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Optimal control strategies for
HIV and COVID-19 co-infection:
a cost-e�ectiveness analysis

Tesfaneh Debele Batu* and Legesse Lemecha Obsu

Department of Applied Mathematics, Adama Science and Technology University, Adama, Ethiopia

In the face of ongoing challenges posed by the COVID-19 and the persistent

threat of human immunodeficiency virus (HIV), the emergence of co-infections

such as COVID-19 andHIV has heightened complexities in diseasemanagement.

This study aims to identify e�ective control strategies to mitigate COVID-19 and

HIV co-infection, which aggravates the existing challenges posed by these two

diseases. To achieve this, we formulated a co-infection model that describes the

transmission dynamics of COVID-19 and HIV. Under certain circumstances, we

established that HIV infectionmay facilitate COVID-19 transmission, highlighting

the need to identify and implement e�ective interventions to mitigate COVID-19

and HIV co-infection. As a result, we incorporated four time-dependent control

strategies in the co-infection model: HIV prevention, HIV treatment, COVID-19

vaccination, and COVID-19 treatment. Numerical simulations were conducted

to support and clarify the analytical results and to show how preventative e�orts

a�ect the co-infected population. Simulations confirm that applying any of

the study’s strategies will reduce the number of co-infection cases. However,

the implementation of these strategies is constrained by limited resources.

Therefore, a comprehensive cost-e�ectiveness analysis was conducted to

identify the most economically viable strategy. The analysis concludes that

implementing a combined approach of vaccination and treatment for COVID-19

emerges as the most cost-e�ective measure for preventing the spread of

COVID-19 and HIV. These findings provide crucial guidance for decision-makers

in adopting precise preventive strategies, ultimately aiming to reduce mortality

rates among HIV patients.

KEYWORDS

optimal control, HIV, COVID-19, bifurcation, co-infection, cost-e�ectiveness analysis,

stability analysis, mathematical model

1 Introduction

The COVID-19 pandemic is the latest phenomenon that has profoundly impacted the

world’s social, economic, and political activities. Although we are now in the endemic

phase, the effects of the disease are still ongoing. As of 12 May 2024, there have been ∼7

million deaths out of 775,431,269 million infected people, and there are still millions of

active COVID-19 cases [1]. Furthermore, an estimated 39 million individuals worldwide

were predicted to have lived with human immunodeficiency virus (HIV)/acquired immune

deficiency syndrome (AIDS) in 2022, and 1.3 million new cases were reported [2]. This

situation then leads us to a co-infection of COVID-19 and HIV. The presence of HIV

infection has been established as a variable that plays a role in the development of

severe and critical conditions of COVID-19, as well as in the increased rates of mortality

[3, 4]. HIV targets CD4+ cells, which play a crucial role in defending the body against

infections. This leaves the host more susceptible to other diseases, including COVID-19.

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2024.1439284
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2024.1439284&domain=pdf&date_stamp=2024-08-22
mailto:tesfishdb1@gmail.com
https://doi.org/10.3389/fams.2024.1439284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2024.1439284/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Batu and Obsu 10.3389/fams.2024.1439284

The persistence of COVID-19 poses an additional challenge,

especially for patients with low CD4+ counts. Studies are showing

that such eye patients are more likely to suffer serious health

problems from COVID-19 [5–8].

The human immunodeficiency virus (HIV) remains an

incurable disease, and antiretroviral therapy (ART) is used as a

primary method to reduce the HIV viral load within the body

and halt viral transmission. For the past few decades, ART has

been crucial in averting the multidimensional threat posed by

HIV. According to estimates from the World Health Organization

(WHO), 76% of people with HIV infections were receiving

antiretroviral therapy in 2022 [9]. Information about the treatment

and outcome of SARS-CoV-2, the virus that causes COVID-19, in

people living with HIV (PLHIV) is currently limited [10]. Based

on global data indicating that people living with HIV have a 38%

higher risk of severe or fatal outcomes from COVID-19 compared

to people without HIV infection [11], the WHO underlines the

importance of prioritizing people with HIV when administering

the COVID-19 vaccine along with anti-SARS-CoV-2 treatments

and antiretroviral therapies (ART), regardless of their CD4 count

[8]. It is crucial that this point be taken into account, especially

in countries with high HIV prevalence rates [6]. However, most

of the countries with high HIV prevalence are in Sub-Saharan

Africa, where health facilities face significant resource constraints

[12]. Therefore, it is essential to find a resource-constrained,

efficient way to prevent HIV and COVID-19 co-infection. To

identify effective strategies, theoretical, quantitative, and simulation

analyses are necessary, which is closely related to a mathematical

modeling study.

Mathematical modeling studies have been conducted to

understand the co-infection dynamics of COVID-19 and HIV [13–

16]. These studies indicate useful strategies for the management of

HIV and COVID-19 co-infection. However, there are limitations

in considering the potential impact of people under ART programs

on co-infection dynamics, which comprise the largest number

of HIV patients, and in identifying the cost-effectiveness of

intervention strategies. It is important to note that even though

certain strategies can be effective, their implementation can be

hindered by limited resources. Therefore, it is crucial to identify

cost-effective strategies that can be implemented successfully. This

study intends to determine the most cost-effective strategy to

prevent COVID-19 and HIV co-infection. For this reason, we

developed a mathematical model that considers nine disjoint

compartments based on the existing behavior and status of HIV-

and COVID-19-infected populations. In particular, the model

considers HIV patients who are at risk of mortality due to the

co-infection burden [8, 17], to explore interventions that are

effective in reducing the maximum loss of life. The transmission

dynamics of the co-infection model without intervention strategies

were investigated using standard analysis methods. The co-

infection model is extended into an optimal control problem

by taking vaccination, prevention, and treatment as time-

dependent control strategies. A detailed analysis was carried out to

determine the most cost-effective and efficient control strategy for

these measures.

The remaining part of this study is organized as follows:

Section 2 outlines the formulation of the co-infection model.

The Model analysis is provided in Section 3. Extension of

the co-infection model to optimal control is held in Section

4. Numerical simulations are used in Section 5 to show

the consequences of control schemes and validate analytical

outcomes. Section 6 provides analyses and discussion on the cost-

effectiveness of intervention strategies. Conclusions aremade in the

final section.

2 Model formulation

The HIV-COVID-19 co-infection model is structured by

categorizing the total population into nine mutually exclusive

compartments: susceptible (S), HIV-positive (H), HIV-positive

individuals undergoing treatment (Ht), COVID-19-vaccinated

(Vc), COVID-19-infected (C), individuals with both COVID-19

and HIV infections (Hc), individuals receiving HIV treatment who

contract COVID-19 (Ht
c), recovered from COVID-19 (Cr), and

individuals at risk of death due to co-infection (Dhc).

Recruitment, denoted by the rate ψ , and immunity loss

to the COVID-19 virus, with a rate of ηc, contribute to an

increase in the susceptible population. Individuals susceptible to

both COVID-19 and HIV can contract these diseases at rates

represented by χC = πc
C+Hc+Ht

c
N−Dhc

and χH = πh
H+Ht+Hc+Ht

c
N−Dhc

,

respectively, from those actively infected with COVID-19 and HIV.

Here, standard incidence functions are used to produce a more

precise representation of frequency-dependent transmissions, such

as HIV/AIDS, because the average number of sexual contacts

per individual is relatively constant [18–20]. Furthermore, it is

understood that the spread of COVID-19 might reach a threshold

where adding more susceptible individuals does not significantly

increase the rate of new infections due to variables such as

self-protective measures [21] and immunization [22, 23]. This

approach acknowledges that the number of contacts an individual

has does not increase proportionally with population size,

preventing overestimation of transmission in large populations

[18]. Presumably, individuals at risk of co-infection-related

death (Dhc) receive specialized care and are excluded from the

transmission of both diseases. The parameters πh and πc denote

FIGURE 1

HIV and COVID-19 co-infection model flow diagram.
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transmission probabilities for HIV and COVID-19 infections,

respectively. Individuals who receive the COVID-19 vaccine

transferred to the vaccinated class at a rate of ϕc. Although COVID-

19 vaccines have proven to be safe, effective, and life-saving, they do

not provide full protection to everyone who is vaccinated [24], and

there is still a chance of becoming infected with COVID-19 even

after vaccination [25, 26]. As a result, it is assumed that COVID-

19 infection occurs at a reduced rate τvχC among those who are

vaccinated, where τv signifies vaccine inefficacy: τv = 0 implies

a perfect vaccine, rendering vaccinated individuals immune, while

τv = 1 indicates that vaccinated individuals face the same risk as

the unvaccinated. On the other hand, individuals in the H and Ht

classes, due to compromised immunity, experience increased rates

of ǫ1χC and ǫ2χC , for contracting COVID-19 [4, 27], where ǫ1 and

ǫ2 are modification parameters. The Ht class expands at a rate of

ωh as individuals in the H class undergo treatment. Both H and Ht

classes may experience HIV-related mortality at a rate of dh. The

rate of recovery fromCOVID-19 differs for individuals in theC,Hc,

and Ht
c classes, denoted by θc, ξhc, and φtc, respectively. Individuals

in the C class face mortality at a rate of dc, while those in theHc and

Ht
c classes, becoming susceptible to death [27], are added to Dhc at

rates of δhc and δtc, respectively, before succumbing to the burden of

co-infection at a rate of dhc. Figure 1 illustrates the dynamic changes

within these compartments.

Given the aforementioned assumptions and descriptions, we

hereby formulate the following systems of non-linear differential

equations:





S′ = ψ −
(
β1 + χC + χH

)
S+ ηcCr

V ′
c = ϕcS− (τvχC + χH + d)Vc

C′ = χCS+ τvχCVc − (β2 + χH )C

Cr ′ = θcC − β3Cr

H′ = (S+ Vc)χH + ξhcHc − (β4 + ǫ1χC )H

Ht ′ = ωhH + φtcHt
c − (β5 + ǫ2χC )H

t

H′
c = ǫ1χCH + χHC − β6Hc

Ht
c
′ = ǫ2χCH

t + αhcHc − β7Ht
c

D′
hc

= δhcHc + δtcHt
c − β8Dhc

(1)

where β1 = ϕc+d, β2 = dc+d+θc, β3 = d+ηc, β4 = ωh+d+dh,

β5 = dh + d, β6 = d + αhc + ξhc + δhc, β7 = d + φtc + δtc, and

β8 = dhc + d.

The initial conditions of the equations of the model (1) are as

follows:





S(0) = S0, Vc(0) = Vc0, C(0) = C0, C
r(0) = Cr

0, H(0) = H0,

Ht(0) = Ht
0,Hc(0) = Hc0,

Ht
c(0) = Ht

c0, Dhc(0) = Dhc0.

(2)

3 Model analysis

This section outlines the qualitative properties of Equation 1.

This includes the existence and uniqueness of positive and bounded

solutions and the stability of equilibria.

3.1 Invariant set, positivity, and
boundedness of solutions

The positivity and boundedness of solutions are established in

the following theorem.

Theorem 1. Assuming that all initial conditions in Equation 2 are

positive, the solutions of the system (1) remain positive for all t > 0.

Furthermore, the set

ϒ = {(S,Vc,C,C
r ,H,Ht ,Hc,H

t
c,Dhc) ∈ R

9
: 0 ≤ N ≤ ψ/d}

is a positively invariant region and serves as an attracting set for

system (1).

Proof: It follows from the first equation of system (1) that,
dS
dt S=0

= ψ + ηcC
r > 0. We can see that S(t) remains

positive ∀t > 0, which implies, the solution cannot exit ϒ by

crossing the boundary S = 0. Similarly, it is easy to show that

Vc,C,C
r ,H,Ht ,Hc,H

t
c,Dhc > 0, for all t > 0. Furthermore, N(t)

satisfy dN
dt

≤ ψ − dN. Thus, we can deduce that 0 ≤ N ≤ ψ/d.

Hence, all solutions inR
9
+ are attracted to the regionϒ . By Lemma

1 from [28], we can deduce that ϒ is an invariant and positively

defined set.
Theorem 1 confirms the epidemiological soundness of model

(1), establishing the positivity and boundedness of all state

variables. In other words, no solution path can extend beyond the

boundaries of ϒ , rendering it adequate to focus on the dynamics

of system (1) within the confines of ϒ . As the right-hand side of

Equation 1 is locally Lipschitz, the existence of solutions follows

from the Picard-Lindelöf Theorem [29]. Therefore, we establish the

following theorem.

Theorem 2. Solutions to system (1) exist and are unique for all

t ≥ 0.

From Theorem 1 and Theorem 2, we can deduce that model (1)

is epidemiologically meaningful and mathematically well-posed.

3.2 HIV-only sub-model

Setting the state variables related to COVID-19 and co-

infection equal to zero, C = Cr = Hc = Ht
c = Dhc = 0, gives

the following HIV-only sub-model:





S′ = ψ −
(
β1 + χH

)
S

V ′
c = ϕcS− (χH + d)Vc

H′ = (S+ Vc)χH − β4H
Ht ′ = ωhH − β5Ht

(3)

where χH = πh
H+Ht

N .

To identify equilibrium points, HIV-free and endemic, we set

the right-hand side of Equation 3 equal to 0. Thus, HIV-free

equilibrium(E0
h
), obtained when H = Ht = 0, is given by E

0
h
=(

ψ
β1
, ϕcψ
dβ1

, 0, 0
)
.

The next-generation matrix result in [30] is employed to find

the basic reproduction numbers of the sub- and co-infection
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models. Thus, the reproduction number(Rh
0) of the HIV-only

sub-model (3) is determined as

R
h
0 = πh

β5
(4)

Theorem 3. E
0
h
, wheneverRh

0 < 1, is locally asymptotically stable.

Proof: The Jacobian of Equation 3 becomes




−β1 0 − dπh
β1

− dπh
β1

ϕc −d − ϕcπh
β1

− ϕcπh
β1

0 0 πh − β4 πh

0 0 ωh −β5




It is evident that −d,−β1, and −β6 are all negative. Two other

eigenvalues are found in the matrix

(
πh − β4 πh

ωh −β5

)

Accordingly, the characteristic polynomial becomes P(λ) =
λ2 + (β4 + β5 − πh)λ + β4β5(1 − R

h
0). The local stability

of E
0
h

is determined by the sign of the roots of P(λ) = 0.

When R
h
0 < 1, the Routh-Hurwitz criterion leads us to the

conclusion that all roots of P(λ) = 0 are negative, establishing

the local asymptotic stability of E0
h
. Conversely, if Rh

0 > 1, the

disease-free equilibrium becomes unstable due to the presence of a

positive eigenvalue.

The epidemiological interpretation of the local stability of a

disease-free equilibrium suggests that an epidemic is unlikely to

occur, and there exists a potential for eliminating the disease from

the population, especially when the flow of infectious individuals

is relatively small. Specifically, Theorem 3 implies the feasibility of

controlling HIV transmission by reducingRh
0 below one.

If Rh
0 > 1, we obtain the endemic equilibrium point Eh =

(S∗,V∗
c ,H

∗,Ht∗), where

S∗ = ψ

β1 + β5(RH
0 − 1)

, V∗ =

ϕcψ[
β1 + β5(Rh

0 − 1)
] [

d + β5(Rh
0 − 1)

] ,

Ht∗ = ωhψ(R
h
0 − 1)

β4

[
d + β5(Rh

0 − 1)
] and H∗ = β5ψ(R

h
0 − 1)

β4

[
d + β5(Rh

0 − 1)
] .

Consequently, we can say that HIV persists in the population for

R
h
0 > 1. However, forRH

0 < 1, we can see thatH∗,Ht∗ < 0, which

is biologicallymeaningless. Therefore, the theorem presented below

has been established.

Theorem 4. Model (3), whenever Rh
0 > 1, has a unique endemic

equilibrium.

3.3 COVID-19 only sub-model

Setting H = Ht = Hc = Ht
c = Dhc = 0 yields the following

sub-model of COVID-19:





S′ = ψ −
(
β1 + χC

)
S+ ηcCr

V ′
c = ϕcS− (τvχC + d)Vc

C′ = χCS+ τvχCVc − β2C
Cr ′ = θcC − β3Cr

(5)

where χC = πc
C
N .

The COVID-19-free equilibrium(E0
c ) is E

0
c =

(
ψ
β1
, ϕcψ
dβ1

, 0, 0
)
,

and the COVID-19 sub-model’s reproduction number(Rc
0) is

determined as R
c
0 = (d+ϕcτv)πc

β1β2
. In simpler terms, the

epidemiological interpretation of the first and second terms ofRc
0 is

that they represent the number of secondary infections that can be

produced by one COVID-19-infected individual in susceptible and

vaccinated class, respectively. Without vaccination, when ϕc, τv =
0, Rc

0 is given by R
c
0 = R̂

c
0 = πc

β2
. and R

c
0 can be expressed

as R
c
0 = (d+ϕcτv)Rc

0
∗

β1
. This implies that the critical vaccination

proportion that will lead to COVID-19 eradication is
d(1−R

c
0
∗)

1−τvRc
0
∗ ,

which can be obtained by lettingRc
0 = 1 and solving for ϕc.

Theorem 5. E0
c is locally asymptotically stable, wheneverRc

0 < 1.

Proof: The Jacobian of system (5) at E c
0 is




−β1 0 − πcd
ϕc+d

ηc

ϕc −d −πcϕcτv
ϕc+d

0

0 0 πc(ϕcτv+d)
ϕc+d

− β2 0

0 0 θc −β3


 . (6)

We can see that, whenever R
c
0 < 1, the eigenvalues of

matrix (6) are all negative. This means that when R
c
0 < 1, an

outbreak cannot be caused by COVID-19-infected individuals and

the disease can be eliminated.

The endemic equilibrium point Ec = (S∗,V∗
c ,C

∗,Cr∗) is

computed as follows:

S∗ = β2β3ψ(τvχC + d)

τv [β2β3 − ηcθc]χ2
C
+
[
(τvϕc + d) (β2β3 − ηcθc)+ τvβ2β3d

]
χC + β1β2β3d

V∗
c = ϕcβ2β3ψ

τv [β2β3 − ηcθc]χ2
C
+
[
(τvϕc + d) (β2β3 − ηcθc)+ τvβ2β3d

]
χC + β1β2β3d

C∗ = β3ψχC (τvχC + ϕcτv + d)

τv [β2β3 − ηcθc]χ2
C
+
[
(τvϕc + d) (β2β3 − ηcθc)+ τvβ2β3d

]
χC + β1β2β3d

Cr∗ = ψθcχC (τvχC + ϕcτv + d)

τv [β2β3 − ηcθc]χ2
C
+
[
(τvϕc + d) (β2β3 − ηcθc)+ τvβ2β3d

]
χC + β1β2β3d

(7)

Substituting S∗, V∗
c , C

∗, and Cr∗ of Equation 7 into χ∗
C

=
πcC

∗
S∗+V∗

c +C∗+Cr∗ yields χ∗
C
(q2χ

∗2
C

+ q1χ
∗
C
+ q0) = 0, where q0 =

β1β2β3(1−R
c
0), q1 = τvβ2β3 + (d+ τvϕc)(β3 + θc)− πcτvβ3, and

q2 = τv(β3+θc). Forχ∗
C
= 0, we obtain the disease-free equilibrium

E
c
0 . Thus, the endemic equilibrium satisfies the following equation:

q2χ
∗2
C

+ q1χ
∗
C
+ q0 = 0. (8)

The solution of χ∗
C

is given by χ∗
C

= −q1±
√

q21−4q0q2
2q2

. To

assess the potential for an endemic equilibrium in Equation 5, we
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explore two distinct scenarios, emphasizing positive real solutions

while excluding the possibility of negative and complex solutions in

Equation 8. Consequently, we observe that Equation 8:

1. possesses a unique positive solution ifRc
0 > 1 and

2. exhibits two positive solutions ifRc
0 < 1 and q1 < 0.

The second condition indicates the backward bifurcation

phenomenon, the co-existence of a stable endemic and COVID-

19-free equilibria, even if Rc
0 < 1. For τv = 0 and/or ϕc = 0,

we obtain q1 > 0, implying that the imperfect vaccine can cause

the backward bifurcation.

3.4 The influence of HIV on the endemic
chapter of COVID-19

Even though the World Health Organization has classified

COVID-19 as a persistent health challenge, no longer deeming

it a public health emergency of international concern [31], it

continues to pose a significant threat to global health. This

section will focus on investigating the contribution of HIV to

the transmission of COVID-19. Hence, we write d in Equation

4 in terms of Rh
0 to express R

c
0 in terms of Rh

0 . That is, d =
πh−R

h
0dh

R
h
0

. Upon replacing this d value in R
c
0, we obtain R

c
0 =

R
h
0πc

(
πh+R

h
0(ϕcτv−dh)

)

(
πh+R

h
0(ϕc−dh)

)(
R

h
0(dc−dh+θc)+πh

) , which implies,

∂Rc
0

∂Rh
0

= (πh −R
h
0(dh + ϕcτv))2 + (1− τv)ϕcRh

0

2
(ϕcτv − θc − dc)(

πh +R
h
0

(
ϕc − dh

))
2
(
R

h
0

(
dc − dh + θc

)
+ πh

)
2

.

In the community, when
∂Rc

0

∂Rh
0

> 0 (that is when

(πh−R
h
0(dh+ϕcτv))2+(1−τv)τvϕc2Rh

0

2

ϕc(1−τv)(θc+dc)R
h
0

2 > 1), there is a corresponding rise

in COVID cases as the number of HIV cases increases. The positive

correlation between the two implies that targeted interventions

and health campaigns within communities where both HIV and

COVID-19 are prevalent are necessary to combat the transmission

of these infections.

3.5 Co-infection model analysis

The disease-free equilibrium, E0, is given by E0 =(
ψ
β1
, ϕcψ
β1d

, 0, 0, 0, 0, 0, 0, 0, 0, 0
)
. The reproduction number

(R0) for the COVID-19 and HIV co-infection model is obtained

as R0 = max{Rc
0, R

h
0}. Furthermore, the subsequent theorem is

established by employing Theorem 2 introduced in [30].

Theorem 6. E0 is unstable if R0 > 1 and locally asymptotically

stable ifR0 < 1.

To assess the global stability of E0, we employ the method
described in [32]. By adopting the notation from [32] and

rephrasing system (1) as Equation (3.1) of [32], we obtain

Ĝ(X, I) =




πc(C +Hc +Ht
c)
(

S(0)
N(0)

− S
N + τv

(
Vc(0)
N(0)

− Vc
N

))
+ χHC

πh(H +Ht +Hc +Ht
c)
(
1− S+Vc+Cr

N

)
+ χCH

χCH
t

−χCH − χHC
−χCH

t

0




where I = (C,H,Ht ,Hc,H
t
c,Dhc) and X = (S,Vc,C

r) denote

infected and uninfected population, respectively.

The fourth and fifth rows of Ĝ(X, I) are less than zero. So, the

assumption H2 in [32] is not satisfied. This suggests that E0 might

not be globally asymptotically stable. That is, system (1) exhibits

backward bifurcation, as proved by the following theorem.

Theorem 7. System (1) undergoes a backward bifurcation atR0 =
1 when

τv(1− τv)ϕcβ2 − (τvϕc + d)2
(
1+ θc

β3

)
> 0.

Proof: The central manifold approach introduced in [33] is used

to show existence of backward bifurcation in system (1). Thus, the

following change of variables is introduced: z̃1 = S, z̃2 = Vc, z̃3 =
C, z̃4 = Cr , z̃5 = H, z̃6 = Ht , z̃7 = Hc, z̃8 = Ht

c, and z̃9 = Dhc. So

that, N =
∑9

j=1 z̃j, χC = πh
z̃3+z̃7+z̃8
N−z̃9

, and χH = πh
z̃5+z̃6+z̃7+z̃8

N−z̃9
.

Moreover,

z̃′ = p = (p1, p2, p3, p4, p5, p6, p7, p8, p9)
T (9)

is used to express system (1) with z̃ =
(z̃1, z̃2, z̃3, z̃4, z̃5, z̃6, z̃7, z̃8, z̃9)

T .

Suppose R0 = max{Rc
0, R

h
0} = R

c
0. After selecting πc as the

bifurcation parameter and setting R
c
0 = 1, we get πc = π∗

c =
β1β2
τvϕc+d

. At E0, the Jacobian of the system (9) for πc = π∗
c has a

simple zero eigenvalue, but the real part of all other eigenvalues are

negative. Consequently, we used the notion in [33] and performed

the following calculations.

For zero eigenvalue, we have the right eigenvector

(w1,w2,w3,w4,w5,w6,w7,w8,w9)
T and left eigenvector

(v1, v2, v3, v4, v5, v6, v7, v8, v9), where

w1 =
w3

β1

(
θcηc

β3
− π∗

c d

β1

)
,w2 =

ϕc

d

(
w1 −

τvπ
∗
c w3

β1

)
,

w3 > 0,w4 =
w3θc

β3
, v3 > 0,

v7 =
β2(αhc + β7)v3

β6β7
, v8 =

β2v3

β7
, and w5,w6,w7,w8,w9, v1, v2, v4,

v5, v6, v9 = 0.
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The values of a and b are calculated as follows:

a =
9∑

k,i,j=1

vkwiwj
∂2p̃k

∂ z̃i∂ z̃j
(E0,π∗

c )

=
9∑

i,j=1

[
v3wiwj

∂2p̃3

∂ z̃i∂ z̃j
(E0,π∗

c )+ v7wiwj
∂2p̃7

∂ z̃i∂ z̃j
(E0,π∗

c )+

v8wiwj
∂2p̃8

∂ z̃i∂ z̃j
(E0,π∗

c )

]

= 2dβ2v3w
2
3

ψ(τvϕc + d)2

(
τv(1− τv)ϕcβ2 − (τvϕc + d)2

(
1+ θc

β3

))

and

b =
9∑

k,j=1

vkwj
∂2p̃k

∂ z̃j∂πc
(E0,π∗

c )

=
9∑

i,j=1

[
v3wiwj

∂2p̃3

∂ z̃i∂πc
(E0,π∗

c )+ v7wiwj
∂2p̃7

∂ z̃i∂πc
(E0,π∗

c )+

v8wiwj
∂2p̃8

∂ z̃i∂πc
(E0,π∗

c )

]

=v3w3(τvϕc + d)

β1
> 0.

The coefficient b remains positive. Therefore, at R0 = 1,

backward bifurcation is exhibited, when a > 0. It is obvious that

a < 0 when the vaccination is perfect(τv = 0). Hence, as per

Theorem 4.1 in [33], system (1) will experience a trans-critical

bifurcation at R0. This indicates that the backward bifurcation

characteristic of the co-infection model (1) emerges from an

imperfect vaccine, a common cause for backward bifurcation [34].

4 Model extension to include optimal
control

This section introduces four Lebesgue measurable control

functions of time to model (1). The following is a description of

these control functions:

u1(t): steps made to promote and supply the COVID-19

vaccination,

u2(t): initiatives aimed at preventing the spread of HIV,

u3(t): measures taken to reduce the COVID-19 burden through

treatment and

u4(t): the use of antiretroviral therapy (ART) for HIV patients.

To make things simple, we will define x =(
S,Vc,C,C

r ,H,Ht ,Hc,H
t
c

)
and u = (u1, u2, u3, u4).

Upon including u1, u2, u3, and u4 into Equation 1, we derive the

optimal control model as follows:





S′ = ψ −
(
β1 + u1 + χC + (1− u2)χH

)
S+ ηcCr

V ′
c = (ϕc + u1)S− (τvχC + (1− u2)χH + d)Vc

C′ = χCS+ τvχCVc − (β2 + u3 + (1− u2)χH )C

Cr ′ = (u3 + θc)C − β3Cr





H′ = (1− u2)(S+ Vc)χH + (u3 + ξhc)Hc − (β4 + u4 + ǫ1χC )H

Ht ′ = (u4 + ωh)H + (u3 + φtc)Ht
c − (β5 + ǫ2χC )H

t

H′
c = ǫ1χCH + (1− u2)χHC − (β6 + u3 + u4)Hc

Ht
c
′ = ǫ2χCH

t + (u4 + αhc)Hc − (β7 + u3)H
t
c

D′
hc

= δhcHc + δtcHt
c − β8Dhc

(10)

subject to Equation 2.

The controls u1 and u3 in Equation 10 were added to the

existing parameters to increase the vaccination rates as well as the

rate of recovery of COVID-19, respectively. Moreover, adding u4
represents an increase in HIV treatment efforts. Furthermore, using

u2 as a multiplicative effect represents a proportional reduction in

HIV transmission rates. The aim of introducing u1, u2, u3, and

u4 in Equation 1 is to identify the most cost-effective intervention

strategy to reduce HIV and COVID-19 co-infection cases. To

accomplish this, the following objective function is established.

J(u) =
∫ tf

0
F(t, x, u)dt (11)

where F(t, x, u) = a1C + a2H + a3H
t + a4Hc + a5H

t
c + a6Dhc +

1
2

∑4
j=1 Bju

2
j and tf is the final time.

The state variables, along with the balancing weight parameters

a1, a2, a3, a4, a5, and a6 in F, are employed to minimize the number

of co-infected individuals over a specific duration. The non-

linear expression Biu
2
i , consistent with previous studies [35, 36],

represents the expenses associated with treatment and prevention,

reflecting the inherently non-linear nature of costs. Thus, our goal

is to determine the optimal control u∗ = (u∗1 , u
∗
2 , u

∗
3 , u

∗
4) so that,

given system (10) with initial conditions (2),

J(u∗1 , u
∗
2 , u

∗
3 , u

∗
4) = min

u∈U
J(u) (12)

where U = {u| 0 ≤ uj(t) ≤ 1, j = 1, 2, 3, 4, for 0 ≤ t ≤ tf } is the set
of admissible control functions.

Theorem 4.1 and Corollary 4.1 from [37] can be used to show

the existence of solutions to Equation 12. Following the existence

of the solutions, we employ Pontryagin’s minimum principle to

characterize the optimal controls.

4.1 Necessary conditions

To use Pontryagin’s minimum principle, first, we transform the

optimal control problem (12) into a point-wise Hamiltonian, G,

minimization problem:

G = F(t, x, u)+
9∑

j=1

lj f̃j(t, x, u)

where lj, also known as the adjoint variables, are piecewise

differentiable functions that need to be found, and f̃j represents the

right-hand side of the ith equation of system (10).

Theorem 8. Suppose x̂1 = S, x̂2 = Vc, x̂3 = C, x̂4 = Cr , x̂5 =
H, x̂6 = Ht , x̂7 = Hc, x̂8 = Ht

c and x̂9 = Dhc be optimal state
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solutions and u∗ be the corresponding control set for the optimal

control problem (10) and (11). Then, the adjoint variables satisfy

dli

dt
= − ∂G

∂ x̂j
(13)

with transversality conditions lj(tf ) = 0, for j = 1, 2, 3, ..., 9.

Furthermore, the control set u∗ is characterized by

u∗1 = max

{
0,min

{
1,

(
l1 − l2

)
S

B1

}}

u∗2 = max

{
0,min

{
1,
χH

((
l5 − l1

)
S+

(
l5 − l2

)
Vc

)
+ C

(
l7 − l3

)

B2

}}

u∗3 = max

{
0,min

{
1,

(
l7 − l5

)
Hc + C

(
l3 − l4

)
+
(
l8 − l6

)
Ht
c

B3

}}

u∗4 = min

{
0,min

{
1,

(
l7 − l8

)
Hc + H

(
l5 − l6

)

B4

}}

(14)

Proof: By differentiating the Hamiltonian with respect to the state

variables, we derive the following differential equation governing

the adjoint variables.

dl1

dt
=
((
χC + Q1

)
L1 + β1 + u1

)
l1 −

( (
τvχC + Q1

)
Vc

N
+ ϕc + u1

)
l2−

(
Q1C

N
+
(
1− Q3

N

)
χC

)
l3

−
(
ǫ1χCH

N
+ Q1

(
1− Q2

N

))
l5 −

ǫ2χCH
t l6

N
+
(
Q1C + ǫ1χCH

)
l7

N
+

l8ǫ2χCH
t

N

dl2

dt
=−

l1
(
χC + Q1

)
S

N
+ l2

(
L2
(
τvχC + Q1

)
+ d

)
− l3

(
χC

(
τv −

Q3

N

)
+ Q1C

N

)

−l5

(
ǫ1χCH

N
+ Q1

(
1− Q2

N

))
− l6ǫ2χCH

t

N
+ l7

(
Q1C

N
+ ǫ1χCH

N

)
+

l8ǫ2χCH
t

N

dl3

dt
=l1S

(
Q4 −

Q1

N

)
+ l2Vc

(
τvQ4 −

Q1

N

)
+ l3 (Q1L3 − Q3Q4 + β2 + u3)−

(u3 + θc) l4

+l5

(
Q1Q2

N
+ ǫ1Q4H

)
+ ǫ2Q4l6H

t − l7 (Q1L3 + ǫ1Q4H)−

ǫ2Q4l8H
t − a1

dl4

dt
=− l1

( (
χC + Q1

)
S

N
+ ηc

)
−

l2Vc

(
Q1 + τvχC

)

N
− l3

(
Q1C

N
− χCQ3

N

)
+ β3l4

−l5

(
ǫ1χCH

N
− Q1Q2

N

)
− l6ǫ2χCH

t

N
+ l7

(
Q1C

N
+ ǫ1χCH

N

)
+

l8ǫ2χCH
t

N

dl5

dt
=l1S

(
Q5 −

χC

N

)
+ l2Vc

(
Q5 −

τvχC

N

)
+ l3

(
χCQ3

N
+ Q5C

)

+l5
(
ǫ1χCL4 − Q2Q5 + β4 + u4

)
− l6

(
ǫ2χCH

t

N
+ ωh + u4

)
− l7

(
ǫ1χCL4 + Q5C

)
+ ǫ2χC l8H

t

N
− a2

dl6

dt
=l1S

(
Q5 −

χC

N

)
+ l2Vc

(
Q5 −

τvχC

N

)
+ l3

(
χCQ3

N
+ Q5C

)
− l5

(
ǫ1χCH

N
+ Q2Q5

)
+ l6

(
ǫ2χCL5 + β5

)
− l7

(
Q5C − χCH

N

)
− l8ǫ2χCL5 − a3

dl7

dt
= (Q4 + Q5) l1S+ l2Vc (τvQ4 + Q5)− l3 (Q3Q4 − Q5C)− l5

(−ǫ1Q4H + Q2Q5 + u3 + ξhc)
+ǫ2Q4l6H

t − l7 (Q5C + ǫ1Q4H − β6 − u3 − u4)− l8
(
ǫ2Q4H

t + u4 + αhc
)
− l9

δhc − a4

dl8

dt
= (Q4 + Q5) l1S+ l2Vc (τvQ4 + Q5)− l3 (Q3Q4 − CQ5)+ l5

(ǫ1Q4H − Q2Q5)

−l6
(
−ǫ2Q4H

t + u3 + φtc
)
− l7 (Q5C + ǫ1Q4H)− l8

(
ǫ2Q4H

t − β7 − u3
)
− l9

δtc − a5

dl9

dt
=β8l9 − a6

where Q1 = (1 − u2)χH ,Q2 = S + Vc,Q3 = S + τvVc,Q4 =
πc−Q1

N ,Q5 = (1−u2)πh−Q2
N , L1 =

(
1− S

N

)
, L2 =

(
1− Vc

N

)
, L3 =

(
1− C

N

)
, L4 =

(
1− H

N

)
, and L5 =

(
1− Ht

N

)
.

The characterization in Equation 14 is obtained by solving u∗j
from ∂G

∂uj
= 0, where j = 1, 2, 3, ..., 9, and applying standard control

arguments involving bounds on the controls.

TABLE 1 Description of the parameters in Equation 1.

Parameters Description Values Source

ψ Rate of recruitment 5,070 Estimated

φtc Recovery rate for Ht
c

from COVID-19

0.0578 Estimated

τv COVID-19 vaccine

inefficacy

0.01 Estimated

πh Transmission rate for

HIV

0.01 [39]

ǫ2 Modification parameter 1.2 Estimated

αhc Recovery rate of Hc from

COVID-19

0.08068 Estimated

ϕc Rate of vaccination 0.01041 Estimated

θc The recovery rate of the

COVID-19-infected class

0.18219 [35]

ǫ1 Modification parameter 1.25 Estimated

ηc Rate of immunity loss

for COVID-19

0.033 Estimated

dh HIV-related mortality

rate

0.00133 [2]

πc Transmission rate for

COVID-19

1 [35]

dc COVID-19 induced

death rate

0.00011 [35]

δhc Transfer rate from Hc to

Dhc class

0.00983 Estimated

δtc Transfer rate from Ht
c to

Dhc class

0.000161 Estimated

ξhc Recovery rate for Hc

from COVID-19

0.004 Estimated

dhc Co-infection-related

mortality rate

0.004392 Estimated

d Natural death rate 4× 10−5 [40]

ωh Transfer rate from H to

T class

0.006561 Estimated
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A B

FIGURE 2

Simulations that show the backward bifurcation diagram and the existence of endemic equilibrium when R
c
0 = 0.35. (A) Bifurcation diagram. (B)

State variables.

5 Numerical simulations

This section presents numerical simulations to validate the

qualitative analysis results of system (1) and illustrate the

contribution of optimal control strategies on cases of COVID-

19 and HIV co-infection. For this study, the total population

and life expectancy of Ethiopia in 2021 have been taken into

account. The estimated total population were N = 120, 283, 026

with a life expectancy of 65 years [38]. Consequently, d =
1

(65×365)
per day and ψ = d × N = 5070 people per day.

We employed parameter values from existing research, and where

data were unavailable, we estimated certain parameters within

acceptable ranges. Table 1 presents the parameter values used in

the numerical simulations. For the numerical simulations, the

following initial conditions were applied: S(0) = 120269406,

Vc(0) = 8000, C(0) = 800, Cr(0) = 1200, H(0) =
1500, Ht(0) = 1800, Hc(0) = 150, Ht

c(0) = 120, and

Dhc(0) = 50.

5.1 Simulations of the co-infection model

Figure 2B illustrates that even when R
c
0 is <1, the state

variables tend to converge toward positive values. This

suggests that the COVID-19 sub-model exhibits a backward

bifurcation phenomenon. Figure 2A indicates that the backward

bifurcation occurs at R
c
0 = 1. For R

c
0 < 1, two endemic

equilibria (stable and unstable) coexist with a stable disease-

free equilibrium in the vicinity of R
c
0 = 1. The occurrence

of a backward bifurcation is epidemiologically significant as

it demonstrates that the condition of R
c
0 < 1 is necessary

but not sufficient for disease control. This implies that

eradicating COVID-19 can be challenging when a backward

bifurcation phenomenon is present in the dynamics of

disease transmission.

5.2 Simulations of the optimal control
model

The optimal control problem (1) is analyzed iteratively

using the Runge–Kutta forward-backward sweep numerical

approximation method described in [41]. In line with this

approach, first, a fourth-order Runge–Kutta method is employed

to solve the state variable solutions forward in time with an initial

guess for the control variables. Then, the solutions of the state

variables are used to solve Equation 13 backward in time. Once the

state and adjoint solutions are solved, the control is updated with

these new values. These procedures are repeated until the solutions

converge. In performing numerical simulation associated with the

optimal control problem, the following set of values of costs are

considered: B1 = 30, B2 = 20, B3 = 50, and B4 = 150. The

weighted coefficients are further assumed to be a1 = 100, a2 = 100,

a3 = 50, a4 = 120 , a5 = 80, and a6 = 150. The intention of setting

a high weight coefficient value forDhc is tominimize the loss of lives

from HIV and COVID-19 infections. To examine the outcome of

control strategies, we consider four different scenarios:

Scenario 1: use of single control strategy,

Scenario 2: implementing a combination of two control

strategies,

Scenario 3: implementing a combination of three control

strategies and

Scenario 4: implementing a combination of all control strategies.

Numerical results for all four scenarios are presented for the

final time period of tf = 120. In the following section, we will take

a closer look at each scenario.

5.2.1 Scenario 1: use of single control strategy
Here, the following strategies are taken into account:

Strategy A: Vaccination only (u1 6= 0)

Strategy B: Prevention for HIV only (u2 6= 0)
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FIGURE 3

Simulation showing how scenario 1’s strategies a�ect the outcome. (A) Hc population. (B) Ht
c population. (C) Dhc population. (D) Control profile(u1).

(E) Control profile(u2). (F) Control profile(u3). (G) Control profile(u4). (H) E�cacy of strategies in scenario 1. (I) Cost-e�ectiveness of strategies in

scenario 1.

Strategy C: Treatment for COVID-19 only (u3 6= 0)

Strategy D: Treatment for HIV only (u4 6= 0)

The effectiveness of the control strategies and their impact

profiles are depicted in Figure 3. In Figure 3A, it is evident

that COVID-19 and HIV treatment options significantly reduce

the population in the Hc compartment compared to other

strategies. The highest peak value in Figure 3B is attributed

to an increase in HIV treatment efforts. However, this figure

reveals the inverse outcome of COVID-19 treatment on the

population in Ht
c. Figures 3C, H demonstrate that the treatment

of COVID-19 is more crucial than other options in reducing the

risk of mortality from co-infection. The calculations leading to

Figures 3H, I are provided in Section 6.1. Overall, these figures

illustrate that, in terms of consistently reducing the number

of deaths, COVID-19 appears to contribute more effectively.

In summary, the COVID-19 treatment approach seems to play

a more significant role in consistently lowering the number

of deaths.

5.2.2 Scenario 2: use of combinations of two
controls

This section examines the following combinations of two

strategies.

Strategy E: COVID-19 vaccination and HIV prevention

(u1, u2 6= 0)

Strategy F: Vaccination and treatment for COVID-19 (u1, u3 6=
0)

Strategy G: COVID-19 vaccination and treatment for HIV

(u1, u4 6= 0)

Strategy H: Treatment for COVID-19 and prevention for HIV

(u2, u3 6= 0)
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FIGURE 4

Simulation showing the e�ect strategies in Scenario 2. (A) Hc population. (B) Ht
c population. (C) Dhc population. (D) Control profiles: u1 and u2. (E)

Control profiles: u1 and u3. (F) Control profiles: u1 and u4. (G) Control profiles: u2 and u3. (H) Control profiles: u2 and u4. (I) Control profiles: u3 and

u4. (J) E�cacy of strategies in scenario 2. (K) Cost-e�ectiveness of strategies in scenario 2.

Strategy I: Prevention and treatment for HIV (u2, u4 6= 0)

Strategy J: Treatment for COVID-19 and HIV (u3, u4
6= 0)

Figure 4 presents the simulation results for a combination of two

control strategies. The figure indicates that the combinations of

u1 and u3, u2 and u3, and u3 and u4 have resulted in the lowest
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FIGURE 5

Simulation showing the e�ect strategies in Scenario 3. (A) Hc population. (B) H
t
c population. (C) Dhc population. (D) Control profiles: u1, u2 and u3. (E)

Control profiles: u1, u2 and u4. (F) Control profiles: u1, u3 and u4. (G) Control profiles: u2, u3 and u4. (H) E�cacy of strategies in scenario 3. (I)

Cost-e�ectiveness of strategies in scenario 3.

number of co-infection cases and the lowest risk of mortality. This

observation is reinforced by Figure 4J, which provides a detailed

illustration of the effectiveness of each of the six measures, as

discussed further in Section 6.2. Moreover, if these measures are

to be implemented, u2 and u4 should remain at their maximum

level until the intervention is over, as depicted in Figures 4D–I. In

contrast, the control efforts u1 and u3 can gradually decrease from

their maximum after a certain number of days.

5.2.3 Scenario 3: use of combinations of the
controls

To investigate the impact of three control strategies, the

following combinations are taken into account:

Strategy K: Combination of u1, u2 and u3 (u4 = 0)

Strategy L: Combination of u1, u2 and u4 (u3 = 0)

Strategy M: Combination of u1, u3 and u4 (u2 = 0)

Strategy N: Combination of u2, u3 and u4 (u1 = 0)

Figure 5 shows that a combination of three interventions

is more successful in reducing the number of HIV and

COVID-19 cases than using simply one or a hybrid of

two strategies. Moreover, from this figure, we can see that

Hc and Dhc populations appear to be reduced in almost

the same manner in all four triple control strategies. The

effectiveness of each of these strategies is demonstrated in

Figure 5H, which was constructed using the information from

Section 6.3. The corresponding control profiles are depicted in

Figures 5D–G.

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2024.1439284
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Batu and Obsu 10.3389/fams.2024.1439284

A B

C D

FIGURE 6

Simulation showing the e�ect strategies in Scenario 4. (A) Hc population. (B) H
t
c population. (C) Dhc population. (D) Control profiles: u1, u2, u3, and u4.

5.2.4 Scenario 4: use of a combination of four
control

This section refers to:

Strategy O: combination of u1, u2, u3, and u4.

Figure 6 reveals what happens when all control strategies are

put into practice. This figure clearly indicates that applying all

control measures is the most effective way to lessen the co-infection

cases among all the intervention techniques included in this study.

6 Cost-e�ectiveness analysis

In managing infectious diseases, it is important to identify

an effective strategy that emphasizes favorable results while

efficiently allocating resources. Effectiveness refers to the capacity

to effectively control and mitigate the impact of diseases. For

a variety of reasons, including financial constraints, it may not

be feasible to rank the most effective options first, whereas the

least expensive alternative may not have the desired effect. To

create sustainable prevention strategies that maximize resources

and promote the best possible health outcomes, it is imperative to

strike a balance between effectiveness and costs. Cost-effectiveness

aids in locating the optimal balance. Cost-effectiveness refers to

resource allocation that maximizes the return on investment for

the interventions made. Identifying effective and cost-effective

strategies among the options provided in this study is the main

objective of this section. Determining the most efficient and

economical control strategy requires more analysis than simply

comparing Figures 3–5, which shows the number of infected people

at the end of the implementation of each strategy. The definitions

and methodologies outlined in [42, 43] were used to conduct an

efficacy and cost-effective analysis. Accordingly, effectiveness (̃E)

is defined as the proportion of averted co-infection cases to the

total number of possible co-infection cases under no intervention.

That is,

Ẽ = Total averted co-infection cases (Tav)

The aggregate of co-infected in the course of T period
(15)

The difference between the total number of individuals before

and after the control techniques were implemented was used to

calculate the overall number of co-infections avoided. In terms of

effectiveness, the highest Ẽ value is said to be the most effective,

whereas the lowest Ẽ value is said to be the least effective.
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The infection-averted ratio (IAR), average cost-effectiveness

ratio (ACER), and incremental cost-effectiveness ratio (ICER)

are the three methods most frequently used in cost-effectiveness

analyses. For this study, we considered the ACER and ICER

methods. The following is the definition of ACER:

ACER =
Total cost invested in a particular strategy (Tcost)

The aggregate of co-infections averted by the strategy (Tav)
.

The total cost was calculated using the cost function∫ T
0

∑4
i=1 Qiui(t)dt. The ACER method evaluates the cost-

effectiveness of a single intervention strategy by comparing it with

the option of taking no action. This cost-effectiveness analysis

method indicates that the best option is the one with the minimum

ACER value.

The incremental cost-effectiveness ratio (ICER) is a method

that enables the comparison of the health and cost benefits of

two different interventions, which are vying for the same limited

resources. When applying the ICER approach, it is important

to compare two competing intervention strategies incrementally,

with one intervention being compared to the next-less effective

intervention. As a result, the control strategies are ranked according

to the number of co-infections averted to examine the ICER of the

strategies provided in scenarios 1, 2, 3, and 4, as shown in Table 2.

Taking into account strategies m and n as two competing control

measures, ICER is described as

ICER = Change in total costs invested in strategiesm and n

Change in the total number of co-infections averted in strategiesm and n
.

6.1 Cost-e�ectiveness analysis of scenario
1: single control strategy

We employ Equation 15 to calculate the effectiveness of the

interventions. From Table 3, we can observe that Strategy C is the

most effective among the strategies implemented in Scenario 2.

Using ACER and ICER, we now look into the most economical

approach. Following the definition and analysis of ACER, strategy

D has the maximumACER value, followed by strategies B, A, and C

(see Table 3, fifth column). Consequently, this method suggests that

Strategy C is the most economical in Scenario 1. Using the averted

co-infection rank from Table 2, the ICER results, which are shown

in Table 3, are calculated as follows:

ICER(D) = 8111.4− 0

30069− 0
= 0.2698

ICER(B) = 1082.7− 8111.4

44101− 30069
= −0.50091

ICER(A) = 661.3473− 1082.7

90713− 44101
= −0.00904

ICER(C) = 422.4568− 661.3473

97478− 9071390713
= −0.03531

When we compare ICER(D) and ICER(A), we find that

approach A saves 0.2788 dollars in comparison with strategy D.

Thus, strategy D is more costly than strategy A. Thus, in the next

TABLE 2 Prevented co-infections and total cost of control strategies.

Strategy Tav Tcost

Scenario 1: single control strategies

Strategy D (u4 6= 0) 30,069 8,111.4

Strategy B (u2 6= 0) 44,101 1,082.7

Strategy A (u1 6= 0) 90,713 661.3473

Strategy C (u3 6= 0) 97,478 422.4568

Scenario 2: double control strategies

Strategy I (u2 6= 0, u4 6= 0) 55,886 9,141.1

Strategy E (u1 6= 0, u2 6= 0) 90,741 1,743.4

Strategy G (u1 6= 0, u4 6= 0) 92,990 8,753.2

Strategy F (u1 6= 0, u3 6= 0) 97,478 309.0571

Strategy H (u2 6= 0, u3 6= 0) 97,478 1,504.9

Strategy J (u3 6= 0, u4 6= 0) 97,542 8,540.9

Scenario 3: triple control strategies

Strategy L (u1 6= 0, u2 6= 0, u4 6= 0) 93,005 9,794.5

Strategy K (u1 6= 0, u2 6= 0, u3 6= 0) 97,478 1,392.7

Strategy M (u1 6= 0, u3 6= 0, u4 6= 0) 97,542 8,429.2

Strategy N (u2 6= 0, u3 6= 0, u4 6= 0) 97,542 9,579.2

Scenario 4: four control strategies

Strategy O (u1 , u2 , u4 6= 0) 97,542 9,467.6

TABLE 3 Tav , Tcost, Ẽ, ACER, and ICER for the intervention strategies in

Scenario 1.

Strategy Tav Tcost Ẽ ACER ICER

Strategy D (u4 6= 0) 30,069 8,111.4 0.2933 0.2698 0.2698

Strategy B (u2 6= 0) 44,101 1,082.7 0.4301 0.0246 −0.50091

Strategy A (u1 6= 0) 90,713 661.3473 0.8847 0.0073 −0.00904

Strategy C (u3 6= 0) 97,478 422.4568 0.9507 0.0043 −0.03531

ICER computations, approach D is omitted. We will now carry on

comparing the remaining three strategies.

ICER(B) = 1082.7− 0

44101− 0
= 0.02455

ICER(A) = 661.3473− 1082.7

90713− 44101
= −0.00904

ICER(C) = 422.4568− 661.3473

97478− 9071390713
= −0.03531

Upon examining the results, we can see that Strategy B is

more expensive than Strategy A. Therefore, Strategy is ruled out

since it is less cost-effective than Strategy A. The incremental cost-

effectiveness ratio of strategies A and C is recalculated in the

following manner:

ICER(A) = 661.3473− 0

90713− 0
= 0.00729

ICER(C) = 422.4568− 661.3473

97478− 9071390713
= −0.03531
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TABLE 4 Tav , Tcost, Ẽ, ACER, and ICER for the intervention strategies in

Scenario 2.

Strategy Tav Tcost Ẽ ACER ICER

Strategy I

(u2 6= 0, u4 6= 0)

55,886 9,141.1 0.545 0.1636 0.163567

Strategy E

(u1 6= 0, u2 6= 0)

90,741 1,743.4 0.885 0.0192 −0.21224

Strategy G

(u1 6= 0, u4 6= 0)

92,990 8,753.2 0.9069 0.0941 3.11685

Strategy F

(u1 6= 0, u3 6= 0)

97,478 309.06 0.9507 0.0032 −1.88149

Strategy H

(u2 6= 0, u3 6= 0)

97,478 1,504.9 0.9507 0.0154 —

Strategy J

(u3 6= 0, u4 6= 0)

97,542 8,540.9 0.9513 0.0876 109.9375

Using strategy C results in a 0.0426 savings compared to strategy

A. Therefore, of the four solutions in Scenario 1, strategy C is

the most economical. This supports the outcome derived from the

ACER analysis.

6.2 Cost-e�ectiveness analysis of scenario
2: combination of two control strategies

Although Strategy J is successful in preventing co-infections,

based on the ACER value, the most economical approach among

the options in scenario 2 is Strategy F, as shown in the fifth and

sixth columns of Table 4. The ICER of the strategies in scenario

2 is determined using the rank of avoided co-infections shown in

Table 4.

ICER(I) = 9141.1− 0

55886− 0
= 0.163567

ICER(E) = 1743.4− 9141

90741− 55886
= −0.21224

ICER(G) = 8753.2− 1743.4

92990− 90741
= 3.11685

ICER(F) = 309.06− 8753.2

97478− 92990
= −1.88149

ICER(J) = 8540.9− 1509

97542− 97478
= 109.9375

It should be noted that ICER(H) is not determined in this

case because Strategies F and H prevent the same number of co-

infections. The remaining results, displayed in Table 4, indicate that

ICER(G) is less than ICER(J). This implies that, because Strategy J is

more expensive than Strategy G, it should be disregarded from the

Scenario 2 options, even though it is more successful in preventing

co-infections. Comparing the remaining strategies (E, F, G, H, and

I), we can infer that Strategy G is pricier than Strategy I. Hence, it

is also ruled out from further analysis. The ICER for each of the

strategies I, E, and F is then computed as follows.

ICER(I) = 9141.1− 0

55886− 0
= 0.163567

ICER(E) = 1743.4− 9141

90741− 55886
= −0.21224

ICER(F) = 309.06− 1743.4

97478− 90741
= −0.21291

Comparing strategies E and I, it is evident that Strategy I

dominates Strategy E. Consequently, Strategy I is omitted from

the competitors in scenario 2. Next, as iterated below, the ICER is

recalculated for Strategies E and F.

ICER(E) = 1743.4

90741
= 0.0192

ICER(F) = 309.06− 1743.4

97478− 90741
= −0.21291

The incremental cost-effectiveness ratio (ICER) values obtained

for Strategy F indicate that Strategy E is overpriced and ineffective

as compared to Strategy F. Afterward, Strategy E cannot be

considered cost-effective in scenario 2. Consequently, we will

continue to find a more cost-effective strategy from strategies F and

H. It can be seen that although strategies F and H are the same in

Tav, strategy F has a cost advantage over strategy H of 1, 054.9 −
309.06 = 1195.84. This affirms the cost-effectiveness of Strategy

F. Based on this, we can conclude that Strategy F (promoting and

delivering COVID-19 vaccines and treatments) is an economical

approach offered in Scenario 2.

6.3 Cost-e�ectiveness analysis of scenario
3: combination of three control strategies

In Scenario 3, the effectiveness analysis shows that Strategies

M and N are the most effective interventions (see Table 5). We

performed an average cost-effectiveness ratio (ACER) analysis

to determine the cost of applying the interventions and their

effectiveness. From Table 5, we observe that Strategy K has the

lowest ACER value. This value implies that Strategy K is an

economical approach that can be implemented. To support this

conclusion, we conducted an ICER analysis. The incremental cost-

effectiveness ratio shown in Table 5 is calculated in the following

manner:

ICER(L) = 9794.5− 0

93005− 0
= 0.10531

ICER(K) = 1392.7− 9794.5

97478− 93005
= −1.87834

ICER(M) = 8429.2− 1392.7

97542− 97478
= 109.94531

Note that because both Strategies M and N have the same Tav

values, they prevent the same number of co-infections, ICER(N) is

not computed here. A comparison of Strategies L andM shows that

Strategy M strongly prevails over Strategy L. As a result, strategy

M is excluded from further ICER analyses. We now compare

Strategies L, K, and N.

ICER(L) = 9794.5− 0

93005− 0
= 0.10531

ICER(K) = 1392.7− 9794.5

97478− 93005
= −1.87834

ICER(N) = 9579.2− 1392.7

97542− 97478
= 127.9141

Looking at the ICER values, we observe that Strategy N is

overpriced than Strategy L. Therefore, Strategy N is ruled out.

Further evidence that Strategy K is more affordable than Strategy
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TABLE 5 Tav , Tcost, Ẽ, ACER, and ICER for the interventions in Scenario 3.

Strategy Tav Tcost Ẽ ACER ICER

Strategy L (u1 6=
0, u2 6= 0, u4 6= 0)

93,005 9,794.5 0.907 0.1053 0.10531

Strategy K (u1 6=
0, u2 6= 0, u3 6= 0)

97,478 1,392.7 0.9507 0.0143 −1.87834

Strategy M (u1 6=
0, u3 6= 0, u4 6= 0)

97,542 8,429.2 0.9513 0.0864 109.94531

Strategy N (u2 6=
0, u3 6= 0, u4 6= 0)

97,542 9,579.2 0.9513 0.0982 —

TABLE 6 Tav , Tcost, Ẽ, ACER, and ICER for the intervention strategies in

Scenario 4.

Strategy Tav Tcost Ẽ ACER ICER

Strategy O (ui 6=
0, i = 1, 2, 3, 4)

97,542 9,467.6 0.9513 0.0971 0.0971

TABLE 7 Incremental cost-e�ectiveness ratio for scenarios 1–4.

Strategy Tav Tcost Ẽ ACER ICER

Strategy C (u3 6= 0) 97,478 422.4568 0.9507 0.0043 0.0043

Strategy F

(u1 6= 0, u3 6= 0)

97,478 309.06 0.9507 0.0032 —

Strategy K (u1 6=
0, u2 6= 0, u3 6= 0)

97,478 1,392.7 0.9507 0.0143 —

Strategy O (ui 6=
0, i = 1, 2, 3, 4)

97,542 9,467.6 0.9513 0.0971 141.33

L comes from comparing ICER(L) with ICER(K), which indicates a

cost advantage of 1.9836 for Strategy K over L. Therefore, Strategy K

(administering vaccines and treatments for COVID-19 and taking

steps to prevent the spread of HIV) is the most economical among

the four alternatives presented in Scenario 3.

6.4 Cost-e�ectiveness analysis of all
scenarios

The effectiveness, ACER, and ICER analyses of the

implementation of all control strategies (u1, u2, u3, u4 6= 0)

are presented in Table 6. By comparing the effectiveness and costs

of various strategies, we successfully identified the most efficient

and cost-effective solutions for scenarios 1, 2, 3, and 4. Now, to

identify the optimal approaches across all situations, we evaluate

the most efficient strategies from each scenario and compare them.

Table 7 displays the most cost-effective strategies for each scenario,

which are ranked on the basis of the number of co-infections they

have prevented. This table clarifies that Strategy O is the most

effective in preventing co-infection cases as it successfully averted

the highest number of co-infections compared to other strategies.

Furthermore, according to the values indicated in the fifth column,

Strategy F is the most economical approach among the given

strategies across all scenarios. The ICER analyses further validate

this conclusion, and they are conducted in the following manner:

ICER(C) = 422.4568− 0

97478− 0
= 0.0043

ICER(O) = 946.6− 422.4568

97542− 97478
= 141.33

It is important to note that ICER(F) and ICER(K) cannot be

calculated as both strategies have prevented the same number

of cases, as indicated in Table 7. Accordingly, it is easy to see

that Strategy O carries weight over Strategy C. As a result of

this, strategy O is deemed unsuitable and therefore eliminated as

an option. Comparing Strategies C, F, and K is still necessary.

Despite preventing the same number of occurrences, Strategy

F is the most economical, saving 422.4568 − 30906 = 113.4

compared to Strategy C and 1392.7 − 309.2 = 1083.642

in contrast with Strategy K. That is, Strategy F (promoting

and delivering COVID-19 vaccines and treatments) is the most

cost-effective among all the strategies provided in this study

to tackle the challenges posed by HIV and COVID-19 co-

infection, as shown in Figure 7. Therefore, it is recommended

to prioritize these strategies for mitigating the impact of these

diseases.

7 Discussion and conclusion

In this study, we introduce a deterministic model featuring

nine distinct compartments: individuals susceptible to COVID-19,

those who have received COVID-19 vaccination, individuals

previously infected with COVID-19, individuals who have

recovered from COVID-19, individuals with HIV, HIV-positive

individuals undergoing treatment, individuals co-infected with

HIV and COVID-19, HIV patients undergoing treatment and

infected with COVID-19, and individuals at risk of dying as a

result of co-infection. The well-posedness of the proposed model

is established through the analysis of positivity, boundedness,

existence, and uniqueness of its solutions. To investigate the

co-infection dynamics, the model is divided into two sub-models:

one for COVID-19 and another for HIV. Disease-free equilibria

and basic reproduction numbers are determined to examine the

system’s behavior. It is observed that when the reproduction

number for HIV R
h
0 < 1 is <1, the HIV-free equilibrium

point (E0
h
) becomes globally asymptotically stable, implying

the eventual disappearance of the HIV-positive population.

Conversely, the COVID-19 sub-model reveals a backward

bifurcation phenomenon, where COVID-free (E0
c )and endemic

equilibrium (Ec) coexist, even when the reproduction number

for COVID-19 R
c
0 < 1 is <1. This epidemiological insight

implies that merely reducing the reproduction number below

one is insufficient to eradicate COVID-19 from the community.

Furthermore, the study explores the impact of HIV on the

spread of COVID-19 by examining the partial derivative of Rc
0

with respect to R
h
0 . Under specific conditions, it is determined

that HIV may contribute to the propagation of COVID-19.

To address this co-infection burden, four control strategies

are considered: HIV prevention, COVID-19 vaccinations, HIV

treatment, and COVID-19 treatment. Optimal controls are
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A B

FIGURE 7

Overview of all scenarios and their comparative analysis. The letters at the top of the bars represent strategies in the scenario. (A) E�cacy of the four

scenarios. (B) Cost-e�ectiveness of the four scenarios.

characterized based on the Pontryagin minimum principle,

offering a comprehensive framework for mitigating the impact of

HIV and COVID-19 co-infection.

Numerical simulations are conducted to validate analytical

findings and display the effectiveness of control strategies

in mitigating HIV and COVID-19 co-infection scenarios.

However, deciphering the cost-effectiveness of these strategies

entirely through simulations proves challenging. Consequently, a

comprehensive cost-effectiveness analysis, grounded in established

theories, is executed to pinpoint the most economically viable

strategy for curbing HIV and COVID-19 co-infections. Figures 3H,

4J, 5H, depict the efficacy of strategies in Scenarios 1, 2, and 3,

respectively. Concurrently, the cost-effectiveness of these strategies

is elucidated in the same figures. Overall, the analysis reveals

that Strategy F, a synergistic approach involving COVID-

19 vaccination and treatment, emerges as the most efficient

and cost-effective strategy for diminishing the prevalence of

co-infected individuals, as delineated in Figures 3H, 4J, 5H.

These findings furnish valuable insights for policymakers,

guiding them toward prioritizing preventive measures to reduce

the incidence of co-infection cases and associated fatalities.

Nevertheless, despite its significant contributions, it is imperative

to acknowledge the study’s limitations. Notably, the heightened

susceptibility of HIV patients to new infections and their increased

likelihood of transmitting the virus as the disease progresses

remain unexplored in this study. This aspect represents an

open area for further investigation, necessitating future research to

incorporate the evolving impact of advanced HIV infection into the

analytical framework.
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