propositions 
1–3, the obtained GSTAR models are stationary since every leading 
principal submatrix of IAcM has positive determinants. The checklist 
of this property is summarized in Table 6. The next step is obtaining 
the least-square estimators.

Consider zi is the ith real observation of several vehicle numbers 
and is estimated by zi



 using the obtained models, for i n= …1 2, ,  with 
n  as the number of observations, regardless of the time and spatial. 
Then, the residual is the difference of zi and zi



. The residuals are 
uncorrelated and follow a normal distribution with zero mean and 
constant variance for a significance value of less than 10%. The best 
prediction model is obtained by evaluating each model’s root mean 
square errors (RMSEs) and mean absolute percentage errors (MAPE). 

First, the RMSE is defined as ( )2
1

ˆ /
=

= −∑
n

i i
i

RMSE x x n . After that, 

the MAPE is defined as MAPE
n

Z T Z T
Z Ti

n
i i

i
=

+( ) − +( )
+( )

×
=
∑1 1 1

1
100

1



%. 

The values of RMSE are reported in Table 7.
It can be seen from Table 7 that the MST inverse distance weight 

matrix gives the smallest RMSE much more than other types of weight 
matrices. For example, in the type of model perspective, GSTAR(1;1) 
has the smallest RMSE values among the obtained models.

The comparison models are also executed for prediction. The 
observation of Z Ti +( )1  is saved by comparing the one-step prediction 
result of all models in each location and its MAPE, as shown in 
Table  8. A slightly different conclusion was obtained from this 
one-step ahead forecasting. The GSTAR(2;1,1) gives the closest 
prediction in four (Pasteur, Pasir Koja, Buah Batu, and Cileunyi) of 
eight toll gates. In Table  8, the MST approach gives the best 
predictions, especially with the inverse distance approach. Those four 
toll gates are included in the top five of the busiest toll gates. The 
GSTAR(1;1) model gives the best prediction in Kopo and M. Toha toll 
gates using an inverse distance weight matrix.

Overall, the least average of MAPE is presented by GSTAR(2;1,1) 
with MST, consecutively by uniform (MAPE is 2.39%) and inverse 
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distance approach (MAPE is 2.46%). The next best model is 
GSTAR(1;1) with MST spatial weight. Both uniform and inverse 
distance weight matrices give the same MAPE, that is, 3.57. This result 
aligns with the principle of parsimony in modeling that the model 
with the least parameters will be better than complex, on condition 
that the performances are not significantly different for the modeling. 
Thus, the GSTAR(1;1) with MST inverse distance weight matrix 
is recommended.

The predicted model using GSTAR(1;1) is formulated as follows:

 

( ) ( )
( ) ( )( )

PDL PDL

PST

ˆ 0.273 1 0.207
0.51 1 . 1

= − −

− + −

Z t Z t
Z t tCLY0 49 Z

 

( )PST PDL

BAR PKJ KPO
MTH

ˆ . 1 0.031(0.21 1 0.20
1 0.2

)

( ) ( )
0 ( 1) 0.19 ( 1)

0.20
(

1
)

( )

= − − −
− + − + −

+ −

+Z t t Z t
Z t Z t Z t

Z t

PST0 228 Z

 ( ) ( ) ( )BAR PST 1ˆ . 1 0.133− − + −t t Z tZ BAR0 159= Z

 ( ) ( ) ( )PKJ PKJ PST1.025 1 . 1ˆ = − − + −t Z t ZZ t1 289

 ( ) ( ) ( )KPO KPO PSTˆ 10.042 1 .−= − −t Z t ZZ t0 136

TABLE 3 Neighbor configuration in every spatial lag using radius system and MST for every location with four different spatial lags.

i Gate ith Method 1st lag 2nd lag 3rd lag 4th lag

1 PDL Rad (a) 1 4 1 1

(b) {3} {2,4, 5,6} {7} {8}

MST (a) 2 5 0 0

(b) {2,8} {3,4,5,6,7} 0 0

2 PST Rad (a) 1 4 1 1

(b) {3} {1,4,5,6} {7} {8}

MST (a) 5 1 1 0

(b) {1,3,4,5,6} {8} {7} 0

3 BAR Rad (a) 3 3 1 0

(b) {1,2,4} {5,6,7} {8} 0

MST (a) 1 4 1 1

(b) {2} {1,4,5,6} {8} {7}

4 PKJ Rad (a) 3 3 1 0

(b) {3,5,6} {1,2,7} {8} 0

MST (a) 1 4 1 1

(b) {2} {1,3,5,6} {8} {7}

5 KPO Rad (a) 3 3 1 0

(b) {4,6,7} {1,2,3} {8} 0

MST (a) 1 4 1 1

(b) {2} {1,3,4,5} {8} {7}

6 MTH Rad (a) 3 4 0 0

(b) {4,5,7} {1,2,3,8} 0 0

MST (a) 1 2 1 1

(b) {2} {4,8} {8} {7}

7 BBT Rad (a) 2 3 2 0

(b) {5,6} {3,4,8} {1,2} 0

MST (a) 1 1 1 4

(b) {8} {1} {2} {3,4,5,6}

8 CLY Rad (a) 0 2 3 2

(b) 0 {6,7} {3,4,5} {1,2}

MST (a) 1 1 4 0

(b) {7} {2} {3,4,5,6} 0

It consists of (a) the number of neighbors and (b) the related neighbors (Gate ith).
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FIGURE 6

MST was obtained for every month of observations. The Pasteur toll gate is the center of MST most of the time. (A) January. (B) February. (C) March. 
(D) April. (E) May. (F) June. (G) July. (H) August. (I) September. (J) October. (K) November. (L) December.

TABLE 4 STACF and STPACF of weight matrices.

STACF STPACF

Time lag Time lag

(a) Uniform

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

RS Spatial 

lag

0 X X X X X X X X 0 0 0 0 X X 0 0 0 0 0 X X 0 0

MST X X X X 0 X X X 0 0 0 X X 0 0 0 0 0 X X 0 0

RS 1 X X X X X 0 0 X 0 0 0 1 X X X X 0 0 0 0 X 0 0

MST X X X X X X 0 0 0 0 0 X 0 X X 0 0 0 0 X 0 0

RS 2 X X X X X X 0 0 0 0 0 2 X 0 0 X 0 X 0 X X 0 0

MST X X X X 0 0 0 X 0 0 0 X X 0 0 0 0 0 0 0 0 0

RS 3 X X X X X X 0 0 0 0 0 3 X 0 0 0 0 X X 0 0 0 0

MST X 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0

RS 4 X X X X X X X X 0 0 0 4 X 0 0 0 0 X 0 0 0 0 0

MST X X X X X X X X 0 0 0 X 0 X 0 0 0 0 X X 0 0

(b) Inverse distance

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

(Continued)
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TABLE 5 Least-square estimators of GSTAR parameters using MST–u (uniform) and MST–id (inverse distance) weight matrix.

Model PDL PST BAR PKJ KPO MTH BBT CLY

GSTAR (1;1)

u
1̂0φ 0.050 0.226 −0.154 −0.082 −0.074 −0.020 0.248 0.696

1̂1φ 0.135 0.029 0.070 0.138 0.076 0.090 0.006 −0.304

id
1̂0φ 0.273 0.228 −0.159 −1.025 0.042 0.767 0.334 0.698

1̂1φ −0.207 −0.031 0.133 1.289 −0.136 −0.756 −0.114 −0.383

GSTAR (1;2)

u

1̂0φ 0.099 0.167 −0.435 −1.320 0.173 0.104 0.404 0.684

1̂1φ 0.145 −0.407 0.016 0.061 0.223 0.201 0.049 0.176

1̂2φ −0.104 0.705 0.573 0.148 0.327 −0.197 −0.189 −0.655

id

1̂0φ 0.099 0.179 −0.252 −0.132 0.174 0.104 0.297 0.679

1̂1φ 0.147 −0.542 0.093 0.061 0.223 0.201 0.762 0.238

1̂2φ −0.106 0.881 0.282 0.148 −0.327 −0.197 −0.111 −0.717

GSTAR (2;1,1) u

1̂0φ 0.307 0.183 −0.187 −1.252 0.186 0.977 0.258 0.683

1̂1φ −0.229 −0.070 0.195 1.759 −0.283 −0.896 −0.070 −0.394

2̂0φ −0.145 0.221 0.146 1.327 −0.426 −0.835 0.174 0.021

2̂1φ 0.127 0.152 −0.156 −1.453 0.512 0.938 0.021 0.169

TABLE 6 Determinant values of leading principal IAcM submatrices show the stationarity of processes.

GSTAR order Uniform Distance

Radius MST Radius MST

(1;1) >0 >0 >0 >0

(1;2) >0 >0 >0 >0

(2;1,1) >0 >0 >0 >0

STACF STPACF

Time lag Time lag

RS Spatial 

lag

0 X X X X 0 X X X 0 0 0 0 X X 0 0 0 0 0 X X 0 0

MST X X X X X X X X X 0 0 X X 0 0 0 0 0 X X 0 0

RS 1 X X X X X X 0 0 0 0 0 1 X 0 X X 0 0 0 0 X 0 0

MST X X X X X X X 0 0 0 0 X 0 X X 0 0 0 0 X 0 0

RS 2 X X X X X X X X 0 0 0 2 X 0 0 X 0 0 0 X X 0 0

MST X X X X 0 0 0 X 0 0 0 X X X 0 0 0 0 0 0 0 0

RS 3 X X X X X X 0 0 0 0 0 3 X 0 0 0 0 0 0 0 0 0 0

MST X 0 0 0 0 X 0 0 0 0 0 X X 0 0 0 0 0 0 0 0 0

RS 4 X X X X X X X X 0 0 0 4 X 0 0 0 0 0 0 0 0 0 0

MST X X X X X X 0 0 0 0 0 X X X 0 0 0 0 X X 0 0

The symbol “X” means significant and “0” otherwise.

TABLE 4 (Continued)
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TABLE 7 RMSE from eight Purbaleunyi toll gates.

Tollgate Order Uniform Distance

Radius MST Radius MST

PDL

(1;1) 2616.661 2586.390 2616.661 2585.834

(1;2) 2546.412 2559.655 2548.948 2569.522

(2;1,1) 2623.792 2686.045 2623.792 2686.088

PST

(1;1) 3443.521 3435.682 3443.521 3435.634

(1;2) 3320.072 3394.913 3294.799 3394.910

(2;1,1) 3604.767 3518.186 3604.767 2518.698

BAR

(1;1) 2630.346 2626.811 2619.479 2599.394

(1;2) 2626.287 2626.593 2623.845 2605.288

(2;1,1) 2657.802 1640.275 2664.289 2662.164

PKJ

(1;1) 2599.527 2679.495 2613.121 2679.495

(1;2) 2620.340 2659.426 2625.978 2648.594

(2;1,1) 3099.357 2747.165 3090.523 2747.165

KPO

(1;1) 1912.118 1892.634 1909.651 1892.634

(1;2) 1881.117 1867.131 1877.790 1866.727

(2;1,1) 1919.934 1939.994 1918.663 1939.994

MTH

(1;1) 1750.203 1769.667 1776.659 1769.667

(1;2) 1730.875 1709.350 1751.897 1700.146

(2;1,1) 1856.581 1791.338 1846.763 1791.338

BBT

(1;1) 1644.857 1650.299 1644.915 1637.668

(1;2) 1655.997 1658.806 1655.825 1648.768

(2;1,1) 1720.936 1983.612 1720.269 1720.390

CLY

(1;1) 3863.379 3871.781 3863.679 3871.949

(1;2) 3951.813 3977.738 3954.516 3975.918

(2;1,1) 4457.320 4358.423 4457.320 4378.970

The majority of the smallest RMSE is given by inverse distance weight matrix with the MST approach. Meanwhile, the GSTAR(1;1) has the smallest RMSE. 
The bold values indicate the smallest value for each possible model of every location.

TABLE 8 Predicted value of the GSTAR model with various weight matrices and its MAPEs.

Location PDL PST BAR PKJ KPO MTH BBT CLY MAPE

Real data (Z) 28,050 31,395 21,290 23,956 13,164 14,339 21,705 32,207

Prediction 

(Z


)

GSTAR 

(1;1)

u
radius 26,287 29,494 19,805 21,595 12,117 12,822 20,421 30,803 4.36%

MST 26,089 29,426 19,897 21,425 11,881 12,492 20,492 31,057 3.57%

id
radius 26,287 29,494 19,805 21,595 12,117 12,823 20,421 30,803 4.36%

MST 26,089 29,426 19,913 21,425 11,881 12,492 20,492 31,056 3.57%

GSTAR 

(1;2)

u
radius 26,261 29,342 19,807 21,132 11,726 12,009 20,653 30,774 4.45%

MST 26,291 29,413 19,855 21,477 11,713 12,340 20,483 30,749 4.53%

id
radius 26,257 29,311 19,812 21,135 11,754 12,108 20,652 30,774 4.45%

MST 26,293 29,413 19,977 21,414 11,705 12,299 20,468 30,718 4.62%

GSTAR 

(2;1,1)

u
radius 25,968 29,579 19,686 21,859 12,021 12,742 20,286 30,839 4.25%

MST 26,111 29,668 19,834 21,724 11,810 12,783 20,780 31,437 2.39%

id
radius 25,968 29,579 19,733 21,866 11,980 12,775 20,295 30,839 4.25%

MST 26,113 29,679 19,819 21,724 11,810 12,783 20,853 31,416 2.46%

The MST gives a closer prediction than the radius approach in five of eight locations (bold printed). Those are the Padalarang, Pasteur, Baros, Buah Batu, and Cileunyi toll gates.
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Based on those equations, every location in a certain time (t) is 
most influenced by the one previous observation in the same 
locations, except for Padalarang and Pasir Koja. For both toll gates, 
consecutively, the previous observation of Cileunyi and Pasteur plays 
a big role. Different from others, the Baros toll gate has a negative 
coefficient (−0,159) for its previous observation, which means that 
the current number of vehicles will decrease linearly to the previous 
one. With Pasir Koja, Kopo, M. Toha, and Buah Batu, Baros has 
Pasteur as the only neighbor whose previous observations influenced 
the respective toll gates. Padalarang, Pasteur, and Cileunyi, the top 
three busiest toll gates, have their own gates in previous times as the 
biggest influence on the current observation, except for Padalarang, 
which has Cileunyi for this case. Pasteur toll gate is influenced by all 
toll gates, except Buah Batu and Cileunyi toll gates.

The prediction using GSTAR(1;1)–MST inverse distance of weight 
matrix is plotted in Figure 7. Here, the pattern of re-estimation follows 

the real observations, although the variability of the estimated 
observations tends to be smaller than the real observations.

4 Conclusion and remarks

The MST, as a new approach to building the weight matrix of the 
GSTAR model, can capture the spatial configuration based on space–
time observations. This approach is competitive with the conventional 
approach’s good performance, which is purely based on the inverse 
distance, in predicting. The MST inverse distance weight matrix is 
suspected to be appropriate for data with larger variability. The most 
important thing in building this weight matrix is that the correlation 
among spatial observations must exist.

Furthermore, since the real observations are the realization of 
stochastic processes, then the MST approach may give different 
configurations in different time frames. In this study, the MST 
approach was built based on all history observations to obtain a fixed 
weight matrix that can be used to do short-time forecasting. It can 
be considered as both an advantage and a limitation of this approach. 
In the future, the weight matrix can be evaluated as a random matrix. 
It can be the future work of this research.

On the other hand, for the number of vehicles entering Bandung 
through some toll gates data, the GSTAR(1;1) is the most appropriate 
to be used. This model is chosen based on the RMSE and AIC-BIC 
values. Although the prediction result is tight competing with the 

Padalarang Pasteur

Baros Pasir Koja

Kopo M. Toha

Buah Batu Cileunyi

FIGURE 7

A plot of re-estimation and prediction of observations using the GSTAR(1;1) model with MST inverse distance weight matrix for every toll gate. The real 
observations (black line) have higher variability than the estimated/predicted observations (red line).
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GSTAR(2;1,1) model, the GSTAR(1;1) is selected due to the parsimony 
principle in modeling. However, the results of re-estimation and 
prediction have not been maximal (still not close to the real 
observations); therefore, the method should be improved. One of the 
ways to improve is using the SDU approach to obtain a unique MST.
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