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Introduction: Chaotic resonance is similar to stochastic resonance, which

emerges from chaos as an internal dynamical fluctuation. In chaotic resonance,

chaos-chaos intermittency (CCI), in which the chaotic orbits shift between the

separated attractor regions, synchronizes with a weak input signal. Chaotic

resonance exhibits higher sensitivity than stochastic resonance. However,

engineering applications are di�cult because adjusting the internal system

parameters, especially of biological systems, to induce chaotic resonance from

the outside environment is challenging. Moreover, several studies reported

abnormal neural activity caused by CCI. Recently, our study proposed that the

double-Gaussian-filtered reduced region of orbit (RRO) method (abbreviated

as DG-RRO), using external feedback signals to generate chaotic resonance,

could control CCI with a lower perturbation strength than the conventional RRO

method.

Method: This study applied the DG-RRO method to a model which includes

excitatory and inhibitory neuron populations in the frontal cortex as typical neural

systems with CCI behavior.

Results and discussion: Our results reveal that DG-RRO can be applied to neural

systems with extremely low perturbation but still maintain robust e�ectiveness

compared to conventional RRO, even in noisy environments.

KEYWORDS

chaotic resonance, feedback control, neural system, nonlinear dynamics,

synchronization

1 Introduction

Over the current decade, the mechanism of stochastic resonance where

synchronization against a weak input signal is enhanced by additive stochastic noise

has been applied to many engineering fields [1–3], especially the biomedical field [4–7]

including validation in neural models [8, 9] [reviewed in [10, 11]]. Moreover, recent

studies have demonstrated that chaotic behaviors in neurons can significantly impact

neural dynamics, influencing the firing rates and latency of neuronal responses [12]. Not

restricting additive stochastic noise, chaos as internal dynamic fluctuations also cause
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a similar phenomenon to stochastic resonance, which is referred

to chaotic resonance [reviewed in [13–15]]. Chaotic resonance

exhibits higher sensitivity than stochastic resonance [16, 17];

therefore, there is a need to develop engineering applications to

utilize this advantage [reviewed in [15, 18]].

Several chaotic resonance types have been previously observed

[reviewed in [15]]. The first type is chaotic resonance in excitable

systems represented by the spiking neural system [19–23]. In this

chaotic resonance type, the chaotic spikes for each trial respond

at various points against the repeated input signal, unlike the

periodic spikes that respond at specific timings. Consequently,

the spike distribution converges on the shape of the input

signal [19–23]. In addition, autaptic connections have been

found to modulate chaotic resonance, enhancing or altering its

characteristics depending on the type of autapse and its parameters

[24]. The second type is chaotic resonance with chaos–chaos

intermittency (CCI), where the chaotic orbits shift between the

separated chaotic attractor regions, such as the cubic map, Chua’s

circuit, and excitatory–inhibitory (E-I) system [25, 26]. The return

map inducing this type of chaotic resonance has the shape of a

cubic function. Under the attractor-separated condition, the small

absolute values of local extremes in the return map function lead

to the trapped orbit in specific regions. While under the attractor-

merging condition, the orbit can jump between specific regions,

and CCI occurs due to the increasing absolute value of local

extremes in the returnmap function. Around the attractor-merging

bifurcation point, the inherent shift between chaotic attractor

regions rarely occurs in the systems. In this condition, applying

an external signal induces an effect that causes the orbit to shift

among the attractor regions. Consequently, CCI synchronizes with

the input signal despite its significantly weak strength [16, 17,

25, 27, 28]. Recent studies for engineering applications have been

proceeding against the latter type of chaotic resonance [reviewed

in [15, 18]]. Conventionally, controlling chaotic resonance requires

the internal order parameters to be adjusted [25, 26]. However, in

many systems, especially biological systems, adjusting the internal

order parameters from the outside environment is challenging.

To understand the dynamics of neural populations, some

models illustrate how chaotic activity emerges from the interactions

within excitatory–inhibitory neural networks [29]. Despite

simplification, Hadaeghi’s and Baghdadi’s models [30, 31] offer

valuable insights into the dynamic interactions between excitatory

and inhibitory neurons, contributing to our understanding of

neurological disorders such as bipolar disorder (BD) and attention

deficit hyperactivity disorder (ADHD), respectively. Those

models can be used as valuable tools for investigating the broader

principles of neural dynamics and the potential implications of

chaos control methods in neural systems. Conventionally, to apply

chaotic resonance with CCI, the attractor-merging bifurcation

must be controlled by the internal parameters [reviewed in

[25, 26]]. Furthermore, the application of chaotic resonance in

neural systems has been explored in various contexts, showing

that chaotic signals can enhance the detection of weak signals and

improve neural network performance [32]. However, the reduced

region of orbit (RRO) method has emerged as an approach [33] to

control chaotic resonance with CCI by external feedback signals.

By utilizing external feedback signals, the RRO method offers a

novel means of modulating chaotic dynamics, circumventing the

challenges associated with conventional parameter adjustments

[26]. This methodological innovation has sparked interest in its

potential applications across various domains, particularly in

the treatment of neurological disorders, where precise control

over neural dynamics is difficult [34, 35]. Despite achieving CCI

control using weak external feedback signals, the conventional

RRO method still faces limitations with systems that desire weaker

perturbations. In particular, to induce CCI with a weak feedback

signal, the profile of the feedback signal must be concentrated

around the local extremes of the map function, referred to as the

local specification. However, the profile used in the conventional

RRO method is insufficient. Recently, our proposed method, the

double Gaussian-filtered RRO (DG-RRO) method [36], controls

CCI with a lower perturbation strength than the conventional

RRO method by the effect of high local specification. Accordingly,

the DG-RRO feedback signal induces chaotic resonance with

extremely weak feedback perturbation [36]. By utilizing external

feedback signals, the DG-RRO method might offer a potential

avenue for neuro-feedback applications, allowing for the precise

modulation of neural dynamics.

The previous study had drawbacks in experimenting with the

DG-RRO method. Iinuma et al. only applied the DG-RRO method

in discrete cubic maps, not with neural systems. Therefore, the

evaluation of more physiological conditions is needed to validate

the effectiveness of the DG-RRO method in experimental systems,

specifically in neural systems, which is the primary applied system

with the RRO method [34, 35]. Furthermore, the effect of noise

on this method is also considered since the presence of noise

in actual systems is inevitable. Previous studies which evaluated

the conventional RRO method investigated the influence of two

primary sources of noise [37], namely, background noise [13,

14, 38] (referred to as the additive noise in this study) and

measurement error [25, 34] (referred to as the contaminant noise

in this study). In particular, additive noise mainly exists in the

internal system and affects the neural system, while contaminant

noise exists in the measurement environment [37].

In this context, this study aims to validate that the CCI

produced by the DG-RRO feedback signal can be applied to neural

systems and maintain robustness even in the presence of noise.

More concretely, in our previous study [36], we applied DG-RRO

to abstract cubic maps. Building upon this groundwork, in this

study, we evaluated the application of the DG-RRO method on the

excitatory–inhibitory neural systemmodel as typical neural systems

with CCI behavior compared with the conventional RRO method.

Furthermore, we investigated the influence of two types of noise

(additive and contaminant noise) on those neural models.

2 Materials and methods

2.1 Neural system composed of the frontal
and sensory cortices

The model used in this research, inspired by the Hadaeghi

[30] and Baghdadi models [31], is a mathematics model, which

emphasizes the imbalance between excitatory and inhibitory
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FIGURE 1

Overview of neural systems composed of the frontal and sensory

cortices to reproduce healthy and abnormal neural activity. ω1 and

ω2 are the synaptic weights of inputs to the inhibitory and excitatory

neural populations, respectively. A and B correspond to the synaptic

weights of the outputs of the inhibitory and excitatory neural

populations, respectively. C is an attenuation coe�cient which is

feedback from output from the frontal cortex going through to the

sensory cortex.

neuron populations in the frontal cortex [39, 40], and crucial for

reproducing neural activities. Moreover, it highlights dysfunction

in feedback loops from the sensory cortex to the frontal

cortex, alongside abnormal temporal behavior of attention levels

originating from frontal cortex imbalance [31]. All variables and

parameters used in this model are dimensionless to suit the research

purposes. The neural activity of the frontal cortex is depicted as

x(n)(n = 1, 2, ...), regulated by the interaction between excitatory

and inhibitory neural populations. Figure 1 provides an overview

of the model as follows:

x(n+ 1) = F(x(n)), (1)

F(x) = C(B tanh(ω2x)− A tanh(ω1x)), (2)

where F(x) represents the map function for x(n). ω1 and ω2 are the

synaptic weights of inputs to the inhibitory and excitatory neural

populations, respectively. A and B correspond to the synaptic

weights of the outputs of the inhibitory and excitatory neural

populations, respectively. In Equation (2), C is an attenuation

coefficient of frontal neural activity. In this model, frontal neural

dynamics x(n) is determined by output from the frontal cortex and

its feedback through the sensory cortex with attenuation C. The

setting of C < 1.0 corresponds to the case of the loss of information

of brain activity due to lower attention [31]. The parameters used

in this study are set as follows: ω1 = 0.2223, ω2 = 1.487, and B =
5.82, andA is the main bifurcation parameter based on the previous

studies of the Hadaeghi [30, 41] and the Baghdadi models [31].

The Hadaeghi model with only the frontal cortex component is a

special case of the Baghdadi model with the attenuation coefficient

C = 1.0, while the Baghdadi model has an attenuation coefficient

C ≤ 1.0. CCI is induced when C & 0.85; therefore, in this study, we

FIGURE 2

(A) System behaviors in the neural network comprised the frontal

and sensory cortices in the model with C = 1.0 as a function of the

synaptic weight from the inhibitory neural population, A, in the

absence of feedback and periodic signals (K = 0, As = 0). (Top)

Bifurcation diagram of the frontal neural activity x(n) represented by

Equation (1) as a function of A blue and red dots indicate positive

and negative initial values of x(0), respectively. (Bottom) F(fmin)/

F(fmax) as a function of A. The frontal neural behavior in the periodic

window 12.5 ≤ A ≤ 13.5 corresponds to that of healthy controls

(HC). In comparison, the CCI behavior in 9.8 ≤ A ≤ 12.5 and

A ≥ 13.5 corresponds to that of patients with disturbance. (B) Map

function F(x) (the orbit in the return map) of frontal cortical neural

activity x(n) in the absence of external feedback or periodic input

signals (K = 0, As = 0). HC case (weight from the inhibitory neural

population is (A = 13.0) (left) and disturbance case (A = 12.0) (right).

In the return maps, the red and green circles indicate F(fmax) and

F(fmin), respectively. In both HC and disturbance, the

attractor-merging condition is satisfied with F(fmax) < 0 and

F(fmin) > 0; the periodic and CCI states correspond to HC and

disturbance, respectively.

used C = 0.9 as the represented parameter to produce abnormal

frontal cortical neural activity [35].

The behavior of the neural system composed of the frontal and

sensory cortices, including the bifurcation diagram of the frontal

neural activity x(n) and F(fmin)/ F(fmax), as shown in Figure 2A.

The attractor-merging condition in case of no feedback signal is

defined as [33] F(fmax) < 0, F(fmin) > 0, where fmax and fmin are the
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FIGURE 3

Overview of the neural system with the feedback signals [reduced

region of orbit (RRO) or double Gaussian-filtered RRO (DG-RRO)

feedback signal]. The neural systems composed of the frontal and

sensory cortices reproduce the neural activity. The frontal cortical

neural activity x(n) is controlled by feedback signals (RRO or

DG-RRO) and a periodic input signal S(n) = As sin(�n).

local maximum andminimum of themap function, and CCI occurs

when A & 9.8. In 12.5 . A . 13.5, frontal neural activity is in the

periodic state corresponding to CCI of patients with BD achieving

a healthy periodic state (healthy control [HC]). Figure 2B illustrates

an example of the frontal neural activity x(n) in HC (A = 13) and in

patients with disturbance (A = 12) [34], where they both satisfied

the attractor-merging condition.

2.2 Controlling frontal cortical neural
activity by RRO feedback

In this model, the healthy and disturbed states are produced

by a period state and a CCI state in the frontal cortical neural

activity, respectively. In addition, the enhancement of the neural

pathway corresponds to increasing the strength of neural pathway

C from the sensory cortex to the frontal cortex. In previous studies,

RRO feedback signals were applied to induce chaotic resonance to

transition the CCI of x(n) to the period state [34, 35]. An overview

of the systems for this control method is presented in Figure 3. The

frontal cortical neural activity x(n) is controlled by feedback signals

and a periodic input signal S(n) = As sin(�n) corresponding to the

external treatment signal [34, 35] as follows:

x(n+ 1) = F(x(n))+ Ku(x(n))+ S(n), (3)

u(x) = −(x− xd) exp(−(x− xd)
2/(2σ 2)). (4)

where K, xd, and σ represent the RRO feedback strength, the

merging point of two chaotic attractors, and a parameter to

determine the region of the RRO feedback effect, respectively. F(x)

is the map function. In previous studies, xd = 0 and σ = 1.0 were

set [34, 35] because the structure of the return map of Equation (2)

has a point symmetry at approximately x = 0 with local maximum

and minimum values of the map function located within the region

-σ < x < σ (σ = 1.0) [33].

Figure 4 shows the map function of Equations (3, 4) in the

case of the presence and absence of RRO feedback signals in the

model with C = 1.0, to illustrate the effect of the RRO. The

attractor merging (CCI) with feedback signal occurs if it satisfies

the attractor-merging condition (F(fmax)+Ku(fmax) < 0, F(fmin)+
Ku(fmin) > 0). For an inhibitory synaptic weight A = 12.0 in the

absence of feedback (K = 0), the attractor-merging conditions

are satisfied (left graph in Figure 4). The orbit x(n) hops between

positive and negative x regions, i.e., CCI arises. With positive

feedback (K = 0.7 and A = 12.0 case), the absolute values of

fmax and fmin are reduced, and the attractor merging conditions are

not satisfied; the orbit x(n) is constrained to lie within either the

positive or negative x region, depending on the initial value of x(0).

2.3 Controlling frontal cortical neural
activity by DG-RRO feedback

The RRO feedback signal presented in Equation (4) consists of

a linear function−(x− xd) that can adjust the local maximum and

minimum values of the map function F(x) and a single Gaussian

function around the attractor dividing point xd, as shown in the

upper part of Figure 5. The figure was obtained based on the

parameter set from the previous study (σ = 1.0, xd = 0). However,

the local specification at approximately x = xmin (xmin:fmin =
F(xmin)) and x = xmax (xmax:fmax = F(xmax)), which is the degree

for rapidly converging to zero from x = xmin, max in the feedback

signals, can be improved. To achieve this improvement, DG-RRO

feedback signals g(x) proposed by Iinuma et al. [36] used a reversal

function −F(x) and double Gaussian functions at approximately

x = xmin, max as follows:

x(n+ 1) = F(x(n))+ Kg(x(n))+ S(n),

g(x) = −F(x)[exp(−(x−xmin)
2/(2σ 2

dg))+exp(−(x−xmax)
2/(2σ 2

dg))],

(5)

where σdg is a parameter related to the influence range of the

feedback signal. In this study, σdg was set as σdg = σ/2 =
0.5. The lower part of Figure 5 shows the profile of DG-RRO

feedback signal g(x). Compared with the RRO feedback signal, g(x)

converges rapidly to zero except at approximately x = xmin, max;

that is, a higher local specification around local minimum and

maximum points is achieved using the DG-RRO method. Like

the conventional RRO method, the DG-RRO method decreases

the absolute value of fmin and fmax. By adjusting the feedback

signal strength K for approaching attractor-merging bifurcation

(F(fmin)+ Kg(fmin) = 0 and F(fmax)+ Kg(fmax) = 0), the inherent
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FIGURE 4

Map function F(x)+ Ku(x) for A = 12.0 with and without external feedback signals in the return map between x(n) and x(n+ 1) in the model with

C = 1.0. The left and right graphs indicate map functions satisfying attractor-merging conditions with K = 0.0 and not satisfying attractor-merging

conditions with and K = 0.7 in the A = 12.0 case. The red and green dots indicate F(fmax)+ Ku(fmax) and F(fmin)+ Ku(fmin), respectively. RRO feedback

separates the merged attractors by decreasing the absolute values of fmax and fmin.

shift between the positive and negative regions of x(n) rarely

occurs in the systems. Under this condition, applying an external

signal induces an effect that causes the orbit shift among the

attractor regions. Consequently, CCI synchronizes with the input

signal despite its significantly weak strength. However, unlike the

conventional RRO method, the DG-RRO feedback signal modifies

the dynamics more effectively by using these double Gaussian

functions, ensuring that the feedback influences aremore focused at

the local minimal and maximal points and improving the efficiency

of this control method by using smaller feedback strength.

In actual systems, noise is inevitable and may affect CCI.

In this study, to appraise the influence of noise on chaotic

resonance, in addition to DG-RRO feedback signals, the additive

and contaminant noise [37] were applied to the DG-RRO feedback

signals. After applying the noise, the overall system dynamics are

expressed as follows:

x(n+ 1) = F(x(n))+ Kg(x(n)+ Dcη(n))+ Daξ (n)+ S(n),

where η and ξ represent the Gaussian white noise (random signal

with a mean value of 0 and standard deviation of 1). Da and

Dc denote the strength of additive stochastic and contaminant

noise, respectively. Our previous study on the types of noise

influence on system dynamics degraded the synchronization

in chaotic resonance [37]. Additive noise perturbs the system

directly by introducing random fluctuations to the input signal.

In contrast, contaminant noise affects neural activity through

feedback function, which means the contaminant noise passively

affects the system by changing the feedback signal. With significant

contaminant noise, feedback terms behave as noise unrelated to

neural activity. Therefore, contaminant noise exhibits a similar

effect to additive noise [37].

2.4 Evaluation indices

The attractor-merging condition for the RRO and DG-RRO

feedback signal was applied to determine the attractor-merging

FIGURE 5

(Upper part) RRO feedback signal u(x) given by Equation (4). (Lower

part) Double Gaussian RRO (DG-RRO) feedback signal g(x) given by

Equation (5) in the model with C = 1.0. The local minimum

(xmin)/maximum (xmax) points for map function F(x) given by

Equation (2). Weight from the inhibitory neural population A = 12.0.

Compared with the RRO feedback signal, g(x) rapidly converges to

zero except for approximately x = xmin, xmax; that is, higher local

specification around local minimum/maximum points achieved by

the DG-RRO method.

bifurcation point. We described the attractor-merging bifurcation

point F(fmin) + Ku(fmin) = 0 and F(fmax) + Ku(fmax) = 0 for

the RRO method and F(fmin) + Kg(fmin) = 0 and F(fmax) +
Kg(fmax) = 0 for the DG-RROmethod.When F(fmax)+Ku(fmax) <

0 and F(fmin) + Ku(fmin) > 0 for the RRO case, F(fmax) +
Kg(fmax) < 0 and F(fmin) + Kg(fmin) > 0 for the DG-RRO case, it
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called attractor-merging condition [33]. Otherwise, it is called the

attractor-separating condition.

To evaluate the amount of perturbation due to the feedback

signal (e.g., Kg(x)), the perturbation for the DG-RRO method is

calculated as follows:

2 =< (Kg(x(n)))2 + S(n)2 >,

and the perturbation for the RRO method is calculated as follows:

2 =< (Ku(x(n)))2 + S(n)2 >,

where 〈·〉 denotes the average in n [34]. The values for 2 are

measured against 10 trials with different initial conditions of x(0).

The synchronization between x(n) and S(n) was evaluated by

using their correlation coefficient at a time delay τ as follows:

Corr(τ ) =
Csx(τ )√
CssCxx

,

Csx(τ ) = 〈(S(n+ τ )− 〈S〉)(X(n)− 〈X〉)〉,

Css(τ ) = 〈(S(n)− 〈S〉)2〉,

FIGURE 6

Dependence of system behavior on RRO (left) and DG-RRO (right) feedback strength K (A) when C = 1.0 and (B) when C = 0.9

(B = 13.0,ω1 = 0.2223,ω2 = 1.487,Ax = 0.01,� = 0.005). The red solid line indicates the feedback strength K where attractor merging bifurcation

F(fmin)+ Ku(fmin) = 0 and F(fmax)+ Ku(fmax) = 0, F(fmin)+ Kg(fmin) = 0, F(fmax)+ Kg(fmax) = 0 arises. (Top) The bifurcation diagram of frontal neural

activity. The black arrows point to the attractor-separating condition (F(fmin)+ Ku(fmin) < 0, F(fmax)+ Ku(fmax) > 0/ F(fmin)+ Kg(fmin) < 0, F(fmax)+
Kg(fmax) > 0) regions; the red arrows point to the attractor-merging condition (F(fmin)+ Ku(fmin) > 0, F(fmax)+ Ku(fmax) < 0/F(fmin)+ Kg(fmin) > 0,

F(fmax)+ Kg(fmax) < 0) regions. (Bottom) Dependence of perturbation 2 on the strength of feedback signals K. (C) Comparison of perturbation

between the RRO and DG-RRO method at attractor merging bifurcation.
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FIGURE 7

The correlation coe�cient argmaxτCorr(τ ) between the periodic input signal S(n) and binarised of x(n) according to the feedback strength K and

input signal strength. (A) When C = 1.0 and (B) C = 0.9 in noise-free conditions (Da = 0, Dc = 0) (frequency � = 0.005 is set). The black dashed line

indicates the attractor-merging bifurcation. In the colored region, CCI occurs; while in the white region, x(n) behavior indicates the absence of CCI.

Around the value K for the attractor-merging bifurcation, the synchronization of CCI can be achieved even in smaller signal strength As, i.e., the

sensitivity of chaotic resonance becomes higher than that at the other regions of K.

Cxx(τ ) = 〈(X(n)− 〈X〉)2〉,

where 〈·〉 denotes the average in n. X represents the binarised x(n)

value, i.e., X(n) = 1 in x(n) ≥ 0 case and X(n) = −1 in x(n) < 0

case in order to focus on the CCI behavior. In this study, τ was set

to the value for argmaxτ Corr(τ ) in each time series of x(n). The

values for argmaxτ Corr(τ ) are measured by different τ values and

average against 10 trials with different initial values of x(0).

3 Results

3.1 Frontal cortical neural activity
behaviors under the influence of external
feedback signal

We demonstrated the dependency of frontal cortical neural

activity x(n) on the feedback strength K in the case of conventional

RRO and DG-RRO methods to control CCI in noise-free

conditions (Da = 0, Dc = 0). Figure 6 shows the bifurcation

diagram and perturbation 2 when the applied feedback signals

are the RRO and DG-RRO methods in the case of C = 1.0 (see

Figure 6A) and in the case of C = 0.9 (see Figure 6B) (frequency

� = 0.005 is set). The results revealed that the strengths of feedback

signals K, where the chaotic attractor achieved the attractor-

merging bifurcation (F(fmin) + Ku(fmin) = 0, and F(fmax) +
Ku(fmax) = 0, F(fmin)+Kg(fmin) = 0, and F(fmax)+Kg(fmax) = 0)

are K ≈ 0.68 for the RRO method and K ≈ 0.13 for the DG-

RRO method when C = 1.0 and K ≈ 0.28 for the RRO method

and K ≈ 0.06 for the DG-RRO method when C = 0.9. Owing

to the better local specification (see Figure 5), the DG-RROmethod

required significantly smaller perturbation2 than the conventional

RRO method to achieve the attractor-merging bifurcation; thus,

the amount of the perturbation for the DG-RRO method was two-

ninth of the amount of the perturbation for the RROmethod (2 ≈
0.017 for the DG-RROmethod and2 ≈ 0.075 for the RROmethod

whenC = 1.0, and2 ≈ 0.0089 for the DG-RROmethod,2 ≈ 0.04

for the RRO method when C = 0.9) (see bottom parts of Figure 6).

To easily compare perturbation 2 at attractor-merging bifurcation

points of each method, Figure 6C shows the perturbation values of

both methods at C = 1.0 and C = 0.9 cases.

3.2 Controlling signal response of the
frontal cortical neural activity with the
DG-RRO method

We evaluated the sensitivity of the DG-RROmethod according

to feedback strength K under chaotic resonance and compared

it with the conventional RRO method in noise-free conditions

(Da = 0, Dc = 0). Figure 7 illustrates the correlation coefficient

argmaxτCorr(τ ) according to feedback strength K and input signal

strength As (frequency � = 0.005 is set). When the periodic signal

strength is large (As ≈ 1), this periodic signal S(n) dominates and

leads to high correlation regardless of the influence of the feedback

signal. However, when the input strength As values are smaller, the

high correlation only occurs near the attractor-merging bifurcation.
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FIGURE 8

The correlation coe�cient argmaxτCorr(τ ) between periodic input signal S(n) and binarised x(n) of the DG-RRO method in comparison with the RRO

method according to the periodic input strength As at the attractor-merging bifurcation. (A) When C = 1.0 and (B) C = 0.9 in noise-free conditions

(Da = 0, Dc = 0). The solid and dashed lines indicate the mean and standard deviation of argmaxτCorr(τ ) among 10 trials with � = 0.005,

respectively. The correlation coe�cient argmaxτCorr(τ ), when applying the DG-RRO method, exhibited superiority over the RRO method in the

input signal strength 10−4 ≤ As ≤ 5× 10−2 when C = 1.0 and 10−4 ≤ As ≤ ×10−2 when C = 0.9. Some specific values of As (corresponding to blue

dotted lines) have been chosen to quantify whether the DG-RRO method is superior to the RRO method (t− values > 0) and marked with red

asterisks if the statistical criteria of (t-test) (p-values of <0.05).

Accordingly, around this value of feedback strength, CCI reaches

higher synchronization with the input signals S(n) than other

feedback signal strength ranges, i.e., higher sensitivity is achieved.

In particular, regarding the comparison between the DG-RRO and

RROmethods, Figure 8 shows the argmaxτCorr(τ ) at the attractor-

merging bifurcation according to the feedback signal strength K

and input signal strength As in noise-free conditions (Da = 0,

Dc = 0) (frequency � = 0.005 is set). As observed in Figure 8, the

argmaxτCorr(τ ) decreases with weaker input strength. However,

within 10−4 ≤ As ≤ 5×10−2 whenC = 1.0 and 10−4 ≤ As ≤ 10−2

when C = 0.9, the argmaxτCorr(τ ) of the DG-RRO method

is superior to that in the RRO method. Moreover, the DG-RRO

method maintains a high correlation (argmaxτCorr(τ ) > 0.7) for

2 × 10−3 . As ≤ 10−1 when C = 1.0 and for 10−3 . As ≤ 10−1

when C = 0.9. In comparison, the high correlation of the RRO

method is only maintained for 4 × 10−2 . As ≤ 10−1 and

2× 10−2 . As ≤ 10−1 in both cases, respectively.

To investigate the frequency � dependence in noise-free

conditions (Da = 0, Dc = 0), Figure 9 shows argmaxτCorr(τ )

of both C = 1.0 and C = 0.9 cases at the attractor-merging

bifurcation (strength of sinusoidal input signal As = 0.01 is

set). In the frequency range 10−3 ≤ � ≤ 10−1, both methods

show that when the frequency � increases, the argmaxτCorr(τ )

decreases. Although argmaxτCorr(τ ) decreases, the DG-RRO

method maintains a high correlation (argmaxτCorr(τ ) > 0.7) in

the frequency range 10−3 . � . 9 × 10−3 when C = 1.0 and

10−3 . � . 8 × 10−3 when C = 0.9, while the high correlation

of the RRO method is maintained in the frequency range 10−3 .

� . 2× 10−3 and 10−3 . � . 7× 10−3 in both cases.

3.3 Signal response in the presence of
noises

This section reports the investigation results of the effects of

noise under chaotic resonance against the RRO and DG-RRO

methods. We compared the sensitivity between those methods

according to the additive (10−4 ≤ Da ≤ 10−1,Dc = 0)

and contaminant (Da = 0, 10−4 ≤ Dc ≤ 10−1) noise

strength at the attractor-merging bifurcation with the determined

external input signal (As = 0.01,� = 0.005). Figures 10, 11

illustrate the argmaxτCorr(τ ) of the RRO and DG-RRO methods

in the presence of additive and contaminant noise, respectively.

Within the additive noise strength 10−4 ≤ Da ≤ 10−1, the

argmaxτCorr(τ ) of the DG-RRO method is higher than that for

the RROmethod in the additive noise strength range 10−4 . Da .

9 × 10−2 when C = 1.0 and 10−4 . Da . 6 × 10−2 when

C = 0.9. Furthermore, in both cases, the argmaxτCorr(τ ) showed a

monotonically decreased tendency. However, in this additive noise

strength range, the high correlation (argmaxτCorr(τ ) > 0.7) of

the DG-RRO method was sustained in the wider additive noise
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FIGURE 9

The correlation coe�cient argmaxτCorr(τ ) between periodic input signal S(n) and binarised of x(n) of the DG-RRO method in comparison with the

RRO method according to the input frequency � at the attractor-merging bifurcation. (A) When C = 1.0 and (B) C = 0.9 in noise-free conditions

(Da = 0, Dc = 0). The solid and dashed lines indicate the mean and standard deviation of argmaxτCorr(τ ) among 10 trials with As = 0.01, respectively.

The correlation coe�cient argmaxτCorr(τ ), when applying the DG-RRO method, exhibited superiority over the RRO method in the input frequency

range 10−4 ≤ � ≤ 10−1 in both the cases. Some specific values of � (corresponding to blue dotted lines) have been chosen to quantify whether the

DG-RRO method is superior to the RRO method (t− values > 0) and marked with red asterisks if the statistical criteria of t− test p− values < 0.05.

The t− values are almost the same as shown in the bottom part t− values = 17.0466 for � = 0.001 and t− values = 17.6475 for � = 0.1, i.e., the

standard deviation of the correlation for � = 0.1 becomes larger even though the di�erence in the mean value of correlation becomes larger.

strength range 10−4 . Da . 2.5 × 10−3 in both cases, while the

range with the high correlation of the RRO method was sustained

for 10−4 . Da . 9 × 10−4 when C = 1.0 and when 10−4 .

Da . 2 × 10−3 when C = 0.9. Furthermore, we investigated the

contaminant noise dependency of the RRO and DG-RRO methods

(Figure 11). Within the contaminant noise strength range 10−4 ≤
Dc ≤ 10−1, as well as additive noise cases, the argmaxτCorr(τ )

showed a monotonically decreased tendency in both cases, but the

DG-RRO method maintained a higher correlation than the RRO

method for the whole range of Dc. Moreover, the high correlation

(argmaxτCorr(τ ) > 0.7) of the DG-RRO method was sustained in

the wider contaminant noise strength range 10−4 . Dc . 4×10−2

whenC = 1.0 and 10−4 . Dc . 7×10−2 whenC = 0.9, while with

the range with the high correlation of the RRO method which was

sustained in the contaminant noise strength range 10−4 . Dc .

10−3 when C = 1.0 and 10−4 . Dc . 3 × 10−2 when C = 0.9.

In summary, compared to the conventional RRO method, the DG-

RROmethod can sustain high correlation (argmaxτCorr(τ ) > 0.7)

in a wider range of noise and maintain a higher correlation in a

certain range.

4 Discussion

In this study, we compared the DG-RRO and the conventional

RRO feedback signal to induce CCI synchronization in a

mathematical neural system model which includes excitatory and

inhibitory neuron populations in the frontal and sensory cortices as

typical neural systems with CCI behavior. The DG-RRO feedback

method shifts neural activities toward periodic behavior through

chaotic resonance. Moreover, this method has higher sensitivity

than the conventional RRO method, especially at the attractor-

merging bifurcation. Furthermore, under specific ranges of input

frequency and strength of additive or contaminant noise, the DG-

RRO method sustained a high correlation (argmaxτCorr(τ ) >

0.7) in a broader range than the RRO method. Moreover, we

determined the range of input frequency and strength of noise

where argmaxτ Corr(τ ) of the DG-RRO method is superior to

that of the conventional RROmethod. Our results demonstrate the

potential of the DG-RRO method when applied to neural systems,

showing that the DG-RRO method maintained its advantage even

in the presence of noise in comparison with the conventional RRO

method.

First, we investigated the underlying reason behind the

significantly small perturbation 2 caused by the DG-RRO method

to achieve attractor-merging bifurcation compared with the

conventional RRO method. In the conventional RRO method,

the feedback signal has a wide response range of x. However,

in the DG-RRO method, by applying double Gaussian functions

at approximately local extreme (xmin and xmax), the DG-RRO

feedback signal achieved higher local specification around local

extreme of the map function (see Figure 5) [36]. Therefore, the
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FIGURE 10

The correlation coe�cient argmaxτCorr(τ ) between periodic input signal S(n) and binarised x(n) of the DG-RRO method in comparison with the RRO

method according to additive noise strength Da at the attractor-merging bifurcation. (A) When C = 1.0 and (B) C = 0.9. The solid and dashed lines

indicate the mean and standard deviation of argmaxτCorr(τ ) among 10 trials (As = 0.01, � = 0.005), respectively. When the DG-RRO method was

applied, the feedback signal exhibited a superior correlation coe�cient argmaxτCorr(τ ) compared with the RRO feedback signal for Da . 9× 10−2

when C = 1.0 and for Da . 6× 10−2 when C = 0.9. Some specific values of Da (corresponding to the blue dotted lines) have been chosen to quantify

whether the DG-RRO method is superior to the RRO method (t− values > 0) and marked with red asterisks if the statistical criteria of t− test

p− values < 0.05.

FIGURE 11

Correlation coe�cient argmaxτCorr(τ ) between periodic input signal S(n) and binarised of x(n) of the DG-RRO method in comparison with the RRO

method according to contaminant noise strength Dc at the attractor-merging bifurcation. (A) When C = 1.0 and (B) C = 0.9. The solid and dashed

lines indicate the mean and standard deviation of argmaxτCorr(τ ) among 10 trials (As = 0.01, � = 0.005), respectively. When the DG-RRO method

was applied, the feedback signal exhibited a superior correlation coe�cient argmaxτCorr(τ ) compared with the RRO feedback signal when

10−4 ≤ Dc ≤ 10−1 in both cases. Some specific values of Dc (corresponding to the blue dotted lines) have been chosen to quantify whether the

DG-RRO method is superior to the RRO method (t− values > 0) and marked with red asterisks if the statistical criteria of t− test p− values of < 0.05.
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FIGURE 12

RRO feedback signal Ku(x) and DG-RRO feedback signal Kg(x) in the

model with (upper part) C = 1.0,A = 12 and (lower part)

C = 0.9,A = 13 which correspond to the attractor bifurcation. The

local minimum (xmin)/maximum (xmax) points for map function F(x)

given by Equation (2). Feedback signal strength K is fixed in which

attractor-merging bifurcation is achieved for each case (upper part)

K = 0.6796 for RRO, K = 0.1261 for DG-RRO and (lower part)

K = 0.2840 for RRO, K = 0.0575 for DG-RRO. Because the DG-RRO

method has higher local specification around local

minimum/maximum points than that of the RRO method, the

temporal average value of the DG-RRO feedback signal Kg(x) is

smaller than those of the RRO feedback signal Ku(x).

feedback signals of the DG-RRO method are considerably smaller

than those of the conventional RRO method, except around

the local extremes. Accordingly, the amount of perturbation

through the time evolution of the DG-RRO feedback signal

is much smaller than that of the conventional RRO feedback

signal.

Second, we consider the advantages of the DG-RRO method,

which has higher sensitivity compared with the RRO method,

especially at the attractor-merging bifurcation points. The DG-

RRO method can generate CCI with a much smaller perturbation

of the feedback signal compared with that of the conventional

RRO, as shown in Figure 12, for the DG-RRO feedback signal

Kg(x) and the RRO feedback signal Ku(x) at around attractor-

merging bifurcation. In the presence of noises, the CCI frequency

increases and synchronization is diminished [37, 42]. With such a

weaker feedback signal, noise influence might increase. However,

the DG-RRO method exhibited the same level of synchronization

in comparison with the RRO method. To investigate the causes,

Figure 13 illustrates the difference between the conventional

RRO and DG-RRO feedback signals. The difference between the

range of local minimum (xmin) and maximum (xmax) points

for map function F(x) is relatively small in comparison with

the other regions. That is, the stronger local specification of

FIGURE 13

Di�erence between RRO feedback signal Ku(x) and DG-RRO

feedback signal Kg(x) in the model with (upper part) C = 1.0,A = 12

and (lower part) C = 0.9,A = 13 corresponding to the parameters

set in Figure 12. Feedback signal strength K is fixed in which

attractor-merging bifurcation is achieved for each case (upper part)

K = 0.6796 for RRO, K = 0.1261 for DG-RRO and (lower part)

K = 0.2840 for RRO, K = 0.0575 for DG-RRO.

the DG-RRO method contributed to maintaining the component

of the signal to control attractor-merging bifurcation. By this

mechanism, the sensitivity of the DG-RRO feedback signal is still

maintained robustness as the RRO feedback signal in the presence

of noise. Consequently, the sensitivity of the DG-RRO method

is superior to that of the conventional RRO method within a

specific range of input frequencies or in the presence of noise of

particular strength.

The limitations of this study must be considered. This study

used a simple mathematics neural model system, including frontal

and sensory cortices, to reproduce neural activity. However, real

neural activity exhibits more complicated dynamic characteristics.

Implementing such strategies in practice presents numerous

challenges from a technical standpoint. Directly applying external

signals to specific regions of the human brain, particularly

the frontal cortex, involves intricate procedures. Therefore, the

effectiveness of the DG-RRO method in more physiologically

realistic neural systems should be validated in future studies.

In previous studies, it has been reported that the RRO method

can transit neural activity to a periodic state with a circadian

period in a mathematics model, which reproduced the neural

activities of patients with BD by managing the light stimulus

of the chronotherapy method [18, 34]. Based on the result of

this study, the DG-RRO method can reduce the intervention

to the mathematics model of neural network to extremely low

levels because the amount of required perturbation is weaker than

that of the conventional RRO method. Despite many validations

and considerable conditions before applying to practical neural
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networks, this property of the DG-RRO method can be considered

in reducing the side effects of over-intervention, such as light

therapy treatment for hyperactivity or hypomania [18, 34]. This

point must be studied in future studies.

In conclusion, this study illustrates the capability of the

DG-RRO method to effectively control chaotic resonance

with extremely weak feedback signals in the mathematics

excitatory–inhibitory neural systems exhibiting CCI behavior.

Our findings confirm that the DG-RRO method induces minor

perturbations while maintaining higher sensitivity compared

with the conventional RRO method. Notably, the heightened

sensitivity of the DG-RRO method persists even in the presence

of noise within a specific range. Despite the inherent limitations

of our model-based approach, these results underscore the

potential application of the DG-RRO approach in neural systems.

Further research for validation with more practical models of

this methodology offers new avenues for addressing complex

neurological disorders.
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