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Strong nonlinear
functional-di�erential variational
inequalities: problems without
initial conditions

Mykola Bokalo*, Iryna Skira and Taras Bokalo

Department of Mathematical Statistics and Di�erential Equations, Ivan Franko National University of

Lviv, Lviv, Ukraine

Problems without initial conditions for evolution equations and variational

inequalities appear in the modeling of di�erent non-stationary processes within

many fields of science, such as ecology, economics, physics, cybernetics,

etc., if these processes started a long time ago and initial conditions do not

a�ect them in the actual time moment. Thus, we can assume that the initial

time is minus infinity. In the case of linear and weakly nonlinear evolution

equations and variational inequalities, standard initial conditions should be

replaced with the behavior of the solution as the time variable goes to minus

infinity. However, for some strongly nonlinear evolution equations and variational

inequalities, this problem has a unique solution in the class of functions without

behavior restriction as the time variable goes to minus infinity. In this study, the

correctness of the problemwithout initial conditions for such types of variational

inequalities from a new class, or more precisely, for sub-di�erential inclusions

with functionals, is investigated. Moreover, estimates of solutions are obtained.

The results are new and mostly theoretical.

KEYWORDS

parabolic variational inequality, evolution variational inequality, evolution inclusion,

sub-di�erential inclusion, Fourier problem, problem without initial conditions

1 Introduction

The aim of this study is to investigate problems without initial conditions for the

evolution of functional-differential variational inequalities of a special form, so-called sub-

differential inclusions with functionals. The partial case of this problem is a problem

without initial conditions, or, in other words, the Fourier problem for integro-differential

equations of the parabolic type.

Problem without initial conditions for evolution equations and variational inequalities

(sub-differential inclusions) appear in the modeling of different non-stationary processes

within many fields of science, such as ecology, economics, physics, cybernetics, etc., if these

processes started a long time ago and initial conditions do not affect them in the actual time

moment. Thus, we can assume that the initial time is minus infinity.

The research on the problem without initial conditions for the evolution equations and

variational inequalities was conducted in the monographs [1–4], the papers [5–19], and

others.

Note that the uniqueness of the solutions to the problem without initial conditions for

linear and weak nonlinear evolution equations and variational inequalities is possible only

under some restrictions on the behavior of solutions as the time variable changes to −∞.

Moreover, in this case, to prove the existence of a solution, it is necessary to impose certain
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restrictions on the growth of the input data when the time variable

goes to−∞. For the first time, it was strictly justified by Tychonoff

[5] in the case of the heat equation. Later, similar results for various

evolution equations and variational inequalities were obtained in

monographs [1–4], papers [6–8, 12, 14, 16–19], and others.

However, as was shown by Bokalo [9], a problem without

initial conditions for some strongly nonlinear parabolic equations

has a unique solution in the class of functions without behavior

restriction as the time variable changes to −∞. Furthermore,

similar results were obtained in studies [10, 13, 15] (see also

references therein) for strongly nonlinear evolution equations and

in Bokalo [11] for evolution variational inequalities.

Note that the problem without initial conditions for weakly

nonlinear functional-differential variational inequalities was

investigated only in the study [17]. There, the existence and

uniqueness of the solution to this problem were proved under

certain restrictions on its behavior and the growth of the input

data when the time variable is directed to −∞. As we know,

the problem without initial conditions for strongly nonlinear

functional-differential variational inequalities without restrictions

on the behavior of the solution and the growth of the input data

when the time variable is directed to −∞ has not been considered

in the literature, and this serves as one of the motivations for the

study of such problems.

The outline of this study is as follows: Section 2 comprises

notations, definitions of needed function spaces, and auxiliary

results. In Section 3, we set the problem statement and provide

our key findings. The proof of the main results is kept in Section

4. Comments on the main results are given in Section 5. Section 6

provides conclusions.

2 Preliminaries

Let V be a separable reflexive real Banach space with norm

‖ · ‖, and H be a real Hilbert space with the scalar products (·, ·)

and norms | · |, respectively. Suppose that V ⊂ H with dense,

continuous, and compact injection, i.e., the closure of V in H

coincides with H, and there exists a constant λ > 0 such that

λ|v|2 ≤ ‖v‖2 for all v ∈ V , and for every sequence {vk}
∞
k=1

bounded in V , there exists an element v ∈ V and a subsequence

{vkj }
∞
j=1 such that vkj −→j→∞

v strongly in H.

Let V ′ and H′ be the dual spaces of V and H, respectively.

Suppose the space H′ (after appropriate identification of

functionals) is a subspace of V ′. Identifying the spaces H and

H′ by the Riesz-Fréchet representation theorem, we obtain dense

and continuous embeddings

V ⊂ H ⊂ V ′. (1)

Note that in this case 〈g, v〉 = (g, v) for every v ∈ V , g ∈ H ⊂ V ′,

where 〈g, v〉 is the means the action of an element g ∈ V ′ on an

element of v ∈ V , i.e., 〈·, ·〉 is canonical product for the duality pair

[V ′,V]. Therefore, we can use the notation (·, ·) instead of 〈·, ·〉, and

we will do it in the future.

Let T > 0 be an arbitrary fixed real number, and let S : =

(−∞,T], and intS : = (−∞,T).

We introduce some spaces for functions and distributions.

Let X be an arbitrary Banach space with the norm ‖ · ‖X .

By C(S;X) we mean the linear space of continuous

functions defined on S with values in X. We say that

wm −→
m→∞

w in C(S;X) if for each t1, t2 ∈ S, t1 < t2,

sequence {wm|[t1 ,t2]}
∞
m=1 converges to w|[t1 ,t2] in C([t1, t2];X)

(hereafter w̃|[t1 ,t2] is restriction of a function w̃ : S → X to segment

[t1, t2] ⊂ S).

Let r ∈ [1,∞], r′ is dual to r, i.e., 1/r + 1/r′ = 1.

Denote by Lr
loc
(S;X) the linear space of classes of equivalent

measurable functions w : S → X such that w|[t1 ,t2] ∈

Lr(t1, t2;X) for each t1, t2 ∈ S, t1 < t2. We say that

a sequence {wm} is bounded (strongly, weakly, or ∗-weakly

convergent, respectively, to w) in Lr
loc
(S;X) if, for each t1, t2 ∈

S, t1 < t2, the sequence {wm|[t1 ,t2]} is bounded (strongly,

weakly, or ∗-weakly convergent, respectively, to w|[t1 ,t2]) in

Lr(t1, t2;X).

By D′(intS;V ′
w), we mean the space of continuous linear

functionals on D(intS) with values in V ′
w (hereafter, D(intS) is the

space of test functions, i.e., the space of infinitely differentiable

on intS functions with compact supports, equipped with the

corresponding topology, and V ′
w is the linear space V ′ equipped

with weak topology). It is easy to see (using (1)) that spaces

Lr
loc
(S;V), L2

loc
(S;H), and Lr

′

loc
(S;V ′) can be identified with the

corresponding subspaces of D′(intS;V ′
w) by rule 〈f ,ϕ〉D =∫

S f (t)ϕ(t) dt, where 〈·, ·〉D is the means the action of an element

of D′(intS;V ′
w) on an element of D(intS), f is an element of

one of spaces Lr
loc
(S;V), L2

loc
(S;H), Lr

′

loc
(S;V ′). In particular,

this allows us to talk about derivatives w′ of functions w

from Lr
loc
(S;V) or L2

loc
(S;H) in the perception of distributions

D′(intS;V ′
w) and the belonging of such derivatives to Lr

′

loc
(S;V ′) or

L2
loc
(S;H).

Let us define the spaces

H1
loc(S;H) : = {w ∈ L2loc(S;H)

∣∣w′ ∈ L2loc(S;H)},

W1,r
loc
(S;V) : = {w ∈ Lrloc(S;V)

∣∣w′ ∈ Lr
′

loc(S;V
′)}, r > 1.

From known results [see, e.g., Gajewski et al.

[20]] it follows that H1
loc
(S;H) ⊂ C(S;H) and

W1,r
loc
(S;V) ⊂ C(S;H), and for every w in H1

loc
(S;H) orW1,r

loc
(S;V)

the function t → |w(t)|2 is continuous on any segment of the

interval S, and the following equality holds:

d

dt
|w(t)|2 = 2(w′(t),w(t)) for almost every (a.e.) t ∈ S. (2)

In this study, we use the following well-known facts:

PROPOSITION 2.1 [Corollaries from Young’s inequality,

Gajewski et al. [20]]. Let r > 1, ε > 0 be arbitrary, and r′ such

that 1/r + 1/r′ = 1. Then, for all a, b ∈ R, following inequality

holds:

a b ≤ ε|a|r + ε−1/(r−1) |b| r
′

. (3)

In particular,

ab ≤ ε|a|2 + ε−1|b|2. (4)
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Proof. Inequality (3) is a corollary from standard Young’s

inequality: a b ≤ |a|r/r + |b|r
′
/r′, if we note that r > 1 and r′ > 1.

Inequality (4) we get from inequality (3) with r = 2 .

PROPOSITION 2.2 [Cauchy-Bunyakovsky-Schwarz inequality,

Gajewski et al. [20]]. Let t1, t2 ∈ R, and t1 < t2. Then, for

v,w ∈ L2(t1, t2;H), we have
(
v(·),w(·)

)
∈ L1

(
t1, t2

)
and

∫ t2

t1

(w(t), v(t)) dt ≤
( ∫ t2

t1

|v(t)|2 dt
)1/2( ∫ t2

t1

|w(t)|2 dt
)1/2

.

PROPOSITION 2.3 [Hölder’s inequality, Gajewski et al. [20]].

Let r ∈ [1,∞], r′ be a conjugated to r (i.e., 1/r + 1/r′ = 1), t1,

t2 ∈ R, t1 < t2. Suppose that X is a Banach space and X′ is a

dual of X, 〈·, ·〉X is the action of an element of X′ on an element

of X. Then, for v ∈ Lr(t1, t2;X) and w ∈ Lr
′
(t1, t2;X

′), we have

〈w(·), v(·)〉X ∈ L1
(
t1, t2

)
and

∫ t2

t1

〈w(t), v(t)〉X dt ≤ ‖w‖Lr′ (t1 ,t2;X′)‖v‖Lr(t1 ,t2;X).

PROPOSITION 2.4 [Lemma 1.1 [9]]. Let z : S → R be a

nonnegative and absolutely continuous on each interval of S function

that satisfies differential inequality

z′(t)+ β(t)χ
(
z(t)

)
≤ 0 for a.e. t ∈ S,

where β ∈ L1
loc
(S;R), β(t) ≥ 0 for a.e. t ∈ S,

∫
S β(t) dt = +∞;

χ ∈ C
(
[0,+∞)

)
, χ(0) = 0, χ(s) > 0 if s > 0 and

∫ +∞

1
ds

χ(s)
< ∞.

Then z ≡ 0 on S.

PROPOSITION 2.5 [25]. Let Y be a Banach space with the norm

‖ · ‖Y , and {vk}
∞
k=1

be a sequence of elements of Y that is weakly or

∗-weakly convergent to v in Y. Then lim
k→∞

‖vk‖Y ≥ ‖v‖Y .

PROPOSITION 2.6 [Aubin theorem, Aubin [21]]. Let r >

1 and q > 1 be given numbers. Suppose that B0,B1, and B2 are

Banach spaces such that B0
c
⊂B1 ⊂ B2 (symbol⊂means continuous

embedding and symbol
c
⊂means compact embedding). Then

{w ∈ Lr(0,T;B0) |w
′ ∈ Lq(0,T;B2)}

c
⊂

(
Lr(0,T;B1)∩C([0,T];B2)

)
.

(5)

Note that we understand embedding (5) as follows: if a

sequence {wm}
∞
m=1 is bounded in the space Lr(0,T;B0), and the

sequence {w′
m}

∞
m=1 is bounded in the space Lq(0,T;B2), then

there exists a function w ∈ Lr(0,T;B1) ∩ C([0,T];B2) and

the subsequence {wmj}
∞
j=1 of the sequence {wm}

∞
m=1 such that

wmj −→
j→∞

w in C([0,T];B2) and strongly in Lr(0,T;B1).

PROPOSITION 2.7. Let a sequence {wm}
∞
m=1 be bounded in the

space Lr
loc
(S;V), where r > 1, and the sequence {w′

m} be bounded in

the space L2
loc
(S;H). Then there exists a function w ∈ Lr

loc
(S;V),

w′ ∈ L2
loc
(S;H), and a subsequence {wmj }

∞
j=1 of the sequence

{wm}
∞
m=1 such that wmj −→

j→∞
w in C(S;H) and weakly in Lr

loc
(S;V),

and w′
mj

−→
j→∞

w′ weakly in L2
loc
(S;H).

Proof. From Proposition 2.6 for q = 2, B0 = V , B1 = B2 = H,

we have that, for every t1, t2 ∈ S, t1 < t2, from the sequence

of restrictions of the elements {wm}
∞
m=1 to the segment [t1, t2],

one can choose a subsequence that is convergent in C([t1, t2];H)

and weakly in Lr(t1, t2;V), and the sequence of derivatives of the

elements of this subsequence is weakly convergent in L2(t1, t2;H).

For each k ∈ N, we choose a subsequence {wmk,j
}∞j=1 of the given

sequence that is convergent in C([T − k,T];H) and weakly in

Lr(T − k,T;V) to some function ŵk ∈ C([T − k,T];H) ∩ Lr(T −

k,T;V), and the sequence {w′
mk,j

}∞j=1 is weakly convergent to the

derivative ŵ′
k
in L2(T − k,T;H). Making this choice, we ensure

that the sequence {wmk+1,j
}∞j=1 was a subsequence of the sequence

{wmk,j
}∞j=1. Now, according to the diagonal process, we select the

desired subsequence as {wmj,j}
∞
j=1, and we define the function w as

follows: for each k ∈ N, we take w(t) : = ŵk(t) for t ∈ (T − k,T −

k+ 1).

3 Statement of the problem and
formulation of main results

Let 8 :V → R∞ : = (−∞,+∞) be a proper functional, i.e.,

dom(8) : = {v ∈ V : 8(v) < +∞} 6= ∅, which satisfies the

conditions:

(A1) 8
(
αv + (1 − α)w

)
≤ α8(v) + (1 − α)8(w) ∀ v,w ∈

V , ∀α ∈ [0, 1],

i.e., the functional 8 is convex;

(A2) vk −→
k→∞

v in V H⇒ lim
k→∞

8(vk) ≥ 8(v),

i.e., the functional 8 is lower semicontinuous;

(A3) there exist the constants p > 2 and K1 > 0 such that

8(v) ≥ K1‖v‖
p ∀ v ∈ dom(8);

moreover, 8(0) = 0.

Recall [see, e.g., Showalter [4]] that for a functional8 satisfying

the conditions (A1) and (A2) its sub-differential is a mapping

∂8 :V → 2V
′
, defined as follows:

∂8(v) : = {v∗ ∈ V ′ |8(w) ≥ 8(v)+(v∗,w−v) ∀w ∈ V}, v ∈ V ,

and the domain of the sub-differential ∂8 is the set D(∂8) : =

{v ∈ V | ∂8(v) 6= ∅}. We identify the subdifferential ∂8 with its

graph, assuming that [v, v∗] ∈ ∂8 if and only if v∗ ∈ ∂8(v), i.e.,

∂8 = {[v, v∗] | v ∈ D(∂8), v∗ ∈ ∂8(v)}. R. Rockafellar in study

[22, Theorem A] proves that the sub-differential ∂8 is a maximal

monotone operator, i.e.,

(v∗1 − v∗2 , v1 − v2) ≥ 0 ∀ [v1, v
∗
1], [v2, v

∗
2] ∈ ∂8

and for every element [v1, v
∗
1] ∈ V × V ′ we have the implication

(v∗1 − v∗2 , v1 − v2) ≥ 0 ∀ [v2, v
∗
2] ∈ ∂8 H⇒ [v1, v

∗
1] ∈ ∂8.

Suppose that the following condition holds:

(A4) there exist the constants q > 2 and K2 > 0, K3 > 0 such

that

(v∗1−v∗2 , v1−v2) ≥ K2|v1−v2|
2+K3|v1−v2|

q ∀ [v1, v
∗
1], [v2, v

∗
2] ∈ ∂8.
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Assume that B(t, ·) :H → H, t ∈ S, is a given family of

operators that satisfy the condition:

(B) for any v ∈ H the mapping B(·, v) : S → H is measurable,

and there exists a constant L ≥ 0 such that following inequality

holds:

|B(t, v1)− B(t, v2)| ≤ L|v1 − v2|

for a.e. t ∈ S, and all v1, v2 ∈ H; in addition, B(t, 0) = 0 for a.e.

t ∈ S.

Remark 3.1. From the condition (B) it follows that

|B(t, v)| ≤ L|v| (6)

for a.e. t ∈ S and for all v ∈ H.

Next, we will assume that the conditions (A1)—(A4) and (B)

are fulfilled, and p′ and q′ are such that 1/p+1/p′ = 1, 1/q+1/q′ =

1.

Let us consider the evolution variational inequality, or, in

other words, subdifferential inclusion

u′(t)+ ∂8(u(t))+ B(t, u(t)) ∋ f (t), t ∈ S, (7)

where f ∈ L
p′

loc
(S;V ′)+ L

q′

loc
(S;H) is given function.

Definition 3.1. The solution of variational inequality (7) is

called a function u : S → V that satisfies the following conditions:

1) u ∈ W
1,p

loc
(S;V) ∩ L

q

loc
(S;H);

2) u(t) ∈ D(∂8) for a.e. t ∈ S;

3) there exists a function g ∈ L
p ′

loc
(S;V ′) + L

q ′

loc
(S;H) such that,

for a.e. t ∈ S, g(t) ∈ ∂8
(
u(t)

)
and

u′(t)+ g(t)+ B(t, u(t)) = f (t) in V ′.

The problem of finding a solution to variational inequality (7)

for given 8, B, and f is called the problem P(8,B, f ), and the

function u is called its solution.

We consider the existence and uniqueness of the solution to the

problem P(8,B, f ). The main results of this study are the following

two theorems:

THEOREM 3.1. Suppose that

L < K2. (8)

Then the problem P(8,B, f ) has at most one solution.

THEOREM 3.2. Let inequality (8) hold, and let f ∈ L2
loc
(S;H).

Then the problem P(8,B, f ) has a unique solution. In addition, this

solution belongs to the space L∞
loc
(S;V)∩H1

loc
(S;H), and for arbitrary

t1, t2 ∈ S, t1 < t2, δ > 0 satisfies the estimates:

max
t∈[t1 ,t2]

|u(t)|2 +

∫ t2

t1

[
|u(t)|2 + |u(t)|q + ‖u(t)‖p

]
dt ≤ C1

[
δ
− 2

q−2

+

∫ t2

t1−δ

|f (t)|2 dt
]
, (9)

ess sup
t∈[t1 ,t2]

‖u(t))‖p +

∫ t2

t1

|u′(t)|2 dt ≤ C2

[
max{δ

− 2
q−2 , δ

−
q

q−2 }

+

∫ t2

t1−2δ
|f (t)|2 dt + δ−1

∫ t1

t1−2δ
|f (t)|2 dt

]
, (10)

where C1,C2 are positive constants depending on K1,K2,K3, and q

only.

Remark 3.2. If 8 is such that dom(8) : = V and ∂8(v) =

{A(v)}, v ∈ V , whereA :V → V ′ is some operator, then variational

inequality (7) will be functional-differential equation

u′(t)+ A(u(t))+ B(t, u(t)) = f (t), t ∈ S. (11)

Note that condition (A3) implies the coercivity of operator A, i.e.,

(A(v), v) ≥ K1‖v‖
p, v ∈ V .

In addition, from condition (A4) follows the strong monotonicity

of the operator A, i.e.,

(A(v1)−A(v2), v1−v2) ≥ K2|v1−v2|
2+K3|v1−v2|

q ∀ v1, v2 ∈ V .

4 Proof of the main results

Proof. [Proof of the Theorem 3.1] Assume the contrary. Let u1
and u2 be two solutions to the problem P(8,B, f ). Then for every

i ∈ {1, 2} there exists function gi ∈ L
p ′

loc
(S;V ′) + L

q ′

loc
(S;H) such

that, for a.e. t ∈ S, gi(t) ∈ ∂8
(
ui(t)

)
and

u′i(t)+ gi(t)+ B(t, ui(t)) = f (t) in V ′, i = 1, 2. (12)

We putw : = u1−u2. From equalities (12), for a.e. t ∈ S, we obtain

w′(t)+ g1(t)− g2(t)+ B(t, u1(t))− B(t, u2(t)) = 0 in V ′. (13)

Multiplying equality (13) scalar by w(t), for a.e. t ∈ S, we obtain

(w′(t),w(t))+ (g1(t)− g2(t), u1(t)− u2(t))+
(
B(t, u1(t))

−B(t, u2(t)), u1(t)− u2(t)
)
= 0. (14)

By condition (A4) and the fact that gi(t) ∈ ∂8(ui(t)), i = 1, 2,

we have the inequality

(g1(t)−g2(t), u1(t)−u2(t)) ≥ K2|w(t)|
2+K3|w(t)|

q for a.e. t ∈ S.

(15)

By condition (B), for a.e. t ∈ S, we obtain

(
B(t, u1(t))− B(t, u2(t)), u1(t)− u2(t)

)
≥ −L|w(t)|2. (16)

By Equations (2), (8), (15), and (16), fromEquation (14) we get such

differential inequality

(|w(t)|2)′ + 2K3

(
|w(t)|2

)q/2
≤ 0 for a.e. t ∈ S. (17)

From Equation (17), taking into account the condition q/2 >

1 and using Proposition 2.4 with z(t) : = |w(t)|2, β(t) : =

2K3 for all t ∈ S, and χ(s) : = sq/2 for all s ∈

[0,+∞), we receive |w(t)|2 = 0 for all t ∈ S, i.e.,

u1 = u2 a.e. on S. The resulting contradiction completes

the proof of the uniqueness of the solution to the problem

P(8,B, f ).
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Proof. [Proof of the Theorem 3.2] We divide the proof into seven

steps.

Step 1 (auxiliary statements). We define the functional 8H :H →

R∞ by the rule: 8H(v) : = 8(v) if v ∈ V , and 8H(v) : = +∞

otherwise. Note that conditions (A1), (A2), Lemma IV.5.2, and

Proposition IV.5.2 of the monograph [4] imply that8H is a proper,

convex, and lower semicontinuous functional on H, dom(8H) =

dom(8) ⊂ V and ∂8H = ∂8 ∩ (V ×H), where ∂8H :H → 2H is

the sub-differential of the functional8H . In addition, the condition

(A3) implies that 0 ∈ ∂8H(0).

The following statements will be used in the sequel:

LEMMA 4.1 [[4, Lemma IV.4.3]]. Let−∞ < a < b < +∞, and

w ∈ H1(a, b;H), g ∈ L2(a, b;H) such that g(t) ∈ ∂8H(w(t)) for a.e.

t ∈ (a, b). Then the function 8H(w(·)) is absolutely continuous on

the interval [a, b] and for any function h :[a, b] → H such that, for

a.e. t ∈ (a, b), h(t) ∈ ∂8H

(
w(t)

)
, and the following equality holds:

d

dt
8H

(
w(t)

)
= (h(t),w′(t)).

LEMMA 4.2 ([23, Proposition 3.12], [4, Proposition IV.5.2]).

Let f̃ ∈ L2(0,T;H) and w0 ∈ dom(8). Then there exists a unique

function w ∈ C([0,T];H) ∩ H1(0,T;H) such that w(0) = w0 and,

for a.e., t ∈ (0,T], w(t) ∈ D(∂8H) and

w′(t)+ ∂8H

(
w(t)

)
∋ f̃ (t) in H. (18)

LEMMA 4.3. Let f̃ ∈ L2(0,T;H) and w0 ∈ dom(8). Then there

exists a unique function w ∈ C([0,T];H) ∩ H1(0,T;H) such that

w(0) = w0 and, for a.e. t ∈ (0,T], w(t) ∈ D(∂8H) and

w′(t)+ ∂8H

(
w(t)

)
+ B(t,w(t)) ∋ f̃ (t) in H, (19)

i.e., there exists g̃ ∈ L2(0,T;H) such that, for a.e. t ∈ (0,T], we have

g̃(t) ∈ ∂8H(w(t)) and

w′(t)+ g̃(t)+ B(t,w(t)) = f̃ (t) in H. (20)

Proof. [Proof of Lemma 4.3] Let α > 0 be an arbitrary fixed

number, and set

M : = {w ∈ C([0,T];H) | w(0) = w0}.

ConsiderM with the metric

ρ(w1,w2) = max
t∈[0,T]

[
e−αt|w1(t)− w2(t)|

]
, w1,w2 ∈ M.

The metric space (M, ρ) is complete. Now let us consider an

operator A :M → M defined as follows: for any given function

w̃ ∈ M, it defines a function ŵ ∈ M∩H1(0,T;H) such that, for a.e.

t ∈ (0,T], ŵ(t) ∈ D(∂8H) and

ŵ ′(t)+ ∂8H(ŵ(t)) ∋ f̃ (t)− B(t, w̃(t)) in H. (21)

Clearly, variational inequality (21) coincides with variational

inequality (18) after replacing f̃ (t) by f̃ (t) − B(t, w̃(t)), and w(0) =

w0 by ŵ(0) = w0. Thus, using Lemma 4.2, we get that ope-

rator A is well-defined. Let us demonstrate that the operator A

is a contraction for some α > 0. Indeed, let w̃1, w̃2 be arbitrary

functions from M, and ŵ1 : = Aw̃1, ŵ2 : = Aw̃2. According

to Equation (21) there exist functions ĝ1 and ĝ2 from L2(0,T;H)

such that for every j ∈ {1, 2} and for a.e. t ∈ (0,T] we have

ĝj(t) ∈ ∂8H(ŵj(t)) and

ŵ ′
j (t)+ ĝj(t) = f̃ (t)− B(t, w̃j(t)), (22)

while ŵj(0) = w0.

Subtracting identity (22) for j = 2 from identity (22) for

j = 1, and, for a.e. t ∈ (0,T], multiplying the obtained identity

by ŵ1(t)− ŵ2(t), we get

(
(ŵ1(t)− ŵ2(t))

′, ŵ1(t)− ŵ2(t)
)
+ (̂g1(t)− ĝ2(t), ŵ1(t)− ŵ2(t))

= −(B(t, w̃1(t))− B(t, w̃2(t)), ŵ1(t)− ŵ2(t))

for a.e.

t ∈ (0,T], (23)

ŵ1(0)− ŵ2(0) = 0. (24)

We integrate equality (23) by t from 0 to σ ∈ (0,T], taking into

account (24) and that [see Equation (2)] for a.e. t ∈ (0,T]. The

following holds:

(
(ŵ1(t)− ŵ2(t))

′, ŵ1(t)− ŵ2(t)
)
=

1

2

(
|ŵ1(t)− ŵ2(t)|

2
)′
.

As a result, we get the equality

1

2
|ŵ1(σ )− ŵ2(σ )|

2 +

σ∫

0

(̂g1(t)− ĝ2(t), ŵ1(t)− ŵ2(t)) dt

= −

σ∫

0

(
B(t, w̃1(t))− B(t, w̃2(t)), ŵ1(t)− ŵ2(t)

)
dt. (25)

By condition (A4), for a.e. t ∈ (0,T], we have the inequality

(̂g1(t)− ĝ2(t), ŵ1(t)− ŵ2(t)) ≥ K2|ŵ1(t)− ŵ2(t)|
2. (26)

Taking into account condition (B) and inequality (4) for a.e.

t ∈ (0,T], we obtain

∣∣(B(t, w̃1(t))− B(t, w̃2(t)), ŵ1(t)− ŵ2(t)
)∣∣

≤
∣∣B(t, w̃1(t))− B(t, w̃2(t))

∣∣ ∣∣ŵ1(t)− ŵ2(t)
∣∣

≤ L|w̃1(t)− w̃2(t)| |ŵ1(t)− ŵ2(t)| ≤ ε|ŵ1(t)− ŵ2(t)|
2

+ε−1L2|w̃1(t)− w̃2(t)|
2, (27)

where ε > 0 is an arbitrary.

From Equation (25), according to Equations (26) and (27), we

have

|ŵ1(σ )− ŵ2(σ )|
2 + 2(K2 − ε)

σ∫
0

|ŵ1(t)− ŵ2(t)|
2 dt

≤ 2ε−1L2
σ∫
0

∣∣w̃1(t)− w̃2(t)
∣∣2dt. (28)

Choosing ε = K2, from Equation (28) we obtain

|ŵ1(σ )− ŵ2(σ )|
2 ≤ C3

∫ σ

0
|w̃1(t)− w̃2(t)|

2 dt, σ ∈ (0,T],

(29)
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where C3 : = 2K−1
2 L2.

After multiplying inequality (30) by e−2ασ , we obtain

e−2ασ |ŵ1(σ )− ŵ2(σ )|
2 ≤ C3e

−2ασ
∫ σ

0 e2αte−2αt|w̃1(t)− w̃2(t)|
2 dt

≤ C3e
−2ασ max

t∈[0,T]

[
e−αt|w̃1(t)− w̃2(t)|

]2 ∫ σ

0 e2αt dt

= C3
2α

(
1− e−2ασ

)[
ρ(w̃1, w̃2)

]2
≤ C3

2α

[
ρ(w̃1, w̃2)

]2
,

σ ∈ (0,T]. (30)

From Equation (30), it easily follows that

ρ(ŵ1, ŵ2) ≤
√
C3/(2α) ρ(w̃1, w̃2).

From this, choosing α > 0 such that inequality C3/(2α) < 1

holds, we obtain that operator A :M → M is a contraction. Hence,

we may apply the Banach fixed-point theorem [24, Theorem 5.7]

and deduce that there exists a unique functionw ∈ M∩H1(0,T;H)

such that Aw = w, i.e., we have proved over the statement, i.e.,

Lemma 4.3.

Step 2 (solution approximations). Let us consider the next problem:

to find a function u ∈ H1
loc
(S;H) such that, for a.e., t ∈ S, u(t) ∈

D(∂8H) and

u ′(t)+ ∂8H

(
u(t)

)
+ B(t, u(t)) ∋ f (t) in H. (31)

We call this problem the problem P(8H ,B, f ). The solution of the

problem P(8H ,B, f ) is the solution of the problem P(8,B, f ). We

prove the existence of a solution to the problem P(8H ,B, f ).

At first, we construct a sequence of functions, that, in some

perception, approximates the solution of the problem P(8H ,B, f ).

For each k ∈ N we put f̂k(t) : = f (t) for t ∈ Sk : = (T− k,T] and let

us consider the problem of finding a function ûk ∈ H1(Sk;H) such

that ûk(T − k) = 0 and, for a.e. t ∈ Sk, we have ûk(t) ∈ D(∂8H)

and

û ′
k(t)+ ∂8H

(
ûk(t)

)
+ B(t, ûk(t)) ∋ f̂k(t) in H. (32)

The existence of a unique solution to problem (32) implies

Lemma 4.3. Note that sub-differential inclusion in (32) means that

there exists a function ĝk ∈ L2(Sk;H) such that, for a.e., t ∈ Sk, we

have ĝk(t) ∈ ∂8H (̂uk(t)) and

û ′
k(t)+ ĝk(t)+ B(t, ûk(t)) = f̂k(t) in H. (33)

Note that D(∂8H) ⊂ dom(8H) = dom(8) ⊂ V , and thus

ûk(t) ∈ V for a.e. t ∈ Sk. According to the definition of the

subdifferential of a functional and the fact that ĝk(t) ∈ ∂8(̂uk(t)),

we have

8(0) ≥ 8(̂uk(t))+ (̂gk(t), 0− ûk(t)) for a.e. t ∈ Sk.

From this and condition (A3) we obtain

(̂gk(t), ûk(t)) ≥ 8(̂uk(t)) ≥ K1‖̂uk(t)‖
p for a.e. t ∈ Sk. (34)

Since the left side of this chain of inequalities belongs to L1(Sk), then

ûk belongs to L
p(Sk;V).

For each k ∈ N, we extend functions f̂k, ûk, and ĝk by zero

for the entire interval S and denote these extensions by fk, uk, and

gk, respectively. From the above, it follows that, for each k ∈ N,

the function uk belongs to Lp(S;V), its derivative u′
k
belongs to

L2(S;H), and, for a.e. t ∈ S, gk(t) ∈ ∂8H

(
uk(t)

)
and [see Equation

(33)],

u′k(t)+ gk(t)+ B(t, uk(t)) = fk(t) in H. (35)

Step 3 (estimates of solution approximations). To demonstrate the

convergence {uk}
∞
k=1

to the solution of the problem P(8H ,B, f ), we

need some estimates of the functions uk, k ∈ N.

Let the function θ∗ ∈ C1(R) such that θ∗(t) = 0 if t ∈

(−∞,−1], θ∗(t) = e
t2

t2−1 if t ∈ (−1, 0), θ∗(t) = 1 if t ∈ [0,+∞)

[see Bokalo [9]]. Obviously, θ ′
∗(t) ≥ 0 for arbitrary t ∈ R, and for

any 0 < ν < 1, we have

sup
t∈(−1,0)

θ ′
∗(t)

θν
∗ (t)

= C4, (36)

where C4 > 0 is a constant depending on ν only.

Let t1, t2, and δ be arbitrary real fixed numbers such that t1, t2 ∈

S, t1 < t2, δ > 0. We put

θ(t) : = θ∗

( t − t1

δ

)
, t ∈ S. (37)

It is clear that θ(t) = 0 if t ∈ (−∞, t1 − δ], 0 < θ(t) < 1 if

t ∈ (t1 − δ, t1), θ(t) = 1 if t ∈ [t1,+∞), and θ ′(t) = δ−1θ ′
∗((t −

t1)/δ) ≥ 0 for every t ∈ R.

Let k ∈ N. Obviously, θuk ∈ H1(S;H). For each t ∈ S, multiply

the identity (35) scalar by θ(t)uk(t) and integrate from t1 − δ to

τ ∈ [t1, t2]. As a result, we obtain

∫ τ

t1−δ

θ(t)(u′k(t), uk(t)) dt +

∫ τ

t1−δ

θ(t)(gk(t), uk(t)) dt

+

∫ τ

t1−δ

θ(t)
(
B(t, uk(t)), uk(t)

)
dt =

∫ τ

t1−δ

θ(t)(fk(t), uk(t)) dt.

(38)

From this, taking into account (2) and using the integration-by-

parts formula, we transform the first term on the left side of the

equality (38) as follows:

∫ τ

t1−δ

θ(t)(u′k(t), uk(t)) dt =
1

2

∫ τ

t1−δ

θ(t)
(
|uk(t)|

2
)′
dt =

1

2
|uk(τ )|

2

−
1

2

∫ t1

t1−δ

θ ′(t)|uk(t)|
2 dt. (39)

Then from Equation (38), using Equation (39), we receive

|uk(τ )|
2 + 2

∫ τ

t1−δ

θ(t)(gk(t), uk(t)) dt =

∫ t1

t1−δ

θ ′(t)|uk(t)|
2 dt

− 2

∫ τ

t1−δ

θ(t)
(
B(t, uk(t)), uk(t)

)
dt + 2

∫ τ

t1−δ

θ(t)(fk(t), uk(t)) dt.

(40)

Since (0, 0) ∈ ∂8H and (gk(t), uk(t)) ∈ ∂8H for a.e. t ∈ S, from

condition (A4) we get

(gk(t), uk(t)) ≥ K2|uk(t)|
2 + K3|uk(t)|

q for a.e. t ∈ S. (41)
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According to the definition of uk and gk and using the inequality

(34), we obtain

(gk(t), uk(t)) ≥ 8
(
uk(t)

)
≥ K1‖uk(t)‖

p for a.e. t ∈ S. (42)

Let us estimate the second term on the left-hand side of equality

(40), using inequalities (41) and (42), in this way:

2

∫ τ

t1−δ

θ(t)(gk(t), uk(t)) dt ≥ 2(σ + (1− σ ))

∫ τ

t1−δ

θ(t)(gk(t), uk(t))dt

≥ 2σK2

∫ τ

t1−δ

θ(t)|uk(t)|
2 dt + 2σK3

∫ τ

t1−δ

θ(t)|uk(t)|
q dt

+ 2(1− σ )K1

∫ τ

t1−δ

θ(t)‖uk(t)‖
p dt + 2(1− σ )

∫ τ

t1−δ

θ(t)8
(
uk(t)

)
dt,

(43)

where σ ∈ (0, 1) is arbitrary.

Using the inequality (34) (with r = q/2, r′ = q/(q − 2)), we

estimate the first term on the right-hand side of Equation (40) as

follows:

∫ τ

t1−δ

θ ′(t)|uk(t)|
2 dt =

∫ t1

t1−δ

θ ′(t)θ
− 2

q (t) · θ
2
q (t)|uk(t)|

2 dt

≤ ε1

∫ t1

t1−δ

θ(t)|uk(t)|
q dt + ε

− 2
q−2

1

∫ t1

t1−δ

(
θ ′(t)θ

− 2
q (t)

) q
q−2 dt,

(44)

where ε1 > 0 is an arbitrary number.

Based on Equation (36), it is easy to demonstrate that

∫ t1

t1−δ

(
θ ′(t) · θ

− 2
q (t)

) q
q−2 dt =

∫ t1

t1−δ

(
δ−1 · θ ′

∗

(
(t − t1)/δ

)
· θ

− 2
q

∗

(
(t − t1)/δ

)) q
q−2

dt

=
[
(t − t1)/δ = s, t = δs+ t1, dt = δds

]
= δ

− 2
q−2

∫ 0

−1

(
θ ′
∗(s) · θ

− 2
q

∗ (s)
) q

q−2
ds

≤ C
q

q−2

4 · δ
− 2

q−2 , (45)

where C4 is constant from Equation (36) with ν = 2/q (note that

C4 depends on q only).

So from Equation (44) using Equation (45), we obtained

∫ τ

t1−δ

θ ′(t)|uk(t)|
2 dt ≤ ε1

∫ t1

t1−δ

θ(t)|uk(t)|
q dt + C5 (ε1δ)

− 2
q−2 ,

(46)

where C5 : = C
q

q−2

4 depends on q only.

Let us estimate the second term on the right-hand side of

equality (40). Using (6), we receive

∣∣∣
∫ τ

t1−δ

θ(t)
(
B(t, uk(t)), uk(t)

)
dt

∣∣∣ ≤
∫ τ

t1−δ

θ(t)
∣∣B(t, uk(t))

∣∣|uk(t)| dt

≤ L

∫ τ

t1−δ

θ(t)|uk(t)|
2 dt. (47)

Let us estimate the third term on the right-hand side of equality

(40), using inequality (4):

∫ τ

t1−δ

θ(t)(fk(t), uk(t)) dt ≤

∫ τ

t1−δ

θ(t)|fk(t)||uk(t))| dt

≤ ε2

∫ τ

t1−δ

θ(t)|uk(t)|
2 dt + ε−1

2

∫ τ

t1−δ

θ(t)|fk(t)|
2 dt, (48)

where ε2 > 0 is an arbitrary constant.

From Equation (40), using Equations (43), and (46)–(48), we

receive

|uk(τ )|
2 + 2(σK2 − L− ε2)

∫ τ

t1−δ

θ(t)|uk(t)|
2 dt + (2σK3 − ε1)

∫ τ

t1−δ

θ(t)|uk(t)|
q dt + 2(1− σ )K1

∫ τ

t1−δ

θ(t)‖uk(t)‖
p dt

+ 2(1− σ )

∫ τ

t1−δ

θ(t)8
(
uk(t)

)
dt

≤ C5(ε1δ)
− 2

q−2 + 2ε−1
2

∫ τ

t1−δ

θ(t)|fk(t)|
2 dt. (49)

In Equation (49), using condition (8), we choose σ ∈ (0, 1)

such that the inequality σK2 − L > 0 holds, and then we take

ε1 = σK3, ε2 = (σK2 − L)/2. As a result, we get

|uk(τ )|
2 +

∫ τ

t1−δ

θ(t)
[
|uk(t)|

2 + |uk(t)|
q + ‖uk(t)‖

p + 8
(
uk(t)

)]
dt

≤ C6δ
− 2

q−2 + C7

∫ τ

t1−δ

θ(t)|fk(t)|
2 dt, (50)

whereC6, C7 are positive constants dependent onK1,K2,K3, L, and

q only.

Since τ ∈ [t1, t2] is arbitrary, from Equation (50) and the

definition of θ , we obtain

max
t∈[t1 ,t2]

|uk(t)|
2 +

∫ t2

t1

|uk(t)|
2 dt+

∫ t2

t1

|uk(t)|
q dt +

∫ t2

t1

‖uk(t)‖
p dt +

∫ t2

t1

8
(
uk(t)

)
dt

≤ 2C6δ
− 2

q−2 + 2C7

∫ t2

t1−δ

|fk(t)|
2 dt. (51)

From Equation (50) and the definition of fk, since t1, t2 ∈ S and

δ > 0 are all arbitrary, it follows that

the sequence {uk} is bounded in L∞loc(S;H), L2loc(S;H), L
q

loc
(S;H),

and L
p

loc
(S;V), and (52)

the sequence
{
8

(
uk

)}
is bounded in L1loc(S). (53)

Step 4 (estimates of derivatives of solution approximations). Now let

us find estimates of u′
k
, k ∈ N. Let t1, t2, and δ be arbitrary real

numbers such that t1, t2 ∈ S, t1 < t2, and δ > 0. θ is a function

defined above. We multiply equality (35) for almost every t ∈ S
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scalar by θ(t)u′
k
(t) and integrate the resulting equality from t1 − δ

to τ ∈ [t1, t2]:
∫ τ

t1−δ

θ(t)|u′k(t)|
2 dt +

∫ τ

t1−δ

θ(t)(gk(t), u
′
k(t)) dt

+

∫ τ

t1−δ

θ(t)(B(t, uk(t)), u
′
k(t)) dt

=

∫ τ

t1−δ

θ(t)(fk(t), u
′
k(t)) dt. (54)

Since gk ∈ L2(t1 − δ, t2;H) and gk(t) ∈ ∂8H(uk(t)) for a. e.

t ∈ (t1 − δ, t2), Lemma 4.1 implies that the function 8H

(
uk(·)

)
is

continuous on [t1 − δ, t2] and

(
8H(uk(t))

)′
= (gk(t), u

′
k(t)) for a.e. t ∈ (t1 − δ, t2). (55)

Taking into account Equation (55), we can estimate the second term

on the left side of Equation (54) as follows:
∫ τ

t1−δ

θ(t)(gk(t), u
′
k(t)) dt =

∫ τ

t1−δ

θ(t)
(
8H(uk(t))

)′
dt

= 8H

(
uk(τ )

)
−

∫ τ

t1−δ

θ ′(t)8H

(
uk(t)

)
dt

≥ 8H

(
uk(τ )

)
− max

t∈[t1−δ,t1]
θ ′(t)

∫ t1

t1−δ

8H

(
uk(t)

)
dt. (56)

By inequality (4) with ε = 4, taking into Equation (6), we

receive
∣∣∣
∫ τ

t1−δ

θ(t)
(
B(t, uk(t)), u

′
k(t)

)
dt

∣∣∣ ≤
∫ τ

t1−δ

θ(t)
∣∣B(t, uk(t))

∣∣|u′k(t)| dt

≤ L

∫ τ

t1−δ

θ(t)|uk(t)||u
′
k(t)| dt ≤ 4L2

∫ τ

t1−δ

θ(t)|uk(t)|
2dt

+
1

4

∫ τ

t1−δ

θ(t)|u′k(t)|
2 dt, (57)

∫ τ

t1−δ

θ(t)(fk(t), u
′
k(t)) dt ≤ 4

∫ τ

t1−δ

θ(t)|fk(t)|
2 dt

+
1

4

∫ τ

t1−δ

θ(t)|u′k(t)|
2 dt. (58)

From Equation (54), using Equations (56)–(58) and

max
t∈[t1−δ,t1]

θ ′(t) = δ−1 max
t∈[t1−δ,t1]

θ ′
∗((t − t1)/δ) ≤ C8δ

−1,

C8 : = max
s∈[−1,0]

θ ′
∗(s),

we have

1

2

∫ τ

t1

|u′k(t)|
2 dt + 8H

(
uk(τ )

)
≤ 4

∫ τ

t1−δ

|fk(t)|
2 dt

+ 4L2
∫ τ

t1−δ

|uk(t)|
2 dt + C8δ

−1

∫ t1

t1−δ

8H

(
uk(t)

)
dt. (59)

Since τ ∈ [t1, t2] is arbitrary, from Equation (59) by the

definition of 8H and condition (A3) (remind that uk(t) ∈ V for

a.e. t ∈ S), we have

less sup
t∈[t1 ,t2]

‖uk(t)‖
p +

∫ t2

t1

|u′k(t)|
2 dt

≤ C9

[ ∫ t2

t1−δ

|fk(t)|
2 dt +

∫ t2

t1−δ

|uk(t)|
2 dt + δ−1

∫ t1

t1−δ

8
(
uk(t)

)
dt

]
,

(60)

where C9 > 0 is a positive constant dependent on K1 and L only.

From Equation (60), taking into account (51), we obtain

ess sup
t∈[t1 ,t2]

‖uk(t))‖
p +

∫ t2

t1

|u′k(t)|
2 dt ≤ C10

[
δ
− 2

q−2 + δ
−

q
q−2

+

∫ t2

t1−2δ
|fk(t)|

2 dt + δ−1

∫ t1

t1−2δ
|fk(t)|

2 dt
]
, (61)

where C10 > 0 is a positive constant dependent on K1,K2,K3, L,

and q only.

From the estimate (4) and the definition of fk, since t1, t2 ∈ S

and δ > 0 are arbitrary, it implies that

the sequence
{
uk

}+∞

k=1
is bounded in L∞loc(S;V), (62)

the sequence
{
u′k

}+∞

k=1
is bounded in L2loc(S;H). (63)

From Equations (6) and (51) we have

t2∫
t1

∣∣B(t, uk(t))
∣∣2 dt ≤ L2

t2∫
t1

|uk(t)|
2 dt ≤ C11

(
1+

t2∫
t1−1

|fk(t)|
2 dt

)
≤ C12, (64)

where C11,C12 are positive constants independent on k ∈ N.

From Equations (35), (63), and (64) and the definition of fk, we

get that

the sequence {gk}
+∞
k=1

is bounded in L2loc(S;H). (65)

Step 5 (passing the limit). Since V is reflexive Banach space, H

is Hilbert space, and V embeds in H by compact injection, from

Equations (52), (62), (63), (65), and Proposition 2.7, we have the

existence of functions u ∈ L∞
loc
(S;V) ∩ L

q

loc
(S;H) ∩ H1

loc
(S;H),

g ∈ L2
loc
(S;H), and a subsequence of the sequence {uk, gk}

+∞
k=1

(until

denoted by {uk, gk}
+∞
k=1

) such that

uk −→
k→∞

u ∗-weakly in L∞loc(S;V), and weakly in L
p

loc
(S;V),

(66)

uk −→
k→∞

u weakly in L
q

loc
(S;H), and weakly in H1

loc(S;H), (67)

uk −→
k→∞

u in C(S;H), (68)

gk −→
k→∞

g weakly in L2loc(S;H). (69)

From Equation (68) and condition (B), for each t0 < T, we

have

T∫

t0

∣∣B(t, uk(t))− B(t, u(t))
∣∣2 dt ≤ L2

T∫

t0

|uk(t)− u(t)|2 dt −→
k→∞

0.

Thus, we obtain

B(·, uk(·)) −→
k→∞

B(·, u(·)) strongly in L2loc(S;H). (70)
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Let v ∈ H, ϕ ∈ C(S) be arbitrary while suppϕ is compact. For

a.e. t ∈ S, wemultiply equality (35) by v and ϕ(t), and then integrate

in t on S. As a result, we obtain equality

∫
S

(u′
k
(t), v)ϕ(t) dt +

∫
S

(gk(t), v)ϕ(t)+
∫
S

(B(t, uk(t)), v)ϕ(t) dt

=
∫
S

(fk(t), v)ϕ(t) dt, k ∈ N. (71)

We pass to the limit in Equation (71) as k → ∞, taking

into account (67), (69), (70), and the convergence of {fk}
∞
k=1

to f

in L2
loc
(S;H). As a result, since v,ϕ are arbitrary, for a.e. t ∈ S, we

obtain the equality

u′(t)+ g(t)+ B(t, u(t)) = f (t) in H.

Step 6 (proof that u(t) ∈ D(∂8H) and g(t) ∈ ∂8H

(
u(t)

)
for a. e.

t ∈ S). Let k ∈ N be an arbitrary number. Since uk(t) ∈ D(∂8H)

and gk(t) ∈ ∂8H

(
uk(t)

)
for a.e. t ∈ S, applying the monotonicity of

the sub-differential ∂8H , we obtain that for a.e. t ∈ S the following

inequality holds:

(gk(t)− v∗, uk(t)− v) ≥ 0 ∀ [v, v∗] ∈ ∂8H . (72)

Let τ ∈ S and h > 0 be arbitrary numbers. We integrate (72) in t

from τ − h to τ :

∫ τ

τ−h
(gk(t)− v∗, uk(t)− v) dt ≥ 0 ∀ [v, v∗] ∈ ∂8H . (73)

Now we pass to the limit in Equation (73) as k → ∞, according to

Equations (68) and (69). As a result, we obtain

∫ τ

τ−h
(g(t)− v∗, u(t)− v) dt ≥ 0 ∀ [v, v∗] ∈ ∂8H . (74)

The monograph [25, Theorem 2] and Equation (74) imply that

for every [v, v∗] ∈ ∂8H there exists a set of measure zero R[v,v∗] ⊂ S

such that for all τ ∈ S \ R[v,v∗] we have u(τ ) ∈ V , g(τ ) ∈ H

0 ≤ lim
h→+0

1

h

∫ τ

τ−h

(
g(t)−v∗, u(t)−v

)
dt =

(
g(τ )−v∗, u(τ )−v

)
≥ 0.

(75)

Let us demonstrate that there exists a set of measure zero R ⊂ S

such that

∀τ ∈ S\R :

(
g(τ )−v∗, u(τ )−v

)
≥ 0 ∀ [v, v∗] ∈ ∂8H . (76)

Since V and H are separable spaces, there exists a countable set

F ⊂ ∂8H , which is dense in ∂8H . Denote R : = ∪
[v,v∗]∈F

R[v,v∗].

Since the set F is countable and any countable union of sets of

measure zero is a set of measure zero, then R is a set of measure

zero.

Therefore, for any τ ∈ S \ R inequality (76) holds for every

[v, v∗] ∈ F. Let [̂v, v̂∗] be an arbitrary element from ∂8H . Then

from the density F in ∂8H we have the existence of a sequence

{[vl, v
∗
l
]}∞
l=1

⊂ F such that vl → v in V , v∗
l
→ v∗ in H, and for

every τ ∈ S \ R

(g(τ )− v∗l , u(τ )− vl) ≥ 0 ∀l ∈ N. (77)

Thus, passing to the limit in inequality (77) as l → ∞, we obtain

(g(τ ) − v∗, u(τ ) − v) ≥ 0 for every τ ∈ S \ R. Hence, we have

Equation (76), i.e., for a.e. t ∈ S, the following holds:

(g(t)− v∗, u(t)− v) ≥ 0 ∀ [v, v∗] ∈ ∂8H .

From this, according to the maximal monotonicity of ∂8H , we

obtain that [u(t), g(t)] ∈ ∂8H for a.e. t ∈ S, i.e., u(t) ∈ D(∂8H)

and g(t) ∈ ∂8H(u(t)) for a.e. t ∈ S. Thus, function u is the solution

of the problem P(8,B, f ), and therefore P(8H ,B, f ).

Step 7 (completion of proof ). Estimates (9) and (10) of the solution

of the problem P(8,B, f ) follow directly from estimates (51) (given

that
∫ t2
t1

8
(
uk(t)

)
dt ≥ 0) and (4), convergence (66)–(68) and

Proposition 2.5.

5 Comments on the main results

Let us introduce an example of the problem that is studied here.

Let n ∈ N, � be a bounded domain in R
n, ∂� be the boundary

of �, and ∂� be the piecewise surface. We put Q : = � × S,

6 : = ∂� × S, and �t : = � × {t} ∀ t ∈ S. For an arbitrary

measurable set F ⊂ R
k, where k = n or k = n + 1, and

r ∈ [1,∞], let Lr(F) be the standard Lebesgue space with norm

‖ · ‖Lr(F). Let L
r
loc
(Q) be the linear space of classes of equivalent

functions defined on Q such that their restrictions on any bounded

measurable setQ ′ ⊂ Q belong to Lr(Q ′). For r ∈ (1,∞), we denote

by W1,r(�) = {v ∈ Lr(�) | vxi ∈ Lr(�), i = 1, n} the standard

Sobolev space with norm ‖v‖W1,r(�) : =
(
‖v‖r

Lr(�)
+‖∇v‖r

Lr(�)

)1/r
,

where ∇u : = (ux1 , . . . , uxn ) [see, e.g., Brezis [24]].

Let p > 2 and K be a nonempty convex closed set in W1,p(�),

which contains 0. We consider the problem: find a function u ∈

L
p

loc
(Q) such that uxi ∈ L

p

loc
(Q), i = 1, n, ut ∈ L2

loc
(Q), and, for a.e.

t ∈ S, we have u(·, t) ∈ K and

∫

�t

[
ut(v−u)+|∇u|p−2∇u∇(v−u)+|u|p−2u(v−u)+a(x)u(v−u)

+(v−u)

∫

�

b(x, y, t)u(y, t) dy
]
dx ≥

∫

�t

f (v−u) dx ∀ v ∈ K, (78)

where f ∈ L2
loc
(Q), a ∈ L∞(�), and S ∋ t → b(·, ·, t) ∈ L2(� × �)

are given.

This problem is called problem (78), and a function u is its

solution.

Note that in cases K = W1,p(�), this problem is equivalent to

the problem of finding a weak solution to a problem without initial

conditions for a nonlinear integro-differential parabolic equation:

ut − div
(
|∇u|p−2∇u

)
+ |u|p−2u+ a(x)u+

∫
�

b(x, y, t)u(y, t) dy

= f (x, t), (x, t) ∈ Q,

∂u

∂ν
= 0.
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We remark that problem (78) can be written more abstractly.

Indeed, after appropriate identification of functions and

functionals, we have continuous and dense embedding

W1,p(�) ⊂ L2(�) ⊂ (W1,p(�))′,

where (W1,p(�))′ is dual to W1,p(�) space. Clearly, for any h ∈

L2(�) and v ∈ W1,p(�), we have 〈h, v〉 = (h, v), where 〈·, ·〉 is

the notation for action of element of (W1,p(�))′ on element of

W1,p(�), and (·, ·) is a scalar product in L2(�). Thus, we can use

the notation (·, ·) instead of 〈·, ·〉.

Now, we denote V : = W1,p(�), H : = L2(�) and define

operators A :V → V ′ and B(t, ·) :H → H, t ∈ S, as follows:

(A(v),w) =

∫

�

[
|∇v|p−2∇v∇w+ |v|p−2vw+ avw

]
dx, v,w ∈ V ,

(79)

B(t, v)(·) : =

∫

�

b(·, y, t)v(y) dy, v ∈ H, t ∈ S. (80)

Then problem (78) can be rewritten as follows: find a function

u ∈ L
p

loc
(S;V) such that u′ ∈ L2

loc
(S;H) and, for a.e. t ∈ S, we

have u(t) ∈ K and

(u′(t)+ A(u(t))+ B(t, u(t)), v− u(t)) ≥ (f (t), v− u(t)) ∀ v ∈ K,

(81)

where f ∈ L2
loc
(S;H) is given function.

We remark that, for a.e. t ∈ S, variational inequality (81) can be

written as

(u′(t)+ A(u(t))+ B(t, u(t))− f (t), v− u(t))+ IK(v)− IK(u(t))

≥ 0 ∀ v ∈ V , (82)

where

IK(v) : =

{
0, if v ∈ K,

+∞, if v ∈ V \ K.
(83)

We can write inequality (82) as follows:

IK(v) ≥ IK(u(t))+ (−u′(t)− A(u(t))− B(t, u(t))+ f (t), v− u(t))

∀ v ∈ V . (84)

The functional IK from V to R∞ is proper, convex and lower

semicontinuous. By the definition of the subdifferential ∂IK :V →

2V
′
inequality (84) is equivalent to inclusion

∂IK(u(t)) ∋ −u′(t)− A(u(t))− B(t, u(t))+ f (t),

i.e.,

u′(t)+ A(u(t))+ ∂IK(u(t))+ B(t, u(t)) ∋ f (t). (85)

We define

9(v) : =

∫

�

[
p−1(|∇v|p + |v|p)+ 2−1a|v|2

]
dx, v ∈ V , (86)

and

8(v) : = 9(v)+ IK(v), v ∈ V . (87)

The functionals 9 and 8 from V to R∞ are proper, convex and

lower semicontinuous. As easy to demonstrate, we have ∂9(v) =

{A(v)} ⊂ V ′ for each v ∈ V , and

∂8(v) : = A(v)+ ∂IK(v), v ∈ V . (88)

From the above [see, in particular, Equations (85) and (88)],

it follows that the problem (79) can be written as such a sub-

differential inclusion: find a function u ∈ L
p

loc
(S;V) such that

u′ ∈ L2
loc
(S;H) and, for a.e. t ∈ S, u(t) ∈ D(∂8) and

u′(t)+ ∂8(u(t))+ B(t, u(t)) ∋ f (t) in H. (89)

So problem (78) is a partial case of the problem P(8,B, f ).

Based on this, let’s illustrate the main results of this study (see

Theorems 1, 2).

COROLLARY 5.1. Let the following condition hold:

ess sup
t∈S

‖b(·, ·, t)‖L2(�×�) < ess inf
x∈�

a(x). (90)

Then problem (78) has a unique solution. In addition, it belongs

to the space L∞
loc
(S;W1,p(�)) ∩ H1

loc
(S; L2(�)) and for arbitrary

t1, t2 ∈ S, t1 < t2, δ > 0 satisfies the estimates:

max
t∈[t1 ,t2]

∫

�

|u(x, t)|2 dx+

t2∫

t1

∫

�

[
|u(x, t)|2 + |u(x, t)|p + |∇u(x, t)|p

]
dxdt

(91)

≤ C15

[
δ
− 2

q−2 +

t2∫

t1−δ

∫

�

|f (x, t)|2 dxdt
]
, (92)

ess sup
t∈[t1 ,t2]

∫

�

[
|u(x, t)|p + |∇u(x, t)|p

]
dx+

t2∫

t1

∫

�

|ut(x, t)|
2 dxdt

≤ C16

[
max{δ

− 2
q−2 , δ

−
q

q−2 } +

t2∫

t1−2δ

∫

�

|f (x, t)|2 dxdt

+ δ−1

t1∫

t1−2δ

∫

�

|f (x, t)|2 dxdt
]
, (93)

where C15,C16 are positive constants depending on

ess sup
t∈S

‖b(·, ·, t)‖L2(�×�), ess inf
x∈�

a(x), and p only.

Proof. [Proof of Corollary 5.1] We need to demonstrate that

functional 8, defined in Equations (83)—(87), and family of

operators B(t, ·), t ∈ S, defined in Equation 80, satisfy the

conditions of Theorems 1, 2.

Writing the functional 9 defined in Equation (86) in the form

9(v) = p−1‖v‖
p

W1,p(�)
+ 2−1

∫

�

a|v|2 dx, v ∈ W1,p(�), (94)

we obtain that the functional 9 is proper and dom(9) = W1,p(�).

Note that for arbitrary r ≥ 2, function Fr(ξ ) = |ξ |r , ξ ∈ R
n, is

convex. Indeed, for all α ∈ [0, 1], we have

Fr(αξ + (1− α)η) = |αξ + (1− α)η|r ≤ (α|ξ | + (1− α)|η|)r
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≤ α|ξ |r+ (1−α)|η|r = αFr(ξ )+ (1−α)Fr(η), ξ , η ∈ R
n. (95)

Here we used the convex function gr(s) = sr , s ∈ [0,+∞), since

g′′r (s) = r(r − 1)sr−2 > 0 for all s ∈ (0,+∞).

From Equation (95), with r = p and r = 2, it is easy to see that

functional 9 is convex, hence functional 8 satisfies the condition

(A1).

Let vk −→
k→∞

v inW1,p(�). Then ‖vk‖W1,p(�) −→
k→∞

‖v‖W1,p(�) and

vk −→
k→∞

v in L2(�). From this, it follows:

‖vk‖
p

W1,p(�)
−→
k→∞

‖v‖
p

W1,p(�)
, (96)

∣∣∣
∫

�

a|vk|
2 dx−

∫

�

a|v|2 dx
∣∣∣ ≤

∫

�

a|v2k−v2| dx =

∫

�

a|vk+v| |vk−v| dx

≤ ess sup a · (‖vk‖L2(�) + ‖v‖L2(�)) · ‖vk − v‖L2(�) −→
k→∞

0. (97)

From Equations (94), (96), and (97), it follows that the functional9

is lower semicontinuous, hence functional 8 satisfies the condition

(A2).

Since a > 0 a.e. on �, then [see Equation (94)]

9(v) ≥ p−1‖v‖
p

W1,p(�)
, v ∈ W1,p(�).

Hence, given that IK(v) ≥ 0, v ∈ V , condition (A3) holds with

K2 : = p−1.

It is easy to show that

∂9(v) = {A(v)} ⊂ (W1,p(�))′ ∀v ∈ W1,p(�),

where A(·) is defined in Equation (79).

Then for any v1, v2 ∈ W1,p(�) we have

(
A(v1)− A(v2), v1 − v2

)
=

∫

�

[(|∇v1|
p−2∇v1 − |∇v2|

p−2∇v2)

(∇v1 − ∇v2)

+ (|v1|
p−2v1 − |v2|

p−2v2)(v1 − v2)+ a|v1 − v2|
2] dx. (98)

Since the function Fp(ξ ) = |ξ |r , ξ ∈ R
n, is convex, from the

convexity criterion we have

(∇Fp(ξ )−∇Fp(η))(ξ − η) ≥ 0, ξ , η ∈ R
n. (99)

Since ∇Fp(ξ ) = p|ξ |p−2ξ , ξ ∈ R
n, then from Equation (99) it

follows:

∫

�

[(|∇v1|
p−2∇v1 − |∇v2|

p−2∇v2)(∇v1 −∇v2) dx ≥ 0. (100)

By Bokalo [9], for arbitrary s1, s2 ∈ R, the inequality

(|s1|
p−2s1 − |s2|

p−2s2)(s1 − s2) ≥ 22−p|s1 − s2|
p

holds. Hence, for all v1, v2 ∈ Lp(�), we have

∫

�

(|v1|
p−2v1 − |v2|

p−2v2)(v1 − v2) dx ≥ 22−p

∫

�

|v1 − v2|
p dx.

(101)

Using Hölder’s inequality (see Proposition 2.3) with r = p/2,

we have this chain of inequalities:

∫

�

|v1 − v2|
2 dx ≤

( ∫

�

1r
′

dx
) 1

r′
( ∫

�

|v1 − v2|
p dx

) 1
r
=

(mesn�)
p−2
p

( ∫

�

|v1 − v2|
p dx

) 2
p
.

From this, we obtain

∫
�

|v1 − v2|
p dx ≥

(
mesn�

) 2−p
2

( ∫
�

|v1 − v2|
2 dx

) p
2

=
(
mesn�

) 2−p
2 ‖v1 − v2‖

p

L2(�)
. (102)

From Equations (101), (102) it follows:

∫
�

(|v1|
p−2v1 − |v2|

p−2v2)(v1 − v2) dx

≥ 22−p
(
mesn�

) 2−p
2 ‖v1 − v2‖

p

L2(�)
. (103)

Also, we have

∫

�

a|v1 − v2|
2 dx ≥ (ess inf

�
a)

∫

�

|v1 − v2|
2 dx. (104)

Hence, from Equation (98), using Equations (100), (103), and

(104), we have

(A(v1)− A(v2), v1 − v2) ≥ K2‖v1 − v2‖
2
L2(�)

+ K3‖v1 − v2‖
p

L2(�)
,

v1, v2 ∈ W1,p(�), (105)

where K2 : = ess inf
�

a, K3 : = 2 2−p
(
mesn�

) 2−p
2 .

From Equation (94) and the monotonicity of IK(·) it follows

condition (A4) with q = p.

Let us prove that condition (B) holds. Since Equation (80), we

have for almost all t ∈ S and for all v1, v2 ∈ L2(�):

‖B(t, v1)(·)−B(t, v2)(·)‖L2(�) =

∥∥∥
∫

�

b(·, y, t)(v1(y)−v2(y)) dy
∥∥∥
L2(�)

≤

∫

�

|v1(y)− v2(y)| · ‖b(·, y, t)‖L2(�) dy ≤ ‖b(·, ·, t)‖L2(�×�)·

‖v1 − v2‖L2(�) ≤ L‖v1 − v2‖L2(�),

where L : = ess sup
t∈S

‖b(·, ·, t)‖L2(�×�), i.e., condition (B) holds.

From the above, it follows that in this case, condition (8)

has form (90). Estimates (91) and (93) are derived directly from

estimates (9) and (10).
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6 Conclusion

We investigated the problem without initial conditions

for some strictly nonlinear functional-differential variational

inequalities in the form of sub-differential inclusions with

functionals. The conditions for the existence of a unique solution to

this problem in the absence of restrictions on the solution’s behavior

and the growth of input data when the time variable is directed to

−∞ have been obtained. There are also estimates of the solution to

the researched problem provided.

The results obtained here can be used to study mathematical

models in many fields of science, such as ecology, economics,

physics, cybernetics, etc.

In the future, it would be worthwhile to obtain similar results

for functional-differential variational inequalities that do not have

the form of subdifferential inclusions with functionals.
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