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A signal decomposition is presented that disentangles the deterministic and

stochastic components of a multivariate time series. The dynamical component

analysis (DyCA) algorithm is based on the assumption that an unknown

set of ordinary di�erential equations (ODEs) describes the dynamics of the

deterministic part of the signal. The algorithm is thoroughly derived and

accompanied by a link to the GitHub repository containing the algorithm.

The method was applied to both simulated and real-world data sets and

compared to the results of principal component analysis (PCA), independent

component analysis (ICA), and dynamicmode decomposition (DMD). The results

demonstrate that DyCA is capable of separating the deterministic and stochastic

components of the signal. Furthermore, the algorithm is able to estimate

the number of linear and non-linear di�erential equations and to extract the

corresponding amplitudes. The results demonstrate that DyCA is an e�ective tool

for signal decomposition and dimension reduction of multivariate time series. In

this regard, DyCA outperforms PCA and ICA and is on par or slightly superior to

the DMD algorithm in terms of performance.

KEYWORDS

dynamical component analysis (DyCA), dynamicmodedecomposition (DMD), dimension
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1 Introduction

Multivariate signal processing is important in a broad spectrum of applications for

understanding complex systems, improving signal quality, making accurate predictions,

and extracting meaningful information from multivariate data sources.

One way of analyzing multivariate data, especially multivariate (vector) time series,

is to decompose the signal into relevant components (modes and vectors) and their

corresponding amplitudes (time series). This leads to a matrix factorization and by

looking at the resulting amplitudes to a dimension reduction of the signal. The approach

may also be regarded as a form of signal filtration, i.e., a separation of relevant and

irrelevant components. Fields of application are manifold and include the analysis of

climate data, e.g., [1], financial time series, e.g., [2], medical data, e.g., artifact removal in

electroencephalographic data [3], speech recognition, e.g., [4], modern farming, e.g., [5],

and many more.

The most widely used techniques for signal decomposition are based on principal

component analysis (PCA) [6, 7] and are used in a wide range of applications—

sometimes called by different names, such as Karhunen-Loève transform (KLT),

proper orthogonal decomposition (POD), eigenvalue decomposition (EVD),

empirical orthogonal functions (EOF), empirical eigenfunction decomposition,
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and empirical modal analysis. PCA decomposes the signal into a

set of orthogonal components (modes) and their corresponding

amplitudes (time series) such that the variance of the components

is maximized. The components are ordered by their variance, and

the first components capture the most variance of the signal. It

is a well-established technique for dimension reduction but has

some limitations due to its linear character. A variety of extensions

have been developed to overcome these limitations. We would

like to mention two of them: kernel PCA, calculating principal

components in high-dimensional feature spaces, related to the

input space by some non-linear map [8], and non-linear PCA,

based on auto-associative neural networks (autoencoder) [9].

Another way of extending PCA is to consider time leads and

lags in the decomposition of the signal leading to a generalized

dynamic PCA [2]. Shifting the focus of the decomposition on

the dynamics of a multivariate signal is realized by the field of

dynamic mode decompositions (DMD) [10] and its extensions

based on Koopman operator theory [11, 12]. Principal interaction

and oscillation patterns (PIPs and POS) [13] are precursors to the

concept of DMD.

However, another very common approach to decompose a

multivariate signal is given by independent component analysis

(ICA) [14] based on the statistical assumption that the relevant

components of the signals are statistically independent non-

Gaussian signals. Different techniques have been developed to

estimate the independent components with FastICA [15, 16] as the

most widely used algorithm.

Our approach, called dynamical component analysis (DyCA)

and first presented in Seifert et al. [17] and Korn et al. [18], is based

on a separation of amplitudes that are not statistically independent

as in ICA, but dynamically coupled by a set of ordinary differential

equations (ODEs). DyCA is related to the concepts of dynamic

PCA and DMD, as it also focuses on signal dynamics and analyzes

its time-lagged representation [19]. With respect to its possible

applications, DyCA lies in between ICA and DMD: the signal

is separated as in ICA, but the underlying criterion is based on

dynamics as in DMD and Koopman operator theory.

The report is organized as follows: In the subsequent section,

we present the case of application and the underlying assumptions.

The derivation of the DyCA algorithm, a brief summary of the

utilized methods for comparison with DyCA and the setup of the

investigated examples are introduced in Section 3. In Section 4, we

present the results of the application of DyCA to the examples and

conclude with a discussion in Section 5.

2 Materials and equipment

Starting point is a multivariate signalQ ∈ R
N×T withN vector-

valued components qi(t) and t = t1, . . . , tT , (ti−1 − ti = 1t)

representing the time discrete evolution with T > N:

Q =




q1(t)
...

qN(t)


 =




q1(t1) · · · q1(tT)
...

. . .
...

qN(t1) · · · qN(tT)


 (1)

We assume that

• the signal splits into a deterministic part QD, independent

component noise QCN , and additive noise QAN ,

Q = QD + QCN + QAN , (2)

• both deterministic part and component noise can be

decomposed into vector-valued independent components W

and 9 and corresponding amplitudes X and 4, such that

QD = WX and QCN = 94, withW ∈ R
N×n,

9 ∈ R
N×p, X ∈ R

n×T , 4 ∈ R
p×T , (3)

• the amplitudes 4 of the component noise are random,

• the dynamics of the amplitudes X of the deterministic part

obey a set of ordinary differential equations (ODEs) with m

linear and n−m non-linear equations. The coefficientmatrixA

(with elements aij) corresponding to the linear part is denoted

by A = [A1,A2] ∈ R
m×n with A1 ∈ R

m×m and A2 ∈

R
m×(n−m) such that ẊL = AX. By the notation Ẋ, we refer

to the derivatives of the vector components xi with respect to

time evaluated at all time steps t:

X =




x1(t)
...

xm(t)

xm+1(t)
...

xn(t)




=

[
XL

XNL

]
, Ẋ =

[
ẊL

ẊNL

]
=

[
AX

f (X)

]

=

[
A1XL + A2XNL

f (X)

]
. (4)

The function f ∈ C
∞(Rn×T ,R(n−m)×T) is an unknown,

non-linear, smooth function and remains unknown in the

discussed algorithm.

Note that these assumptions allow for a possible transformation

T ∈ GL(n) of X preserving the structure of the set of ODEs:

Consider the partition

T =

[
T11 T12

T21 T22

]
(5)

where T11 ∈ R
m×m, T21 ∈ R

(n−m)×m, T12 ∈ R
m×(n−m), and

T22 ∈ R
(n−m)×(n−m) and write W̃ = WT−1, X̃ = TX and ˙̃X = TẊ.

The ODE condition yields

˙̃X = TẊ

=

[
T11 T12

T21 T22

] [
A(T−1X̃)

f (T−1X̃)

]
=

[
T11AT

−1X̃ + T12f (T
−1X̃)

T21AT
−1X̃ + T22f (T

−1X̃)

]
.(6)

In order to preserve the structure of the ODE, the above

computation shows that T12f (T
−1X̃) = 0 needs to be fulfilled for

all X̃. A sufficient condition is T12 = 0. Assuming T12 = 0, one

obtains that T has the following block structure

T =

[
T11 0

T21 T22

]
∈ GL(n) and ˙̃X =

[
ÃX̃

f̃ (X̃)

]
(7)

holds, where Ã = T11AT
−1 and f̃ (X̃) = T21AT

−1X̃ +

T22f (T
−1X̃).
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3 Methods

3.1 DyCA algorithm

We present a comprehensive derivation that summarizes Uhl

et al. [20] and Romberger et al. [21] with some important

improvements concerning the algorithm to extract all relevant

amplitudes. The Python implementation of the algorithm has been

released recently and is publicly available1.

Goal of dynamical component analysis (DyCA) is to

disentangle the deterministic amplitudes X of the signal Q

based on the structure of the assumed dynamics (Equation 4). It is

based on minimizing the least square error of ẊL = AX. To obtain

a unique solution with respect to possible scaling of the amplitudes,

the constraint diag(ẊLẊ
T
L ) = Im is considered:

min
X,A

‖ẊL − AX‖2 s.t. diag(ẊLẊ
T
L ) = Im. (8)

The freedom described in Equation 7 will be discussed later.

As there exists a generalized left inverse U ∈ R
n×N such that

UW = In andU9 = 0, the amplitudes X are approximated by X ≃

UQ in the case of low additive noise QAN . Therefore, the partition

of X into X =

[
XL

XNL

]
is given by U =

[
UL

UNL

]
∈ R

n×N with

UL ∈ R
m×N and UL ∈ R

(n−m)×N . This leads to the optimization

problem with respect to the unknown matrices U and A:

min
U,A

‖ULQ̇− AUQ‖2 s.t. diag((ULQ̇)(ULQ̇)
T) = Im. (9)

Introducing correlation matrices C0, C1 and C2 ∈ R
N×N

C0 = QQT , C1 = Q̇QT , C1 = Q̇Q̇T , (10)

and a diagonal Lagrange parameter matrix 6 ∈ R
m×m with

diagonal elements σ1, . . . , σm ∈ R, we obtain from Equation 9 a

cost function g,

g(U,A,6) = tr(ULC2U
T
L )− 2 tr(ULC1U

TAT)

+ tr(AUC0U
TAT)+ tr(6(ULC2U

T
L − Im)). (11)

The critical points of g are obtained by setting the partial

directional derivatives of g with respect to the three matrix-valued

arguments U,A,6 to zero leading to the following expressions:

C2U
T
L (Im + 6)− C1U

TAT − (CT
1UL − C0U

TAT)A = 0, (12)

U(C0U
TAT − CT

1UL) = 0, (13)

diag(ULC2U
T
L )− Im = 0. (14)

A sufficient condition is given by

C2U
T
L (Im + 6) = C1U

TAT , C0U
TAT = CT

1UL,

diagULC2U
T
L = Im, (15)

which bears resemblance to the characteristic DyCA equations

presented in Uhl et al. [20] if we introduce the diagonal matrix

1 https://github.com/HS-Ansbach-CCS/dyca

3 : = Im + 6 (with diagonal elements λi) and a matrix V : = AU,

reflecting the degree of freedom described in Equation 7:

C2U
T
L 3 = C1V

T , C0V
T = CT

1UL, ULC2U
T
L = Im. (16)

As we assume a full rank signal Q2, the correlation matrix C0 is

regular, and therefore, the second equation in Equation 16 can be

solved for VT ,

VT = C−1
0 CT

1UL. (17)

Inserting this into the first equation by Equation 16, the

generalized eigenvalue problem

C1C
−1
0 CT

1UL = C2U
T
L 3 (18)

is obtained for solving Equation 16.

Evaluating the critical point (Equation 16) in the cost function

(Equation 11) yields the minimal value gmin = − tr(6) = m −

tr(3), i.e., the generalized eigenvalues λi with 0 ≤ λi ≤ 1 measure

the goodness of fit concerning the linear part of the dynamics

(Equation 8): A value close to 1 indicates a good match for the

amplitude xi(t) with

ẋi(t) ≃

n∑

j=1

aijxj(t). (19)

Thresholding with an appropriate parameter α the spectrum of

the generalized eigenvalues λi of Equation 18 yields an estimate m̂

ofm,

m̂ = |{λi|λi > α}|, (20)

and the corresponding UL ∈ R
m̂×N an estimate of the

amplitudes X̂L:

X̂L = ULQ. (21)

An estimate of the amplitudes X̂NL has to be extracted from the

amplitudes VQ. By construction of V : = AU the amplitudes XL

are included in the linear combination of AX = A1XL + A2XNL,

therefore disentangling the amplitudes can only be solved except

possible transformations (Equation 7). For an equally weighted

comparison of the amplitudes, we use thresholding the economy-

size singular value decomposition (SVD) of the normalized matrix[
NLULQ

NVVQ

]
: =

[
ŨLQ

ṼQ

]
∈ R

2m̂×T with diagonal matrices NL,NV ∈

R
m̂×m̂ and diag(ŨLC0Ũ

T
L ) = diag(ṼC0Ṽ

T) = Im̂. Let the

economy-size SVD be given by BSYT ,

[
ÛLQ

V̂Q

]
= BSYT , (22)

with matrices B ∈ R
2m̂×2m̂, Y ∈ R

2m̂×T , rectangular diagonal

matrix S ∈ R
2m̂×2m̂, and diagonal elements s1, s2, . . . s2m̂. The

2 If the signal does not fulfill our requirement of a full rank signal, the signal

has to be transformed by PCA in a preprocessing step, leading to a dimension

reduced signal Q̂ and analyzed by DyCA in this reduced data space.
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dimensionality of the embedded signal n̂ can now be estimated by

an appropriate threshold β with

n̂ = |{si|si/ tr(S) > β}|. (23)

and rearranged amplitudes are then approximated by

X̂ = BŜYT (24)

with a truncated rectangular diagonal matrix Ŝ and diagonal

elements s1, s2, . . . sn̂.

Note that this approach of introducing a corresponding pair

of matrices UL and V can only approximate the dimension of

the embedded signal n if n ≤ 2m; i.e., the number m of linear

differential equations must be greater than or equal to the number

n − m of non-linear differential equations: m ≥ n − m. Moreover,

note that, second, the approximation of the relevant amplitudes

and the corresponding dimension is an improvement over the

previous approach in Uhl et al. [20], as it is now based on the

possible amplitudes
[
ŨLQ, ṼQ

]T
instead of the projection vectors

[
UL, V

]T
alone.

3.2 Dimension reduction methods PCA,
ICA, and DMD

The examples of application are compared to the results of

the PCA, ICA, and DMD algorithms. The PCA algorithm is based

on solving the eigenvalue problem of the correlation matrix C0.

The eigenvalues of the correlation matrix will be denoted in the

following with pi. The utilized ICA algorithm is the kurtosis-based

FastICA algorithm [15].

The DMD algorithm [12] is based on the eigenvalues of

the best-fit linear matrix operator B that approximates the time

evolution of the signal:

qi(t + 1) = Bqi(t). (25)

The matrix B is calculated by the pseudoinverse of signal Q and

the time-lagged signal Q′. The eigenvalues of B will be denoted

in the following with µi. The amplitudes corresponding to the

eigenvectors 8i are calculated by the inverse of the eigenvectors,

8−1Q, and rearranged to obtain real-valued amplitudes from

the complex conjugate pairs. Mode selection is performed by

consideringmodes with the largest absolute value of its eigenvalues.

3.3 Examples of application

Different examples of simulated and real-world data are

presented to demonstrate the performance and the limitations of

the DyCA algorithm. Details of the signals will be presented below.

The derivatives of the signals Q—both, simulated signal and EEG

signal—are approximated by the central finite difference scheme

with a given time step of1t: Q̇(t) = (Q(t+1t)−Q(t−1t))/(21t).

Note that this is a major source of inaccuracy. If better derivatives

(measurement, filter) are available, the performance of the DyCA

algorithm will be improved.

3.3.1 Simulated examples
The simulated examples consist of full rank signals Q ∈

R
N×T with N = 20 and T = 100, fulfilling the assumptions

(Equations 2, 3). The additive noise QAN is assumed to be standard

normally distributed with a signal-to-noise ratio (SNR) of 50 dB.

The deterministic part QD is generated by numerical integration

(standard explicit Runge–Kutta (4, 5) procedure [22]) of the given

A B

FIGURE 1

Van der Pol oscillator: (A) deterministic amplitudes x1(t), x2(t) (forming X) and stochastic amplitudes ξ1(t), ξ2(t) (forming Ū); (B) all channels of the
multivariate signal Q = XW + 49.
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A B

FIGURE 2

Van der Pol oscillator: (A) complex DMD eigenvalues µi, (B) characteristic values: PCA eigenvalues pi, DyCA generalized eigenvalues λi, and SVD
values si of temporary DyCA amplitudes.

A B

C D

FIGURE 3

Van der Pol oscillator: original deterministic amplitudes in blue, transformed estimated amplitudes in red, estimated by: (A) PCA, (B) ICA, (C) DMD,
and (D) DyCA.

set of ODEs with predefined initial conditions and a sampling rate

of 100 Hz. The signals are resampled with a time step 1t = 0.18 s

and form the matrix X = [x1(t), . . . , xn(t)]
T . The component noise

QCN consists of two random amplitudes ξ1(t), ξ2(t), i.e., p = 2,

that form the matrix 4 = [ξ1(t), ξ2(t)]
T . Both the deterministic

amplitudes and the stochastic amplitudes are shown for each

example. The components W and 9 are generated by random

numbers drawn from the uniform distribution in the interval (0,1).

The SNR of the component noise QCN is set to 0 dB.

Three different simulated examples are presented:

1. Van der Pol oscillator: The Van der Pol oscillator [23] is a two-

dimensional (n = 2) oscillator with one linear (m = 1) and one

non-linear differential equation. The ODEs are given by

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)+ ǫ
(
1− x1(t)

2
)
x2(t). (26)

For the simulation, the parameter ǫ is set ǫ = 5.

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2024.1456635
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Uhl et al. 10.3389/fams.2024.1456635

2. Rössler attractor: The Rössler attractor [24] is a chaotic attractor

with two linear (m = 2) and one non-linear governing

differential equation:

ẋ1(t) = −x2(t)− x3(t)

ẋ2(t) = x1(t)+ ax2(t)

ẋ3(t) = b+ x3(t)
(
x1(t)− c

)
(27)

TABLE 1 Van der Pol oscillator: relative error of the estimated amplitudes.

Method Error (%)

PCA 93.2

ICA 15.0

DMD 19.2

DyCA 4.7

and selected parameters a = 0.15, b = 0.2 and

c = 10.

3. Lorenz attractor: The Lorenz attractor [25] does not fulfill the

DyCA requirements. The underlying set of differential equations

consists of one linear (m = 1) and two non-linear differential

equations:

ẋ1(t) = α
(
x2(t)− x1(t)

)

ẋ2(t) = x1(t)
(
β − x3(t)

)
− x2(t)

ẋ3(t) = x1(t)x2(t)− γ x3(t) (28)

with the parameters α = 10, β = 28 and γ = 8/3.

3.3.2 Electroencephalographic signal
As a real-world example, we consider a multivariate EEG signal

Q ∈ R
N×T with N = 25 and T = 1, 000 representing the

time discrete evolution of an EEG signal during an epileptic so-

called petit-mal seizure. The 25 channels are recorded and labeled

A B

FIGURE 4

Roessler attractor: (A) deterministic amplitudes x1(t), x2(t), x3(t) (forming X) and stochastic amplitudes ξ1(t), ξ2(t) (forming 4); (B) all channels of the
multivariate signal Q = XW + 49.

A B

FIGURE 5

Roessler attractor: (A) complex DMD eigenvalues µi, (B) characteristic values: PCA eigenvalues pi, DyCA generalized eigenvalues λi and SVD values si
of temporary DyCA amplitudes.
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A B

C D

FIGURE 6

Roessler attractor: original deterministic amplitudes in blue, transformed estimated amplitudes in red, estimated by: (A) PCA, (B) ICA, (C) DMD, and
(D) DyCA.

according to the modified 10/20 system. The signal is recorded

with a sampling rate of 256 Hz and preprocessed by a zero-phase

bandpass filter with a passband of 0.5–30 Hz. This dataset is kindly

provided by the Epilepsy Center at the Department of Neurology

Erlangen. The motivation to analyze this type of EEG data with

DyCA is based on physiological findings that Shilnikov chaos can

be observed in the brain during petit-mal seizures [26]. This type

of chaos is governed by a three-dimensional set of differential

equations with two linear and one non-linear ODE, thus fulfilling

the assumptions for the application of DyCA. This occurrence

of Shilnikov chaos in EEG data of petit-mal epileptic seizures

has been confirmed by our data-driven approach presented in

Seifert et al. [17].

4 Results

For all investigated datasets, the characteristic values

(eigenvalues of PCA and DMD, generalized eigenvalues of

DyCA, and singular values of possible DyCA amplitudes) are

shown in one figure. Due to the invariance of the amplitudes

with respect to a linear transformation3 D the amplitudes are

transformed to minimize the Frobenius norm of the difference

between the estimated amplitudes X̂ and the simulated amplitudes

X, D = argminD ||X − DX̂||. These transformed estimated

amplitudes DX̂ are shown for each simulated dataset and

3 Q̂ = ŴX̂ = ŴD−1DX̂ = ˆ̃W ˆ̃X.

TABLE 2 Roessler attractor: relative error of the estimated amplitudes.

Method Error (%)

PCA 82.7

ICA 98.5

DMD 5.6

DyCA 0.9

for each algorithm in a second figure (original deterministic

amplitudes in blue, transformed estimated amplitudes in red).

In addition to this visual impression, a quantitative measure

of the performance of the different algorithms is provided

in a table. For each simulated dataset, the table summarizes

the relative errors of the Frobenius norm of the difference

between the estimated amplitudes DX̂ and the simulated

amplitudes X.

4.1 Simulated examples

1. Van der Pol oscillator

The amplitudes both deterministic, x1(t) and x2(t), and

stochastic, ξ1(t) and ξ2(t), are shown in Figure 1A, and the

resulting multivariate signal Q is shown in Figure 1B. The

deterministic amplitudes show a limit cycle behavior, and

the stochastic amplitudes are uncorrelated. Figure 2B shows
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A B

FIGURE 7

Lorenz attractor: (A) deterministic amplitudes x1(t), x2(t), x3(t) (forming X) and stochastic amplitudes ξ1(t), ξ2(t) (forming Ū); (B) all channels of the
multivariate signal Q = XW + 49.

A B

FIGURE 8

Lorenz attractor: (A) complex DMD eigenvalues µi, (B) characteristic values: PCA eigenvalues pi, DyCA generalized eigenvalues λi and SVD values si
of temporary DyCA amplitudes.

on the left side four non-vanishing PCA eigenvalues pi
consistent with the simulation of two (n = 2) deterministic

and two (p = 2) stochastic amplitudes. The two dominant

corresponding amplitudes are shown in Figure 3A. They

represent a mixture of the deterministic and stochastic

amplitudes as deterministic and stochastic components

are equally distributed in the simulation (SNR is set to 0

dB). The amplitudes obtained by FastICA are shown in

Figure 3B. They show a high degree of correlation with the

simulated deterministic amplitudes. The eigenvalues of the

DMD algorithm µi are shown in Figure 2A. Mode selection

based on the absolute value of the complex eigenvalues

can be clearly performed, and two dominant modes with

large absolute values are observed—consistent with the

simulation of two deterministic amplitudes. This is confirmed

by the amplitudes shown in Figure 3C. The DyCA algorithm

yields the generalized eigenvalues λi, which are displayed

in the center of Figure 2B. One generalized eigenvalue is

close to 1 corresponding to the simulation based on one

linear differential equation. The singular values si on the

right-hand side of Figure 2B show that the DyCA algorithm

is able to extract the two deterministic amplitudes. The

amplitudes are shown in Figure 3D and illustrate the separation

of the deterministic and stochastic amplitudes. Table 1

summarizes the relative errors of the Frobenius norm of the

difference between the estimated amplitudes and the simulated

amplitudes and show that DyCA yields for that example the

best results.

2. Roessler attractor

Deterministic and stochastic amplitudes are shown in

Figure 4A and the resulting multivariate signal in Figure 4B.

Similar to the Van der Pol oscillator, the results are consistent
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A B

C D

FIGURE 9

Lorenz attractor: original deterministic amplitudes in blue, transformed estimated amplitudes in red, estimated by: (A) PCA, (B) ICA, (C) DMD, and (D)

DyCA.

with the simulation: we observe five PCA eigenvalues pi 6=

0, due to three (n = 3) deterministic and two (p = 2)

stochastic amplitudes (left side of Figure 5B). Mode selection

of the DMD algorithm based on the DMD eigenvalues

(Figure 5A) yields three modes, and DyCA indicates two

linear differential equations (m̂ = 2) by two generalized

eigenvalues close to 1 (center of Figure 5B). The spectrum

of the singular values yields three deterministic modes

(n̂ = 3) (right side of Figure 5B). The three obtained

transformed amplitudes by PCA, FastICA, DMD, and DyCA

are shown in Figure 6. DMD and DyCA clearly deliver the

best results. The quantitative summary of these findings

is given in Table 2. DMD and DyCA lead by far better

results than PCA and FastICA, again DyCA with the

best results.

3. Lorenz attractor

Again the deterministic and stochastic amplitudes are shown

(Figure 7A) and all channels of the multivariate signal in

Figure 7B. Five non-vanishing PCA eigenvalues are observed

(Figure 8B, left side), as the simulation consists of three (n =

3) deterministic and two (p = 2) stochastic amplitudes.

In the case of DMD, mode selection is challenging: DMD

yields one dominant mode with respect to the absolute value

of the complex DMD eigenvalues, in addition to two less

obvious yet discernible modes (Figure 8A). DyCA indicates

one linear differential equation (m̂ = 1) by one generalized

eigenvalue close to 1 (center of Figure 8B). This corresponds

TABLE 3 Lorenz attractor: relative error of the estimated amplitudes (∗ in

the case of two amplitudes).

Method Error (%)

PCA 52.8

ICA 99.6

DMD 12.9

DyCA 86.9 (11.1∗)

to the fact that the Lorenz attractor consists of one linear

and two non-linear ODE. This is correctly detected by DyCA

but does not lead to a correct signal decomposition, as

the requirements are not fulfilled. Nevertheless, to make a

comparison of the methods, we assume that DyCA would yield

two linear equations, which also might be interpreted from the

spectrum of the generalized eigenvalues and we chose n̂ =

3 from the spectrum of the singular values (Figure 8B, right

side). The transformed amplitudes by PCA, FastICA, DMD and

DyCA are shown in Figure 9. One observes that only DMD

yields amplitudes related to the simulated amplitudes. This

is quantitatively summarized in Table 3. Note that looking at

the first two amplitudes—which then would fulfill the DyCA

requirements—we get good results with DyCA and even better

than DMD.
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4.2 EEG data

The multivariate EEG signal of an epileptic seizure dicussed

in Section 3.3.2 is shown in Figure 10. The left side of Figure 11B

shows the PCA eigenvalue spectrum. There are two dominant

components which is due to the coherent structure of the petit-

mal epileptic seizure. Mode selection is for both DMD and DyCA

a difficult task. The DMD complex eigenvalues (Figure 11A) do

not separate with respect to the absolute value. The separation of

the generalized DyCA eigenvalue spectrum (center of Figure 11B)

is not that obvious as in the case of the simulated examples.

However one could argue that there are two generalized eigenvalues

close to 1, leading to an estimate of m̂ = 2 underlying linear

differential equations. The spectrum of the singular values (right

side of Figure 11B) indicates n̂ = 4 components. The amplitudes

obtained by PCA, FastICA, DMD, and DyCA are shown in

Figure 12. Similarities between PCA and DyCA amplitudes are

clearly visible, whereas DMD and ICA yield different results. The

FIGURE 10

EEG signal: all channels of the multivariate signal, each channel
labeled in the modified 10/20 system.

obtained DyCA amplitudes confirm the findings of Seifert et al. [27]

where low-dimensional Shilnikov chaos was detected in the EEG

data sets.

5 Discussion

We have demonstrated that DyCA is capable of extracting the

deterministic amplitudes of a signal and separating them from

stochastic amplitudes under certain conditions. These conditions

are as follows: (a) the signal is divided into a deterministic part,

independent component noise, and low additive noise; (b) both the

deterministic part and component noise can be decomposed into

independent components; and (c) the number of linear differential

equations is equal to or greater than the number of non-linear

differential equations. The spectrum of the generalized DyCA

eigenvalues allows for the verification of the fulfillment of the

aforementioned conditions. The number of generalized eigenvalues

close to 1 provides an estimate of the number of linear differential

equations. The spectrum of the singular values of the amplitudes

corresponding to the generalized eigenvectors and the amplitudes

of the associated vectors provides an estimate of the dimension of

the deterministic subspace. In the aforementioned circumstances,

DyCA outperforms PCA and ICA and is comparable or slightly

more effective than the DMD algorithm. A comprehensive study

comparing DyCA with DMD with respect to noise robustness

and sampling frequency can be found in Stiehl et al. [28]. In

the case of more non-linear than linear ODEs governing the

system under investigation, DyCA can still be used to estimate

the number of linear ODEs and two times as many amplitudes as

demonstrated by the example of the simulated Lorenz attractor.

The analysis of a multivariate EEG signal demonstrates the

potential of DyCA to extract the deterministic amplitudes of

complex real-world signals.

Ultimately, the objective was to provide a detailed

account of the DyCA algorithm and its implementation,

which can be utilized by the provided Python package on

GitHub as a valuable tool for the analysis of multivariate

signals. This may serve as a basis for further explorations in

various directions.

A B

FIGURE 11

EEG signal: (A) complex DMD eigenvalues µi, (B) characteristic values: PCA eigenvalues pi, DyCA generalized eigenvalues λi and SVD values si of
temporary DyCA amplitudes.
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A B

C D

FIGURE 12

EEG signal: estimated amplitudes, estimated by: (A) PCA, (B) ICA, (C) DMD, and (D) DyCA.
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