AUTHOR=Bilet Viktoriia , Dovgoshey Oleksiy TITLE=On monoids of metric preserving functions JOURNAL=Frontiers in Applied Mathematics and Statistics VOLUME=Volume 10 - 2024 YEAR=2024 URL=https://www.frontiersin.org/journals/applied-mathematics-and-statistics/articles/10.3389/fams.2024.1420671 DOI=10.3389/fams.2024.1420671 ISSN=2297-4687 ABSTRACT=Let $\mathbf{X}$ be a class of metric spaces and let $\mathbf{P}_{\mathbf{X}}$ be the set of all $f:[0, \infty)\to [0, \infty)$ preserving $\mathbf{X}$, i.e., $(Y, f\circ\rho)\in\mathbf{X}$ whenever $(Y, \rho)\in\mathbf{X}.$ For arbitrary subset $\mathbf{A}$ of the set of all metric preserving functions we show that the equality $\mathbf{P}_{\mathbf{X}}=\mathbf{A}$ has a solution iff $\mathbf{A}$ is a monoid with respect to the operation of function composition. In particular, for the set $\mathbf{SI}$ of all amenable subadditive increasing functions there is a class $\mathbf{X}$ of metric spaces such that $\mathbf{P}_{\mathbf{X}}=\mathbf{SI}$ holds, which gives a positive answer to the question of paper \cite{Dov24}.