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A DC programming to two-level
hierarchical clustering with ℓ1

norm

Adugna Fita Gabissa* and Legesse Lemecha Obsu

Department of Applied Mathematics, Adama Science and Technology University, Adama, Ethiopia

The main challenge in solving clustering problems using mathematical

optimization techniques is the non-smoothness of the distance measure used.

To overcome this challenge, we used Nesterov’s smoothing technique to find

a smooth approximation of the ℓ1 norm. In this study, we consider a bi-level

hierarchical clustering problem where the similarity distance measure is induced

from the ℓ1 norm. As a result, we are able to design algorithms that provide

optimal cluster centers and headquarter (HQ) locations that minimize the total

cost, as evidenced by the obtained numerical results.
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1 Introduction

Clustering, a widely studied field with applications across various scientific and

engineering domains, often grapples with non-smooth and non-convex problems that

defy traditional gradient descent algorithms. The discrete and combinatorial nature of

clustering adds another layer of complexity, making optimality challenging to attain.

The synergy of Nesterov’s smoothing technique [16], DC programming, and the

difference of convex algorithm (DCA) [10] has created a fertile ground for investigating

into non-convex and non-smooth optimization problems. The efficacy of theDC algorithm

in addressing non-convex clustering problems has been well-established in previous

studies [1, 5, 14, 17, 22] and cited references. Notable among these is the exploration of a

DC optimization approach for constrained clustering with ℓ1 norm [6], tackling problems

such as the minimum sum of squares clustering [2], bi-level hierarchical clustering [8],

and multicast network design [13]. Recent studies have extended DC algorithms to

solve multifacility location problems [4] and addressed similar issues using alternative

approaches [21].

While previous methods often resorted to meta-heuristic algorithms, which are

challenging to analyze for optimality, recent advancements have seen a shift toward more

robust techniques. In 2003, Jia et al. [9] introduced three models of hierarchical clustering

based on the Euclidean norm and employed the derivative-free method developed in [3]

to solve the problem in R
2. In [21], DCA which was developed in [19, 20] was utilized

by replacing ℓ2 norm by squared ℓ2 norm and applied to higher dimensional problems.

However, the need for further enhancements led to the incorporation of new way in

Nesterov’s smoothing techniques in [8, 13] to overcome certain limitations identified in [9].

In real-world scenarios, the ℓ1 distance measure frequently provides a more accurate

reflection of ground realities than the Euclidean distance. This study extends the

investigation of the bi-level hierarchical clustering model proposed in [8, 13] by modifying

the objective function and constraints using the ℓ1 norm. Employing Nesterov’s partial

smoothing techniques and a suitable DC decomposition tailored for the ℓ1 norm, we

leverage the DC Algorithm (DCA). In addition, constraints are introduced to ensure that

cluster centers and the headquarters lie on actual nodes in the datasets. To limit the search
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space, the headquarter is strategically placed in the region average

to the cluster centers that minimize the overall distance of

the network.

The study is organized as follows: Section 2 introduces the basic

tools of convex analysis applied to DC functions and DCA. Sections

3 and subsequent subsections delve into the formulation and

exploration of bi-level hierarchical clustering problems, along with

the development of DCA algorithms that address the model using

Nesterov’s smoothing technique. Section 4 showcases numerical

simulation results with artificial data, and concluding remarks are

presented in Section 5.

2 Fundamentals of convex analysis

In this section, we will introduce fundamental results and

definitions from convex analysis, crucial for understanding the

subsequent discussions in this study. For in-depth technical proofs

and additional readings, we recommend referring to [11, 12].

Definition 1. An extended real-valued function f :Rn →

(−∞,∞] is called a DC function, if it can be represented as a

difference of two convex functions g and h.

Moreover, the optimization problem

minimize f (x) : = g(x)− h(x); x ∈ R
n (1)

referred to as a DC optimization problem, and it can be addressed

using the difference of convex algorithm introduced by Tao and

An[19, 20] as follows.

Input: x0 ∈ R
n,N ∈ N;

while stopping is not reached do

for k = 1, ...,N do

Find yk ∈ ∂h(xk−1);

Find xk ∈ ∂g
∗(yk);

end for;

end while;

Return xN .

Algorithm 1. DCA algorithm 1.

The function g∗ referred in the DCA is the Fenchel Conjugate

of g, and it is defined as in [18]

g∗(y) = sup{〈y, x〉 − g(x) | x ∈ R
n}, y ∈ R

n, (2)

and it is always convex regardless of whether g is convex or not.

Theorem 1. [18] Let g :Rn → (−∞,∞] be a proper

extended real-valued function, for x, y ∈ R
n. Then,

x ∈ ∂g∗(y) if and only if y ∈ ∂g(x).

Definition 2. [12] A vector v ∈ R
n is a sub-gradient of a convex

function f :Rn → (−∞,∞], at x̄ ∈ dom(f ), if it satisfies the

inequality

f (x) ≥ f (x̄)+ 〈v, x− x̄〉 for all x ∈ R
n.

The set of all sub-gradients of f at x̄, denoted as ∂f (x̄), is known

as the sub-differential of f at x̄, that is,

∂f (x̄) = {v ∈ R
n | f (x) ≥ f (x̄)+ 〈v, x− x̄〉 for all x ∈ R

n}. (3)

Theorem 2. Let fi :R
n → (−∞,∞] be a proper and extended

real-valued convex function on R
n, where i = 1, 2, . . . ,m and

⋂m
i=1 rint(dom(fi)) 6= ∅ [12]. Then for all x̄ ∈

⋂m
i=1 dom(fi),

∂

(

m
∑

i=1

fi(x̄)

)

=

m
∑

i=1

∂fi(x̄).

2.1 The max, min, and convergence of the
DCA

The maximum function is defined as the point-wise maximum

of convex functions. For i = 1, 2, 3, . . . ,m, let the functions

fi :R
n → R be closed and convex. Then, the maximum function

f (x) : = max
i=1,...,m

fi(x) = max
{

f1(x), f2(x), . . . , fm(x)
}

,

is also closed and convex. On the other hand, theminimum function

f (x), defined by

f (x) : = min
i=1,...,m

fi(x) = min
{

f1(x), f2(x), . . . , fm(x)
}

may not be convex. However, it can always be represented as a

difference of two convex functions as follows:

min
{

f1(x), f2(x), . . . , fm(x)
}

=

m
∑

i=1

fi(x)− max
t=1,...,m

m
∑

i=1,i6=t

fi(x). (4)

Lemma 3. [12] Let functions fi(x), i = 1 . . .m be closed and

convex. Then, the maximum function

f (x) = max
{

f1(x), . . . , fm(x)
}

is also closed and convex. Moreover, for any x ∈ int(domf ) =

∩mi=1int(domfi), we have

∂f (x) = Conv
{

∂fi(x) | i ∈ I(x)
}

,

where I(x) =
{

i : fi(x) = f (x)
}

.

Definition 3. [14] A function f :Rn → R is ρ-strongly convex if

there exists ρ > 0 such that the function

g(x) : = f (x)−
ρ

2
‖x‖2

is convex. In particular, if f is strongly convex, then f is also strictly

convex, in the sense that f (λx1+ (1−λ)x2) < λf (x1)+ (1−λ)f (x2)

for all λ ∈ (0, 1).

Theorem 4. [14, 20] Let f be as defined in problem (1), and let {xk}

be a sequence generated by the DCA Algorithm 1. Suppose that g

and h are ρ1 and ρ2 strongly convex, respectively. Then, at every

iteration number k of the DCA, we have

f (xk+1) ≤ f (xk)−
ρ1 + ρ2

2
‖xk+1 − xk‖

2. (5)

Moreover, if f is bounded from below and if {xk} is bounded,

then all sub-sequential limits of {xk} converge to a stationary point

of f .
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2.2 Nesterov’s smoothing approximation
of the ℓ1 Norm

Definition 4. [12, 14] Let F be a non-empty closed subset ofRn and

let x ∈ R
n.

1. Define the distance between x and set F by

dF(x) = inf{‖x− w‖ | w ∈ F}.

2. The set of all Euclidean projection from x to F is defined by

P(x; F) = {w ∈ F | dF(x) = ‖x− w‖}.

It is well-known that P(x; F) is non-empty when F ⊂ R
n is

closed. If we assume in addition that F is convex, than P(x; F) is

a singleton.

Proposition 5. [11, 15] Given any a ∈ R
n and γ > 0,

Nesterov’s smoothing approximation of ϕ(x) = ‖x − a‖1 has the

representation

ϕγ (x) : =
1

2γ

∥

∥

∥
x− a

∥

∥

∥

2
−
γ

2

[

dF

(

x− a

γ

)]2

,

where F is the closed unit box of R
n, that is, F := {x =

(x1, . . . , xn) ∈ R
n | −1 ≤ xi ≤ 1 for i = 1, . . . , n}. Moreover,

∇ϕγ (x) = P

(

x− a

γ
; F

)

= P

(

x− a

γ
; F

)

= max(−e, min(
x− a

γ
, e)) component-wise, (6)

where P is the Euclidean projection from
(

x−a
γ

)

onto unit box

F, and e ∈ R
n is a vector with one in each coordinate and zero

elsewhere. In addition, ϕγ (x) ≤ ϕ(x) ≤ ϕγ (x)+
γ
2 .

3 Problems formulation

To define our problems, consider a set A of m data points,

that is, A =
{

ai ∈ Rn : i = 1, . . . ,m
}

and k variable cluster centers

denoted by x1, . . . , xk. We model a two-level hierarchical clustering

problem by choosing k separate cluster centers from which one is

the headquarter that serves the centers. Other members of the data

will be assigned to one of the cluster based on the ℓ1 norm between

the data points and centers. Thus, nodes are grouped into k variable

centers by minimizing the ℓ1 distances from all node to k centers.

Then, a headquarter is a center that minimizes the overall distance

of the network and also serves as a cluster center. Then, headquarter

is defined to be mean of xj for j = 1, .., k, that is, x̄ = 1
k

∑k
j=1 x

j.

This constraint limits the search region for headquarter to mean of

selected centers or node near mean. Mathematically, the problem is

defined as follows:

f (X) =
∑m

i=1 min
{

‖x1 − ai‖1, ..., ‖x
k − ai‖1, ‖x̄− ai‖1

}

+
∑k

j=1 ‖x
j − x̄‖1

is minimized, where,

x̄ =
1

k

k
∑

j=1

xj

In addition, to insure the centers are real node, the points

x̄, x1, x2, ..., xk should satisfy the following condition:

min
i=1,...,m

‖x̄− ai‖1 +

k
∑

j=1

min
i=1,...m

‖xj − ai‖1 = 0

Thus, the problem is formulated as

minimize







m
∑

i=1

min
j=1,...,k+1

‖xj − ai‖1 +

k
∑

j=1

‖xj − x̄‖1







(7)

subject to

k+1
∑

j=1

min
i=1,...m

‖xj − ai‖1 = 0, (8)

where xk+1 in the summation is x̄. The constraints in (8) are used

to force the centers to lie on real node and to force headquarter to

be on or near mean of the centers based on minimum distance.

We can write (7) as unconstrained problem using penalty

parameter τ > 0, as follows:

minimize





m
∑

i=1

min
j=1,...,k+1

‖xj − ai‖1 +

k
∑

j=1

‖xj − x̄‖1

+ τ

k+1
∑

i=1

min
i=1,...,m

‖xj − ai‖1



 .

Writing (9) as the sum andmaximumof convex functions using

the formula in (4) as follows:

f (X) =
∑m

i=1

∑k+1
j=1 ‖x

j − ai‖1

−
∑m

i=1 maxt=1,...,k+1
∑k+1

j=1,j6=t ‖x
j − ai‖1 +

∑k
j=1 ‖x

j − x̄‖1

+τ
∑m

i=1

∑k+1
j=1 ‖x

j − ai‖1 − τ maxt=1,...,k+1
∑k+1

j=1,j6=t ‖x
j − ai‖1. (9)

Expressing (9) as DC function, we have

f (X) = (1+ τ )

m
∑

i=1

k+1
∑

j=1

‖xj − ai‖1 +

k
∑

j=1

‖xj − x̄‖1

−

m
∑

i=1

max
t=1,...,k+1

k+1
∑

j=1,j6=t

‖xj − ai‖1

− τ

k+1
∑

j=1

max
r=1,...,m

m
∑

i=1,i6=r

‖xj − ai‖1, (10)

where

g(X) = (1+ τ )

m
∑

i=1

k+1
∑

j=1

‖xj − ai‖1 +

k
∑

j=1

‖xj − x̄‖1, and
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h(X) =

m
∑

i=1

max
t=1,...,k+1

k+1
∑

j=1,j6=t

‖xj − ai‖1

+ τ

k+1
∑

j=1

max
r=1,...,m

m
∑

i=1,i6=r

‖xj − ai‖1. (11)

Since f is DC function based on Proposition 5 and ℓ1

smoothing studied in [11], we obtain a Nesterov’s approximation

of ‖x− a‖1 as

‖x− a‖1 : =
γ

2

[

‖
x− a

γ
‖2 − [dF(

x− a

γ
)]2
]

.

The main goal is to minimize the partially smoothed objective

given by,

fγ (X) =
(1+ τ )γ

2

m
∑

i=1

k+1
∑

j=1

‖
xj − ai

γ
‖2 +

k
∑

j=1

‖
xj − x̄

γ
‖2

−
(1+ τ )γ

2

m
∑

i=1

k+1
∑

j=1

[dF(
xj − ai

γ
)]2 −

γ

2

k
∑

j=1

[dF(
xj − x̄

γ
)]2

−

m
∑

i=1

max
t=1,...,k+1

k+1
∑

j=1,j6=t

‖xj − ai‖1 (12)

−τ

k+1
∑

j=1

max
r=1,...,m

m
∑

i=1,i6=r

‖xj − ai‖1.

That is minimize
{

fγ (X) = gγ (X)− hγ (X)
}

,X ∈ R
k×n.

In addition, gγ is the sum of convex functions defined as

gγ (X) = g1γ (X)+ g2γ (X) (13)

where

g1γ (X) =
(1+ τ )γ

2

m
∑

i=1

k+1
∑

j=1

‖
xj − ai

γ
‖2, g2γ (X) =

k
∑

j=1

‖
xj − x̄

γ
‖2.

And hγ is also the sum of four convex functions defined as

hγ (X) = h1γ (X)+ h2γ (X)+ h3γ (X)+ h4γ (X), (14)

where

h1γ (X) =
(1+ τ )γ

2

m
∑

i=1

k+1
∑

j=1

[dF(
xj − ai

γ
)]2

h2γ (X) =
γ

2

k
∑

j=1

[dF(
xj − x̄

γ
)]2,

h3γ (X) =

m
∑

i=1

max
t=1,...,k+1

k+1
∑

j=1,j6=t

‖xj − ai‖1,

h4γ (X) = τ

k+1
∑

j=1

max
r=1,...,m

m
∑

i=1,i6=r

‖xj − ai‖1.

For the calculation of gradient and sub-gradient, consider a

data matrix A with ai, i = 1, ...,m, in the ith row and a variable

matrix X with xj,j = 1, 2, ..., k+ 1 in the jth row.

Since X and A belongs to a linear space of real matrices, we can

apply inner product such that

〈X,A〉 = trace(XTA) =

n
∑

i=1

k
∑

j=1

xijaij.

And the Frobenius norm on R
k×m is given by

‖A‖F =
√

〈A,A〉 =

√

√

√

√

√

k
∑

j=1

〈aj, aj〉 =

√

√

√

√

√

k
∑

j=1

‖aj‖2. (15)

To calculate the gradient of gγ in (13), let X be of size (k+1)×n

is variable matrix. Then,

g1γ (X) : =
(1+ τ )

2γ

m
∑

i=1

k+1
∑

j=1

‖xj − ai‖2,

=
(1+ τ )

2γ

m
∑

i=1

k
∑

j=1

[

‖xj‖2 − 2〈xj, ai〉 + ‖ai‖2
]

,

=
(1+ τ )

2γ

[

m‖X‖2F − 2〈X,EkmA〉 + k‖A‖2F
]

,

where Ekm ∈ R
k+1×m is a matrix of all ones. As g1γ is smooth, then

∇xg1γ (X) =
(1+ τ )

γ
[mX − B] , where B = EkmA.

Again consider g2γ which is differentiable function,

g2γ (X) : =
1

2γ

k
∑

j=1

‖xj − x̄‖2,

=
1

2γ

k
∑

j=1

[

‖xj‖2 − 2〈xj, x̄〉 + 〈xj, x̄〉
]

,

=
1

2γ

[

‖X‖2F −
2

k
〈X,EkkX〉 +

1

k
〈X,EkkX〉

]

,

where Ekk is a k × k matrix with elements all ones. Then, the

gradients of g2γ are given by

∇xg2γ (X) =
1

γ

[

X −
1

k
EkkX

]

,

=
1

γ
[X −HX] , where H =

1

k
Ekk.

Next, we focus on X ∈ ∂g∗(Y) where g∗ is a Fenchel conjugate

defined in (2) and can be calculated using the fact that X ∈
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∂g∗(Y)⇔ Y ∈ ∂g(X). Since gγ is differentiable. Thus,

∇xgγ (X) = ∇xg1γ (X)+ ∇xg2γ (X),

Y =
(1+ τ )

γ
[mX − B]+

1

γ
[X − HX] ,

=

[

(1+ τ )

γ
m+

1

γ
[I−H]

]

X −

[

(1+ τ )

γ
B

]

,

=
1

γ

[

(1+ τ )m+ I− H
]

X −

[

(1+ τ )

γ
B

]

,

=
1

γ

[

(1+ τ )m+ 1]I− H
]

X −

[

(1+ τ )

γ
B

]

,

=
1

γ

[

aI− bH
]

X −

[

(1+ τ )

γ
B

]

,

where a = (1+ τ )m+ 1 and b = 1.

LetN = aI−bH, thenN is invertible asN−1 = αI+βH where

α =
1

a
=

1

(1+ τ )m+ 1
and

β =
b

a[a+ bk]
=

1

(1+ τ )m+ 1[(1+ τ )m+ 1+ k]
,

(see Lemma 5.1 of [8]). Therefore,

X = [αI− βH]
[

γYx + (1+ τ )B
]

. (16)

Next, we find the sub-gradient in (14) and this can be done by

search Y ∈ ∂hγ (X). Given a smooth functions h1γ and h2γ , the

partial gradient at xj for j = 1, . . . , k+ 1 is

h1γ =
(1+ τ )γ

2

m
∑

i=1

k+1
∑

j=1

[

dF(
xj − ai

γ
)

]2

∂h1γ

∂xj
(X) = (1+ τ )γ

m
∑

i=1

[

xj − ai

γ
− P(

xj − ai

γ
; F)

]

. (17)

Thus, ∇h1γ (X)) is a matrix with dimension (k+ 1)× n with jth

row is
∂h1γ
∂xj

(X).

The gradients of h2γ =
γ
2

∑k
j=1

[

dF(
xj−x̄
γ

)
]2

at X are given by

∂h2γ

∂xj
(X) =

xj − x̄

γ
− P(

xj − x̄

γ
; F)

−
1

k

k
∑

ℓ=1

[

xℓ − x̄

γ
− P(

xℓ − x̄

γ
; F)

]

. (18)

The projections in (17) and (18) are the Euclidean projection

from v ∈ R
n onto a unit closed box F which are defined as

P(v, F) = max(−e, min(v, e)).

where e ∈ R
n is a vector with one in each coordinate and zero

elsewhere.

Since we use ℓ1 norm, next we illustrate how to find the sub-

gradient Y ∈ ∂hγ (X) for the case where F is the closed unit

box in R
n.

For a given x ∈ R, we define

sign(x) : =















1 if x > 0,

0 if x = 0,

−1 if x < 0.

Then, we define sign(x) : = (sign(x1), . . . , sign(xn)) for x =

(x1, . . . , xn) ∈ R
n. Note that the sub-gradients of f (x) = ‖x‖1 at

x ∈ R
n are si = sign(x) if xi 6= 0 and si ∈ [−1, 1] if xi = 0.

The sub-gradients of the non-smooth functions h3γ and h4γ are

calculated as the sub-differential of point-wisemaximum functions,

h3γ : =

m
∑

i=1

max
r=1,...,k

k
∑

j=1,j6=r

‖xj − ai‖1 =

m
∑

i=1

φi(X),

where, for i = 1, . . . ,m,

φi(X) : = max







φir(X) =

k
∑

j=1,j6=r

‖xj − ai‖1, r = 1, . . . , k







.

To do this, for each i = 1, . . . ,m, we first find Ui ∈ ∂φi(X)

according to Lemma 3. Then, we define U : =
∑m

i=1 Ui to get a

sub-gradient of the function h3γ at X by the sub-differential sum

rule. To accomplish this goal, we first choose an index r∗ from the

index set {1, . . . , k} such that

φi(X) = φir∗ (X) =

k
∑

j=1,j6=r∗

‖xj − ai‖1.

Using the familiar sub-differential formula of the ℓ1 norm

function, the jth row u
j
i for j 6= r∗ of the matrix Ui is determined

as follows:

u
j
i : = sign(xj − ai) =















1 if xj > ai,

0 if xj = ai,

−1 if xj < ai.

The r∗th row of the matrix Ui is u
r∗

i : = 0.

Similarly, the sub-gradient of h4γ is given by

h4γ : = τ

k
∑

j=1

max
s=1,...,m

m
∑

i=1,i6=s

‖xj − ai‖1 = τ

k
∑

j=1

ψj(X),

where, for j = 1, . . . , k,

ψj(X) : = max







ψjs(X) =

m
∑

i=1,i6=s

‖xj − ai‖1, s = 1, . . . ,m







.

To do this, for each j = 1, . . . , k, we first find Wj ∈ ∂ψj(X).

Then, we define W : = τ
∑k

j=1 Wj to get a sub-gradient of the

function h4γ at X by the sub-differential sum rule. To accomplish

this goal, we first choose an index s∗ from the index set {1, . . . ,m}

such that

ψj(X) = ψjs∗ (X) =

k
∑

j=1,j6=s∗

‖xj − ai‖1.
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The s∗th row of the matrixWj is w
j
s∗ : = 0.

Thus, the sub-gradient of h4γ is defined as

∂h4γ

∂xj
: = τW.

From the sub-gradient calculated above we have,

Y =
∂h1γ

∂xj
(X)+

∂h2γ

∂xj
(X)+

∂h3γ

∂xj
(X)+

∂h4γ

∂xj
(X) (19)

Now, we have in position to implement DCA algorithm that

will solve the problem as shown in DCA Algorithm 2.

Input : A,X0, τ0, γ0,N ∈ N,

while stopping criteria for (γ , τ , ε) not reached do

α← 1
(1+τ1)m+1

,

β ← 1
(1+τ1)m+1[(1+τ1)m+1+k]

,

for k = 1, . . . ,N do

Find Yk ∈ ∂h(xk−1), (19)

Xk ← [αI+ βH]
[

γYk + (1+ τ )B
]

, (16)

end

update γ and τ ,

end

Output: XN .

Algorithm 2. Bi-level hierarchical clustering.

4 Simulation results

The numerical simulation was performed on an HP laptop with

an Intel(R) Core(TM) i7-8565U at 1.80 GHz 1.99 GHz processor,

8.00 GB RAM with MATLAB version R2017b. Various parameters

were used during the simulation, among others we used a large

increasing penalty parameter τ and a decay smoothing parameter

γ . These parameters are updated during iteration as in [6]; τi+1 =

σ1τi, σ1 > 1 and γi+1 = σ2γi, 0 < σ2 < 1 and ǫ = 1e−6.We chose

the initial penalty parameter ( τ0 = e−6 ) and the initial smoothing

parameter γ0 = 1. In addition, after varying the parameters, we

chose σ1 ≤ 16e9 as the growth factor of the penalty parameter,

σ2 = 0.5 the decrease factor of the smoothing parameter, and the

stopping criterion
‖Xk+1−Xk‖F
‖Xk‖F+1

≤ ǫ for inner for loop. To implement

the algorithms, we used randomly selected default cluster centers

from the datasets.

The performance of the DCA Algorithm 2 was tested with

different datasets. We first tested the algorithm on a small

dataset taken from [8], and the result shows that it converges

to the same cluster centers as in [8] with a different objective

value due to the ℓ1 norm. Since the ℓ1 distance is greater

than or equal to the Euclidean distance, it depends on the

data points. As shown in Table 1, the algorithm converges to

the optimal point approximately 85.71%. This means that out

of 7 iterations, 6 of them converge to the same objective

valve.

Second, we tested the proposed algorithm with EIL76 (The

76 City Problem) datasets taken from [7] with four clusters,

one of which serves as HQ, which converge to near-optimal

cluster centers in a reasonable time compared to study [8, 13]

(see Figure 1).

It is also observed in the EIL76 (The 76 City Problem)

data which converge to the same or close cluster centers with

higher objective cost, fewer iterations, and almost the same

time compared to the study of [8] iterated using MATLAB

(see Table 2).

Third, we applied our proposed algorithm to a GPS data

from 142 cities and towns in Ethiopia with more than 7,000

inhabitants, including 65 in Oromia regional state. We tested the

algorithm with 65 nodes, 4 cluster centers, one of which serves

as HQ, and 142 nodes with six clusters (see Figures 2, 3), which

converge 86% to the optimal solution. This means that out of 7

iterations, 6 of them converge to the near-optimal values shown

in Tables 3, 4.

Fourth, we tested the proposed algorithm with PR1002 (The

1002 City Problem) datasets taken from [7] with seven clusters,

one of which serves as HQ, which converge to near-optimal cluster

centers in a reasonable time compared to study [8, 13] (see Table 5

and Figure 4).

TABLE 1 Ten iterations for the 15 point test dataset.

Dataset Cost Time Iteration Centers Data size

Test data 19.142400 1.101548 80 3 15

Test data 19.189316 1.980110 80 3 15

Test data 19.232334 1.839473 80 3 15

Test data 19.232334 1.839473 80 3 15

Test data 19.213091 1.807942 80 3 15

Test data 19.210684 1.816595 80 3 15

Test data 20.904108 2.005234 80 3 15

Test data 19.199307 1.617948 80 3 15

Test data 19.191683 1.880256 80 3 15

Test data 19.190641 1.795777 80 3 15

For γ0 = 1, τ0 = 10−6 , σ1 = 16e+ 9, and σ2 = 0.75.
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BA

FIGURE 1

Optimal cost of EIL76 (The 76 City Problem) data taken from [7] with four clusters one serves as HQ. (A) A EIL76 data with Algorithm 2. (B) A EIL76

data with brute-force iteration.

TABLE 2 Ten iterations for EIL76 dataset.

Dataset Cost Time Iteration Centers Data size

EIL76 1,370.002095 4.966008 300 4 76

EIL76 1,360.029069 6.577355 300 4 76

EIL76 1,360.034103 5.752709 300 4 76

EIL76 1,360.034103 5.789645 300 4 76

EIL76 1,360.034103 6.184165 300 4 76

EIL76 1,362.015115 11.135013 300 4 76

EIL76 1,360.040060 6.680976 300 4 76

EIL76 1,360.034103 7.120168 300 4 76

EIL76 1,360.034103 5.275355 300 4 76

EIL76 1,360.034103 6.191321 300 4 76

For γ0 = 1, τ0 = 10−6 , σ1 = 16e+ 9, and σ2 = 0.5.

To show how the objective functions improved with

iteration, we include a plot of the first few iterations of

Figures 3, 4, which shows the dynamics of the algorithm

(see Figures 3A, B, 4A, B).

In general, since the algorithm is a modified DCA and DCA is a

local search algorithm, there is no guarantee that our algorithms

converge to the global optimal solution. However, we compared

our result with ℓ2 norm in [8, 13], and it shows that our proposed

algorithm converges with fewer iteration but relatively the same

computational time for data iterated with MATLAB in [8]. In

addition, we compared our result with brute-force generated

solutions for datasets with fewer nodes (see Figures 1A, B, 2A,

B) which converge to a near-optimal value with reasonable time

compared to the brute-force iterations.

We expect that our method used in this study to solve the two-

level clustering problemwith the ℓ1 norm is less sensitive to outliers

compared to the ℓ2 norm, which minimizes possible clustering

errors. In addition, it can be used to solve other non-smooth

and non-convex optimization problems in signal processing,

such as image pixel clustering for image segmentation and

compressed sensing.

For the following tables, we conducted an experiment with

fixed iteration numbers for each dataset and initial cluster centers

were randomly selected from the datasets. The cost is obtained by

minimizing Equation (7).

Figure 5 shows the optimal cost of test data taken from [8] with

optimal clusters centers and HQ,

X =







7.0000 2.0000

4.5000 2.0000

2.0000 2.0000






, HQ = (4.5000 2.0000)

In Figure 1 the selected cluster centers and HQ are

X =











26.0000 29.0000

35.0000 60.0000

50.0000 40.0000

48.0000 21.0000











HQ = (50.0000 40.0000),
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A B

FIGURE 2

Datasets of 65 Oromia regional cities and towns with four clusters one serves as HQ. (A) Sixty-five data points using Algorithm 2. (B) Sixty-five data

points with brute-force iteration.

A B C

FIGURE 3

Datasets of 142 Ethiopian towns and cities with six clusters one serves as HQ. (A) Beginning of iterations. (B) Few iterations. (C) Optimal iterations.

TABLE 3 Ten iterations for the 65 point test dataset.

Dataset Cost Time Iteration Centers Data size

A 65 points data 87.689552 7.639907 250 4 65

A 65 points data 87.889552 7.655031 250 4 65

A 65 points data 89.889552 7.542318 250 4 65

A 65 points data 87.889552 7.520294 250 4 65

A 65 points data 87.389552 8.101386 250 4 65

A 65 points data 87.689552 7.324263 250 4 65

A 65 points data 87.789552 7.289665 250 4 65

A 65 points data 87.789552 7.545756 250 4 65

A 65 points data 87.389552 7.399864 250 4 65

A 65 points data 87.089552 7.460620 250 4 65

For γ0 = 1, τ0 = 10−6 , σ1 = 16e+ 9, and σ2 = 0.75.
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TABLE 4 Ten iterations for the 142 point test dataset.

Dataset Cost Time Iteration Centers Data size

A 142 points data 233.793443 13.211982 300 6 142

A 142 points data 233.793443 13.967717 300 6 142

A 142 points data 233.793443 13.197907 300 6 142

A 142 points data 233.793443 13.857134 300 6 142

A 142 points data 233.893443 15.259091 300 6 142

A 142 points data 233.893443 12.552241 300 6 142

A 142 points data 241.793443 13.426098 300 6 142

A 142 points data 233.783342 12.750388 300 6 142

A 142 points data 233.783241 10.986166 300 6 142

A 142 points data 233.783242 12.123523 300 6 142

For γ0 = 1, τ0 = 10−6 , σ1 = 16e+ 9, and σ2 = 0.5.

TABLE 5 Ten iterations for PR1002 dataset.

Dataset Cost Time Iteration Centers Data size

PR1002 2.037468e+6 55.747814 350 7 1002

PR1002 2.036560e+6 49.831589 350 7 1002

PR1002 2.036560e+6 47.624006 350 7 1002

PR1002 2.034309e+6 56.673023 350 7 1002

PR1002 2.034309e+6 62.799942 350 7 1002

PR1002 2.034309e+6 58.704935 350 7 1002

PR1002 2.034309e+6 61.162610 350 7 1002

PR1002 2.033309e+6 65.173468 350 7 1002

PR1002 2.033309e+6 65.183165 350 7 1002

PR1002 2.035309e+6 56.747571 350 7 1002

For γ0 = 1600, τ0 = 10−6 , σ1 = 8000, and σ2 = 0.5.

FIGURE 4

Datasets of PR1002 (The 1002 City Problem) taken from [7] with seven clusters and one serving as HQ. (A) Beginning of iteration. (B) Few iteration.

(C) Optimal iteration.
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FIGURE 5

Fifteen point test dataset with three clusters and one serves as HQ.

In Figure 2 the selected cluster centers and HQ are

X =











8.4500 36.3500

8.8990 39.9171

8.6607 38.2124

6.6100 38.4200











and HQ = (8.6607 38.2124).

In Figure 3 the selected cluster centers and HQ are

X =



















10.3400 37.7199

8.4500 36.3500

6.9595 39.1795

8.9131 38.6186

8.9808 40.1709

12.0400 39.0400



















and HQ = (8.9156 38.6189).

For this particular dataset, we used γ0 = 1600 and σ1 = 8000.

In Figure 4 the selected cluster centers and HQ are

X =























5218.0000 4090.0000

5923.0000 9557.0000

1083.9000 9857.0000

1473.5000 4145.0000

9977.0000 3008.0000

1547.1000 9522.0000

9892.0000 6023.0000























and HQ = (9891.6000 6023.0000).

5 Conclusion

In this study, we used a continuous formulation of discrete

two-level hierarchical clustering, where the distance between

two data points is measured by the ℓ1 norm. As a result, it

became non-smooth and non-convex, on which Nesterov’s

smoothing and DC-based algorithms were implemented.

We observe that parameter selection is the decisive factor

in terms of accuracy and speed of convergence of our

proposed algorithms. The performance of Algorithm 2 highly

depends on the initial values set to the penalty and smoothing

parameter.

The algorithm was tested with real and known source

datasets of different sizes in MATLAB. Starting from

different random initial cluster centers, the algorithm

converges to a near-optimal value in a reasonable time.

As a result, improved iteration time for large-scale

problems and convergence to a near-optimal solution were

observed.
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