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On monoids of metric preserving
functions

Viktoriia Bilet1* and Oleksiy Dovgoshey1,2
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Let X be a class of metric spaces and let PX be the set of all f : [0,∞) → [0,∞)
preserving X, i.e., (Y, f ◦ ρ) ∈ X whenever (Y, ρ) ∈ X. For arbitrary subset A of the
set of all metric preserving functions, we show that the equality PX = A has a
solution if A is a monoid with respect to the operation of function composition.
In particular, for the set SI of all amenable subadditive increasing functions, there
is a class X of metric spaces such that PX = SI holds.
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1 Introduction

The following is a particular case of the concept introduced by Jachymski and Turoboś
[1].

Definition 1. Let A be a class of metric spaces. Let us denote by PA the set of all functions
f : [0,∞) → [0,∞) such that the implication

(

(X, d) ∈ A
)

⇒
(

(X, f ◦ d) ∈ A
)

is valid for every metric space (X, d).

For mappings F :X → Y and 8 :Y → Z, we use the symbol F ◦ 8 to denote the
mapping

X
F
−→ Y

8
−→ Z.

We also use the following notation:
F, set of functions f :[0,∞) → [0,∞);
F0, set of functions f ∈ F with f (0) = 0;
Am, set of functions f ∈ F0 with f−1(0) = {0};
SI, set of subadditive increasing f ∈ Am;

M, class of metric spaces;
U, class of ultrametric spaces;
Dis, class of discrete metric spaces;
M2, class of two-points metric spaces;
M1, class of one-point metric spaces.
The main purpose of this article is to provide a solution to the following problems.
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Problem 2. Let A ⊆ PM. Find conditions under which the equation

PX = A (1)

has a solution X ⊆ M.

Problem 3. Let A ⊆ PU. Find conditions under which Equation (1)

has a solution X ⊆ U.

In addition, we find all solutions to Equation (1) for A equal to
F, F0, or Am and answer the following question.

Question 4. Is there a subclass X of the classM such that

PX = SI?

This question was posed as a challenge in [2] in a different but
equivalent form and it was the original motivation for our research.

The article is organized as follows. The next section contains
some necessary definitions and facts from the theories of metric
spaces and metric preserving functions.

Section 3 provides some definitions from the semigroup theory
and describes solutions to Equation (1), for the cases when A is F,
F0, or Am. In addition, we show that PX is always a submonoid of
(F, ◦). See Theorems 21, 23, 24, and Proposition 27, respectively.

Section 4 provides solutions to Problems 2 and 3, which are
given, respectively, in Theorems 30 and 33. Theorem 32 gives a
positive answer to Question 4.

2 Preliminaries on metrics and metric
preserving functions

Let X be non-empty set. A function d :X × X → [0,∞) is said
to be ametric on the set X if for all x, y, z ∈ X we have

(i) d(x, y) > 0 with equality if and only if x = y, the positivity
property;

(ii) d(x, y) = d(y, x), the symmetry property;
(iii) d(x, y) 6 d(x, z)+ d(z, y), the triangle inequality.

A metric space (X, d) is ultrametric if the strong triangle

inequality

d(x, y) 6 max{d(x, z), d(z, y)}

holds for all x, y, z ∈ X.

Example 5. Let us denote R+
0 by the set (0,∞). Then the mapping

d+ : R+
0 × R+

0 → [0,∞),

d+(p, q) : =

{

0 if p = q,
max{p, q} otherwise.

is the ultrametric on R+
0 introduced by Delhommé et al. [3].

Definition 6. Let (X, d) be a metric space. The metric d is discrete
if there is k ∈ (0,∞) such that

d(x, y) = k

for all distinct x, y ∈ X.

In what follows we will say that a metric space (X, d) is discrete
if d is a discrete metric on X. We will denote the class of all discrete
metric space by Dis. In addition, for given non-empty set X1, we
will denote by DisX1 the subclass of Dis consisting of all metric
spaces (X1, d) with discrete d.

Remark 7. All discrete topological spaces can be endowed with a
metric which is discrete, but not every metric space with discrete
topology is discrete in the sense of Definition 6.

Example 8. Let Mk, for k = 1, 2, be the class of all metric spaces
(X, d) satisfying the equality

card(X) = k.

Then all metric spaces belonging toM1 ∪M2 are discrete.

Proposition 9. The following statements are equivalent for each

metric space (X, d) ∈ M.

(i) (X, d) is discrete.
(ii) Every three-points subspace of (X, d) is discrete.

Proof: The implication (i) ⇒ (ii) is evidently valid.
Suppose that (ii) holds but (X, d) 6∈ Dis. Then there are some

different points i, j, k, l ∈ X such that

d(i, j) 6= d(k, l). (2)

We write X1:={i, j, k} and X2:={j, k, l}. Then the spaces
(X1, d|X1×X1 ) and (X2, d|X2×X2 ) are discrete subspaces of (X, d) by
statement (ii). Consequently we have

d(i, j) = d(j, k) (3)

and

d(j, k) = d(k, l), (4)

by definition of the classDis. Now (3) and (4) give us

d(i, j) = d(k, l),

which contradicts (2).

Remark 10. The standard definition of discrete metric can be
formulated as follows: “The metric on X is discrete if the distance
from each point of X to every other point of X is one.” (see, for
example, Searcóid [4]).

Let F be the set of all functions f :[0,∞) → [0,∞).

Definition 11. A function f ∈ F is metric preserving (ultrametric

preserving) if f ∈ PM (f ∈ PU).

Remark 12. The concept of metric preserving functions
can be traced back to Wilson [5]. Similar problems were
considered by Blumenthal [6]. The theory of metric preserving
functions was developed by Borsík, Doboš, Piotrowski, Vallin,
and other mathematicians [7–19]. See also lectures by Doboš
[20] and the introductory paper by Corazza [21]. The study
of ultrametric preserving functions began by Pongsriiam and
Termwuttipong [22] and was continued in [23, 24].
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We will say that f ∈ F is amenable if

f−1(0) = {0}

holds and the set of all amenable functions from F will be denoted
by Am. Let us denote the set of all functions f ∈ F satisfying the
equality f (0) = 0 by F0. It follows directly from the definition that
Am ( F0 ( F.

Moreover, a function f ∈ F is increasing if the implication

(x 6 y) ⇒ (f (x) 6 f (y))

is valid for all x, y ∈ [0,∞).
The following theorem was proved in [22].

Theorem 13. A function f ∈ F is ultrametric preserving if and only

if f is increasing and amenable.

Remark 14. Theorem 13 was generalized in [25] to the special
case of the so-called ultrametric distances. These distances were
introduced by Priess-Crampe and Ribenboim [26] and were studies
by different researchers [27–30].

Recall that a function f ∈ F is said to be subadditive if

f (x+ y) 6 f (x)+ f (y)

holds for all x, y ∈ [0,∞). Let us denote the set of all subadditive
increasing functions f ∈ Am by SI.

In the next proposition, we restate the equivalence between
statements (i) and (ii) of Corollary 36 [2].

Proposition 15. The equality

SI = PU ∩ PM

holds.

Remark 16. The metric preserving functions can be considered as
a special case of metric products (= metric preserving functions of
several variables). See, for example, [31–37]. An important special
class of ultrametric preserving functions of two variables was first
considered in 2009 [38].

3 Preliminaries on semigroups.
Solutions to FX = A for A = F, F0, and
Am

Let us recall some basic concepts of semigroup theory,
see, for example, “Fundamentals of Semigroup Theory” by Howie
[39].

A semigroup is a pair (S, ∗) consisting of a non-empty set S
and an associative operation ∗ : S × S → S, which is called the
multiplication on S. A semigroup S = (S, ∗) is a monoid if there
is e ∈ S such that

e ∗ s = s ∗ e = s

for every s ∈ S.

Definition 17. Let (S, ∗) be a semigroup and ∅ 6= T ⊆ S. Then T

is a subsemigroup of S if a, b ∈ T ⇒ a ∗ b ∈ T. If (S, ∗) is a monoid
with the identity e, then T is a submonoid of S if T is a subsemigroup
of S and e ∈ T.

Example 18. The semigroups (F, ◦), (Am, ◦), (PM, ◦), and (PU, ◦)
are monoids, and the identical mapping id :[0,∞) → [0,∞),
id(x) = x for every x ∈ [0,∞) is the identity of these monoids.

The following simple lemmas are well-known.

Lemma 19. Let T be a submonoid of a monoid (S, ∗) and let V ⊆ T.
Then V is a submonoid of (S, ∗) if and only if V is a submonoid of T.

Lemma 20. Let T1 and T2 be submonoids of a monoid (S, ∗). Then
the intersection T1 ∩ T2 also is a submonoid of (S, ∗).

The next theorem describes all solutions to the equation PX =

F.

Theorem 21. The following statements are equivalent for every

X ⊆ M.

(i) X is the empty subclass ofM.
(ii) The equality

PX = F (5)

holds.

Proof: (i) ⇒ (ii). Let X be the empty subclass of M. Definition 1
implies the inclusion F ⊇ PX. Let us consider an arbitrary f ∈ F.
To prove equality (5), it is suffice to show that f ∈ PX. Since X is
empty, the membership relation (X, d) ∈ X is false for every metric
space (X, d). Consequently, the implication

((X, d) ∈ X) ⇒ ((X, f ◦ d) ∈ X)

is valid for every (X, d) ∈ M. It implies f ∈ PX by Definition 1.
Equality (5) follows.

(ii) ⇒ (i). Let (ii) hold. We must show that X is empty.
Suppose contrary that there is a metric space (X, d) ∈ X. Since, by
definition, we have X 6= ∅, there is a point x0 ∈ X. Consequently,
d(x0, x0) = 0 holds. Let c ∈ (0,∞) and let f :[0,∞) → [0,∞) be a
constant function,

f (t) = c

for every t ∈ [0,∞). In particular, we have

f (0) = c > 0. (6)

Equality (5) implies that f ◦ d is a metric on X. Thus, we have

0 = f (d(x0, x0)) = f (0),

which contradicts (6). Statement (i) follows.

Remark 22. Theorem 21 becomes invalid if we allow the empty
metric space to be considered. The equality

PX = F

holds if the non-empty class X contains only the empty metric
space.
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Let us describe now all possible solutions to PX = F0.

Theorem 23. The equality

PX = F0 (7)

holds if and only if X is a non-empty subclass ofM1.

Proof: Let X ⊆ M1 be non-empty. Equality (7) holds if

PX ⊇ F0 (8)

and

PX ⊆ F0. (9)

Here, we prove the validity of (8). Let f ∈ F0 be arbitrary. Since
every (X, d) ∈ X is a one-point metric space, we have f ◦ d = d for
all (X, d) ∈ X by the positivity property of metric spaces, Inclusion
(8) follows.

Here, we prove (9). The inclusion PX ⊆ F follows from
Definition 1. Thus, if (9) does not hold, then there is f0 ∈ F such
that f0 ∈ PX,

f0(0) = k and k > 0. (10)

SinceX is non-empty, there is (X0, d0) ∈ X. Let x0 be a (unique)
point of X0. Since f0 belongs to PX, the function f0 ◦ d0 is a metric
on X0. Now, using (10), we obtain

f0(d0(x0, x0)) = f0(0) = k > 0,

which contradicts the positivity property of metric spaces.
Inclusion (9) follows.

Let (7) hold. We must show that X is a non-empty subclass of
M1. If X is empty, then

PX = F (11)

holds by Theorem 21. Equality (11) contradicts equality (7). Hence,
X is non-empty. To complete the proof, we must show that

X ⊆ M1. (12)

Let us consider the constant function f0 :[0,∞) → [0,∞) such
that

f0(t) = 0, (13)

for every t ∈ [0,∞). Then f0 belongs to F0. Hence, for every
(X, d) ∈ X, the mapping d0 : = f0 ◦ d is a metric on X. Now
(13) implies d0(x, y) = 0 for all x, y ∈ X and (X, d) ∈ X.
Hence, card(X) = 1 holds, because the metric space (X, d0) is one-
point by the positivity property. Inclusion (12) follows. The proof
is completed.

The next theorem gives us all solutions to the equation PX =

Am.

Theorem 24. The following statements are equivalent for every

X ⊆ M.

(i) The inclusion

X ⊆ Dis (14)

holds, and there is (Y , ρ) ∈ X with

card(Y) > 2, (15)

and we have

DisX1 ⊆ X (16)

for every (X1, d1) ∈ X.
(ii) The equality

PX = Am (17)

holds.

Proof: (i) ⇒ (ii). Let (i) hold. Equality (17) holds if

PX ⊇ Dis (18)

and

PX ⊆ Dis. (19)

Here, we prove (18). Inclusion (18) holds if we have

(X1, f ◦ d1) ∈ X (20)

for all f ∈ Am and (X1, d1) ∈ X. Relation (20) follows from
Theorem 23 if (X1, d1) ∈ M1. To see it we only note that Am ⊆ F0.
Let us consider the case when

card(X1) > 2.

Since (X1, d1) is discrete by (14), Definition 6 implies that there
is k1 ∈ (0,∞) satisfying

d1(x, y) = k1

for all distinct x, y ∈ X1. Let f ∈ Am be arbitrary. Then f (k1) is
strictly positive and

f (d1(x, y)) = f (k1)

holds for all distinct x, y ∈ X1. Thus, f ◦ d1 is a discrete metric on
X1, i.e., we have

(X1, f ◦ d1) ∈ DisX1 . (21)

Now, Equation (20) follows from Equations (16, 21).
Here, we prove (19). To prove, we must show that every f ∈ PX

is amenable.
Suppose contrary that f belongs to PX but the equality

f (t1) = 0 (22)

holds with some t1 ∈ (0,∞). By statement (i) we can find (Y , ρ) ∈
X such that (15) and

ρ(x, y) = t1
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hold for all distinct x, y ∈ Y . Now f ∈ PX and (Y , ρ) ∈ X imply
that f ◦ ρ is a metric on Y . Consequently, for all distinct x, y ∈ Y ,
we have

f (ρ(x, y)) = f (t1) > 0,

which contradicts (22). The validity of (19) follows.
(ii) ⇒ (i). Let X satisfy equality (17). Since Am 6= F holds, the

classX is non-empty by Theorem 21. Moreover, using Theorem 23,
we see that X contains a metric space (X, d) with card(X) > 2,
because Am 6= F0.

If the inequality

card(Y) 6 2

holds for every (Y , ρ) ∈ X, then all metric spaces belonging toX are
discrete (see Example 8). Using the definitions of Dis and Am, it is
easy to prove that for each (X1, d1) ∈ Dis and every (X1, d) ∈ DisX1

there exists f ∈ Am such that d = f ◦ d1. Hence to complete the
proof, it is suffice to show that every (X, d) ∈ X is discrete when

card(X) > 3. (23)

Let us consider arbitrary (X, d) ∈ X satisfying (23). Suppose
that (X, d) 6∈ Dis. Then by Proposition 9 there are distinct a, b, c,∈
X such that

d(b, c) /∈ {d(a, b), d(c, a)}. (24)

Let c1 and c2 be points of (0,∞) such that

c2 > 2c1. (25)

Now we can define f ∈ Am as

f (t) : =











0 if t = 0,
c2 if t = d(b, c),
c1 otherwise.

(26)

Equality (17) implies that f ◦ d is a metric on X. Consequently,
we have

f (d(b, c)) 6 f (d(b, a))+ f (d(b, c)) (27)

by triangle inequality. Now using Equations (24, 26) we can rewrite
Equation (27) as

c2 6 c1 + c1,

which contradicts Equation (25). It implies (X, d) ∈ Dis. The proof
is completed.

Corollary 25. The equalities

PDis = PM2 = Am

hold.

Remark 26. The equality

PM2 = Am

is known, see, for example, Remark 1.2 in the article [13]. This
article also contains “constructive” characterizations of the smallest
bilateral ideal and the largest subgroup of the monoid PM.

Proposition 27. Let X be a subclass ofM. Then PX is a submonoid

of (F, ◦).

Proof: It follows directly from Definition 1 that

PX ⊆ F

holds and that the identity mapping id :[0,∞) → [0,∞) belongs
to PX. Hence, by Lemma 19, it is suffice to prove

f ◦ g ∈ PX (28)

for all f , g ∈ PX.
Let us consider arbitrary f ∈ PX and g ∈ PX. Then, using

Definition 1, we see that (X, g ◦d) belongs toX for every (X, d) ∈ X.
Consequently,

(X, f ◦ (g ◦ d)) ∈ X (29)

holds. Since the composition of functions is always associative, the
equality

(f ◦ g) ◦ d = f ◦ (g ◦ d) (30)

holds for every (X, d) ∈ X. Now Equation (28) follows from
Equations (29, 30).

The above proposition implies the following corollary.

Corollary 28. If the equation

PX = A

has a solution, then A is a submonoid of F.

The following example shows that the converse of Corollary 28

is, generally speaking, false.

Example 29. Let us define A1 ⊆ F as

A1 = {f1, id},

where f1 ∈ F is defined such that

f1(t) : =











1 if t = 0,
0 if t = 1,
t otherwise

(31)

and id is the identical mapping of [0,∞). The equalities f1 ◦ f1 = id,

f1 ◦ id = f1 = id ◦f1 show that A1 is a submonoid of (F, ◦). Suppose
that there is X1 ⊆ M satisfying the equality

PX1 = A1. (32)

Then using Theorem 21, we see that X1 is non-empty because

A1 6= F holds. Let (X1, d1) be an arbitrary metric space from A1.

Since X1 is non-empty, we can find x1 ∈ X1. Then (32) implies that

f1 ◦ d1 is metric on X1. Now using (31), we obtain

f1(d1(x1, x1)) = f1(0) = 1,

which contradicts the positivity property of metrics.
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4 Submonoids of monoids PM and PU

The following theorem provides a solution to Problem 2.

Theorem 30. LetA be a non-empty subset of the set PM of all metric

preserving functions. Then the following statements are equivalent.

(i) The equation

PX = A (33)

has a solution X ⊆ M.
(ii) A is a submonoid of (F, ◦).
(iii) A is a submonoid of (PM, ◦).

Proof: (i) ⇒ (ii). Suppose that there isX ⊆ M such that (33) holds.
Then A is a submonoid of (F, ◦) by Proposition 27.
(ii) ⇒ (iii). Let A be a submonoid of (F, ◦). By Proposition 27,

the monoid (PM, ◦) also is a submonoid of (F, ◦). Then using the
inclusion A ⊆ PM, we obtain that A is a submonoid of (PM, ◦) by
Lemma 19.

(iii) ⇒ (i). Let A be a submonoid of (PM, ◦). We must prove
that (33) has a solution X ⊆ M.

Let (X, d) be a metric space such that

{d(x, y) : x, y ∈ X} = [0,∞). (34)

X : = {(X, f ◦ d) : f ∈ A}. (35)

Thus, a metric space (Y , ρ) belongs to X if and only if Y = X

and there is f ∈ A such that ρ = f ◦ d.
We claim that Equation (33) holds if X is defined by Equality

(35). To prove it, we note that Equation (33) holds if

A ⊆ PX (36)

and

A ⊇ PX. (37)

Here, we prove Inclusion (36). This inclusion holds if for every
f ∈ A and each (Y , ρ) ∈ X we have (Y , f ◦ ρ) ∈ X. Let us consider
arbitrary (Y , ρ) ∈ X and f ∈ A. Then, using Equation (35), we can
find g ∈ A such that

X = Y and ρ = g ◦ d. (38)

SinceA is a monoid, the membership relations f ∈ A and g ∈ A

imply g ◦ f ∈ A. Hence, we have

(X, g ◦ f ◦ d) ∈ X (39)

by Equality (35). Now (Y , f ◦ ρ) ∈ X follows from Equations (38,
39).

Here, we prove Inclusion (37). Let g1 belongs to PX and let
(X, d) be the same as in (35). Then (X, g1 ◦ d) belongs to X and,
using (35), we can find f1 ∈ A such that

(X, g1 ◦ d) = (X, f1 ◦ d). (40)

Equality (40) implies

g1(d(x, y)) = f1(d(x, y)), (41)

for all x, y ∈ X. Consequently, g1(t) = f1(t) holds for every
t ∈ [0,∞) by Equation (34, 41). Thus, we have g1 = f1. That implies
g1 ∈ A. Inclusion (37) follows. The proof is completed.

Remark 31. A reviewer of the article noted that condition (34) can
be neatly expressed in terms of center distances which stems from
article [40].

Let us turn now to Question 4. Proposition 15 and Lemma 20
provide the following result.

Theorem 32. There is X ⊆ M such that

PX = SI. (42)

Proof: By Proposition 27, the monoids (PM, ◦) and (PU, ◦) are
submonoids of (F, ◦). The equality

SI = PM ∩ PU (43)

holds by Proposition 15. Using Equality (43) and Lemma 20 with
T1 = PM, T2 = PU, and S = F, we see that SI also is a submonoid
of F. Consequently, Theorem 30 with A = SI implies that there is
X ⊆ M such that (42) holds.

The next theorem is an ultrametric analog of Theorem 30 and
it gives us a solution to Problem 3.

Theorem 33. Let A be a non-empty subset of the set PU of all

ultrametric preserving functions. Then the following statements are

equivalent.

(i) The equation PX = A has a solution X ⊆ U.
(ii) A is a submonoid of (F, ◦).
(iii) A is a submonoid of (PU, ◦).

A proof of Theorem 33 can be obtained by a simple
modification of the proof of Theorem 30. We only note that the
ultrametric space defined in Example 5 satisfies equality (34) with
X = R+

0 and d = d+.

5 Two conjectures

Conjecture 34. The equation

PX = A

has a solution X ⊆ M for every submonoid A of the monoid Am.

Example 29 shows that we cannot replace Am with F in
Conjecture 34, but we hope that the following is valid.

Conjecture 35. For every submonoidA of the monoid F, there exists

X ⊆ M such that PX and A are isomorphic submonoids.
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35. Herburt I. Moszyńska M. On metric products. Colloq Math. (1991) 62:121–33.
doi: 10.4064/cm-62-1-121-133

36. Kazukawa D. Construction of product spaces. Anal Geom Metr Spaces. (2021)
9:186–218. doi: 10.1515/agms-2020-0129

37. Lichman M, Nowakowski P, Turobo F. On Functions Preserving Products of
Certain Classes of Semimetric Spaces. TatraMountMathem Publicat. (2021) 78:175–98.
doi: 10.2478/tmmp-2021-0013

38. Dovgoshey O, Martio O. Products of metric spaces,
covering numbers, packing numbers and characterizations of
ultrametric spaces. Rev Roumaine Math Pures Appl. (2009)
54:423–39.

39. Howie JM. Fundamentals of Semigroup Theory. Oxford: Clarendan Press. (1995).

40. Bielas W, Plewik S, Walczyska M. On the center of distances. Eur J Mathem.
(2018) 4:687–98. doi: 10.1007/s40879-017-0199-4

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2024.1420671
https://doi.org/10.4064/cm-62-1-121-133
https://doi.org/10.1515/agms-2020-0129
https://doi.org/10.2478/tmmp-2021-0013
https://doi.org/10.1007/s40879-017-0199-4
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	On monoids of metric preserving functions
	1 Introduction
	2 Preliminaries on metrics and metric preserving functions
	3 Preliminaries on semigroups. Solutions to FX=A for A=F, F0, and Am
	4 Submonoids of monoids PM and PU
	5 Two conjectures
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


