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This paper deals with the approximation error of trigonometric interpolation for

multivariate functions of bounded variation in the sense of Hardy-Krause. We

propose interpolation operators related to both the tensor product and sparse

grids on the multivariate torus. For these interpolation processes, we investigate

the corresponding error estimates in the Lp norm for the class of functions under

consideration. In addition, we compare the accuracy with the cardinality of these

grids in both approaches.
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1 Introduction

The interpolation of periodic functions at equidistant nodes by trigonometric

polynomials is a basic task of approximation theory with far-reaching applications (see,

e.g., Chapter 3 in Plonka et al. [2]). The possibility of using FFT algorithms with huge

amounts of data has contributed greatly to the popularity of this approximation method.

Accordingly, error estimates for such interpolation methods have been intensively studied

in the literature. The decisive difference between approximation methods which are based

on integral evaluations of the given function f , for example, the Fourier coefficients, and an

interpolation method is that information about f must really be available pointwise. This

difference becomes particularly important in the case of interpolation of discontinuous

functions, where one will focus on the error in Lp norms in particular. As is well-known,

the Riemann integrability of a periodic function f is a condition for the Lp error to tend to 0

as the number of nodes n → ∞ (cf. [3]). For a little more smoothness, the approximation

order in Lp can be bounded by the best one-sided approximation in Lp using trigonometric

polynomials (cf. [4]).

A particularly important class of functions, generally discontinuous functions, for

which one would like to obtain error estimates are functions of bounded variation. A first

result in this area comes from Zacharias, who proved in [5] with Hilbert space methods

that the L2 error behaves like 1/
√
n. This result was generalized to 1 ≤ p < ∞ in Prestin

[6].

To generalize these error estimates to multivariate periodic functions, a suitable

concept for multivariate bounded variation is required. The Hardy-Krause definition is

appropriate here (see Clarkson and Adams [7] and for more information on these spaces

[8], [9] and others). For the dimension d = 2 and interpolation on the tensor product,

such results can be found in Prestin and Tasche [10], (see also Kolomoitsev et al. [11]). An

essential tool for the proof of the error estimates is the consideration of blending operators,

which have been extensively analyzed in the study of Delvos et al. (cf., e.g., [12–15]).

In this study, the results for the approximation error of functions of bounded

variation are to be transferred to interpolation methods on sparse grids. Such grids were
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first introduced in Smolyak [16] and since then have been widely

used in interpolation problems, quadrature schemes, and other

fields. For more details, see Dũng et al. [17]. These sparse grids

are very efficient, especially for large spatial dimensions d, that

is, the approximation order is only reduced by a logarithmic

factor compared to the tensor product interpolation, although the

number of interpolation nodes is only by a log factor bigger than

in the univariate case. At this point, it should be noted that error

estimates for such interpolation methods of continuous functions

are known (see Dũng et al. [17, Chap. 5.3]). Such statements are

proved for functions belonging to the spaces Hr
p, where r > 1/p

is assumed, which implies the continuity of the function to be

interpolated. Our larger class of functions of bounded variation

then provides an order of convergence as in the case r = 1/p.

Our approach requires a notation for the definition of bounded

variation that is well-suited for large dimensions d. Here, we follow

the approach in Aistleitner et al. [1].

Finally, we note that these approximation results for functions

of bounded variation are also valid for Fourier sums and the

corresponding multivariate hyperbolic cross-variants, where the

results can also be obtained using other methods.

2 Function of bounded variation

Let p ∈ [1,∞), d ∈ N. For 2π-periodic functions f of d

variables on the torus Td, we consider the space Lp(T
d), 1 ≤ p <

∞, supplied by the following norm:

‖f ‖p : =
(

1

(2π)d

∫

Td
|f (z)|pdz

)
1
p

< ∞.

We denote by D = {1, . . . , d} the set of coordinates with

cardinality |D| = d and split it into two domains B ⊂ D and

B = D\B, |B|+|B| = d. Following Aistleitner et al. [1] by z = yB : x,

where y, x ∈ T
d, we describe the vector z ∈ T

d consisting of the

components zj = yj if j ∈ B and zj = xj otherwise. Such a partition

will also be used to represent the vector z ∈ T
d as a combination of

arguments from B and fixed values along coordinates from B̄.

For each coordinate j = 1, ..., d we introduce some arbitrary

decomposition Zj, namely

Zj : 0 = ξ
j
1 < . . . < ξ

j
uj = 2π .

Let ξ = (ξ 1
k1
, ξ 2

k2
, . . . , ξd

kd
) ∈ T

d be a vector with components

ξ
j

kj
∈ Zj, kj = 1, . . . , uj and ξ+ = ((ξ 1

k1
)+, (ξ 2k2 )+, . . . , (ξ

d
kd
)+) ∈

T
d, where

(ξ
j

kj
)+ =

{

ξ
j

kj+1
, kj < uj,

2π , otherwise.

Using this notation for a function f :Td → C, we introduce a

d-dimensional difference operator in the following way:

1D(f ) =
∑

ξ∈
∏

j∈D
Zj

∣

∣

∣

∣

∣

∣

∑

∅⊆U⊆D

(−1)|U|f (ξU : ξ+)

∣

∣

∣

∣

∣

∣

.

Furthermore, we consider the difference operator and

corresponding variation for f :Td → C with respect to coordinates

j ∈ B and fixed values zj for j ∈ B:

1B(f , z
B) =

∑

ξ∈
∏

j∈B
Zj

∣

∣

∣

∣

∣

∣

∑

∅⊆U⊆B

(−1)|U|f ((ξU : ξ+)
B
: z)

∣

∣

∣

∣

∣

∣

.

Then, we define for all B ⊆ D:

VBf (zB) = sup
Zj ,j∈B

1B(f , z
B).

In particular, V∅f (z) = f (z).

For a function VBf (zB) ∈ Lp(T
d−|B|), we have

‖VBf ‖p =
(

1

(2π)d−|B|

∫

Td−|B|

|VBf (zB)|pdzB
)

1
p

for 1 ≤ p < ∞ and ‖VBf ‖∞ = sup
zB∈Td−|B|

VBf (zB) for p = ∞.

Let us mention that for B = D, the variation VDf (zB) is a

constant, which we simply denote as VDf .

Then, the total variation of a function f :Td → C is determined

by the quantity

HV(f ) =
∑

∅⊂B⊆D

‖VBf ‖∞.

A function f :Td → C for which HV(f ) is finite we call

function of bounded variation on T
d in the sense of Hardy-Krause

and write f ∈ HV(Td).

Remark 2.1. An alternative definition of this kind of bounded

variation is discussed in Bakhvalov [18, Lemma 4]. So, f ∈ HV(Td)

if VDf < ∞ and for any j ∈ D there are z
j
0 such that f (z

j
0 : z) ∈

HV(Td−1), that is, f has bounded variation up to coordinates i ∈
D \ {j}.

Remark 2.2. Let d > 1. By definition f ∈ HV(Td) iff ‖VBf ‖∞
is finite for all B ⊆ D. All these 2d conditions are pairwise

independent of each other as can be seen by the following examples

[for the case d = 2 cf. ([7], p. 827)].

Let B1 6= B2 be arbitrary subsets of D. W.l.o.g. we assume

1 ∈ B1, 1 /∈ B2 and we distinguish the 4 possible cases:

a) 2 ∈ B1 ∩ B2, b) 2 ∈ B1, 2 /∈ B2, c) 2 /∈ B1, 2 ∈ B2,

d) 2 /∈ B1 ∪ B2.

Now, we consider functions F :Td → C of the form

F(x) = f (α,β)

d
∏

k=3

gk(x
k)

with gk ∈ HV(T1) and 0 < V2π
0 (gk) < ∞ for all k = 3, . . . , d,

where V2π
0 denotes the one-dimensional total variation on [0, 2π].

If D ⊇ A = B ∪ C with B ⊆ {1, 2} and C ⊆ {3, . . . , d}, then

‖VAF‖∞ = ‖VBf ‖∞
∏

k∈C
V2π
0 (gk)

∏

k>2,k/∈C
sup
z∈T

|gk(z)|.
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Hence, ‖VAF‖∞ is finite, if ‖VBf ‖∞ is finite.

As examples fj :T
2 → C, j = 1, 2, 3, 4 we choose

f1(α,β) =
{

1, if 0 < α < β < 2π ,

0, otherwise in [0, 2π)2,

f2(α,β) =







1

β
, if 0 < β < 2π ,

0, otherwise in [0, 2π)2,

f3(α,β) = f4(β ,α) =







sin
1

α
, if 0 < α < 2π ,

0, otherwise in [0, 2π)2.

On the one hand, we conclude for

a), b)
‖VB1 f1‖∞ = ∞
‖VB2 f1‖∞ = 1

, for c)
‖VB1 f3‖∞ = ∞
‖VB2 f3‖∞ = 0

,

for d)
‖VB1 f3‖∞ = ∞
‖VB2 f3‖∞ = 1

.

On the other hand, we conclude for

a), b), d)
‖VB1 f2‖∞ = 0

‖VB2 f2‖∞ = ∞, for c)
‖VB1 f4‖∞ = 0

‖VB2 f4‖∞ = ∞.

Themain aim of our investigation is to study the approximation

order of trigonometric interpolation processes on tensor product

and sparse grids for multivariable functions f ∈ HV(Td).

3 Interpolation on the tensor product
grid

In this section, we study an interpolation operator for

multivariable functions on tensor product grids. Our approach

continues the investigations in Prestin [6] and Prestin and Tasche

[10], where the trigonometric interpolation for univariate and

bivariate functions and the corresponding approximation bounds

were established.

Let Td
n be the space of trigonometric polynomials such that

Td
n : = span{ eikx, |k|∞ ≤ 2n}.

We define a set of an odd number of equidistant nodes in

direction xj by

X
j
n : = {xj

k
=

2kπ

2n+1 + 1
, k = 0, ..., 2n+1}. (1)

Then, the tensor product ⊗d
j=1X

j
n is called a full interpolation

grid on T
d.

For an univariate bounded function f :T → C, the

interpolation operator Ln is of the form

Lnf (x) =
2

2n+1 + 1

2n+1
∑

k=0

f (xk)Kn(x− xk),

where

Kn(x) =
1

2
+

2n
∑

j=1

cos jx =
1

2

2n
∑

j=−2n

eijx (2)

is the 2n-th Dirichlet kernel. For a multivariate function

f :Td → C, the corresponding interpolation operator with respect

to the coordinate j takes the form

L
j
rj f (x) : = I ⊗ . . . ⊗ Lrj ⊗ . . . ⊗ If (x)

=
2

2rj+1 + 1

2
rj+1
∑

i=0

f (x
j
i : x)Krj (x

j − x
j
i),

where I is the identity operator andA⊗B is the algebraic tensor

product of A and B.

It is obvious that the operator L
j
rj satisfies the interpolation

conditions

L
j
rj f (x

j
i : x) = f (x

j
i : x), i = 0, . . . , 2rj+1 (3)

for each j = 1, . . . , d.

Let us consider the tensor product of interpolation operators

with respect to arguments belonging to the set B ⊆ D, that is,

we define the corresponding interpolation operator for the grid

⊗j∈BX
j
rj as

LB =
⊗

j∈B
L
j
rj .

Moreover, the interpolation property

LBf (xB0 : x) = f (xB0 : x)

holds for any xB0 ∈ ⊗j∈BX
j
rj .

Furthermore, we give the representation for the operator LB

by its Fourier series. Let k = {kj}j∈B and |kj|∞ ≤ 2rj . So, using

Equation 2 we immediately get that

LBf (x) =
∑

j∈B

2
rj
∑

k=−2
rj

cBke
ikxB

with

cBk f (x) =
∏

j∈B

1

(2rj+1 + 1)

∑

xB0∈⊗j∈BX
j
rj

f (xB0 : x)e
ik(xB0 ).

We also introduce the intermediate interpolation operator

often called blending operator, namely

MB =
⊕

j∈B
L
j
rj ,

where A⊕ C = A + C − AC is the boolean sum operation. As

is known (cf. [14], p. 141), the sum representation forMB is

MB =
|B|
∑

k=1

(−1)k−1





∑

U={j1 ,j2 ,...jk},U⊆B,|U|=k

L
j1
rj1
L
j2
rj2

· · · Ljkrjk




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and for the remainder operator, we have the product

representation

I −MB =
∏

j∈B
(I − L

j
rj ).

In the next theorem, we establish the approximation property of

the blending interpolation operator on a |B|-variate tensor product
grid.

Theorem 3.1. Let f ∈ T
d → C, 1 < p < ∞ and B ⊆ D be some

index set. If ‖VU f ‖p for allU ⊆ B exists and is a finite number, then

it holds true that

‖f −MBf ‖p ≤ c‖VBf ‖p
∏

j∈B
(2rj+1 + 1)−1/p, (4)

where c is some constant depending only on p and |B|.

Proof. For a univariate function f :T → C in Prestin [6], it was

proved that for 1 < p < ∞ the inequality

‖f − L
j
rj f ‖p ≤ c(2rj+1 + 1)−1/pV2π

0 (f ) (5)

holds with some constant c depending only on p.

Let B = {j1, j2, . . . jq}. Thus, using Lemma 2 in Prestin and

Tasche [10] and Equation 5 by |B| times, we immediately get that

∥

∥

∥

∥

∥

∥

∏

j∈B
(I − L

j
rj )f

∥

∥

∥

∥

∥

∥

p

≤ c(2rj1+1 + 1)−1/p

∥

∥

∥

∥

∥

∥

V{j1}





∏

j∈B\{j1}
(I − L

j
rj )f (x

D\{j1})





∥

∥

∥

∥

∥

∥

p

≤ . . . ≤ c
∏

j∈B
(2rj+1 + 1)−1/p‖VBf (xB)‖p (6)

what has to be proved.

Corollary 3.2. In the case of B = D, Theorem 3.1 states that

‖f −MDf ‖p ≤ cVDf
∏

j∈D
(2rj+1 + 1)−1/p

and for rj = n for all j ∈ D we immediately have

‖f −MDf ‖p ≤ c(2n+1 + 1)−d/pVDf .

Theorem 3.3. Let f ∈ HV(Td) and 1 < p < ∞. Then,

‖(I − LB)f ‖p ≤
∑

∅⊂U⊆B

∏

j∈U
(2rj+1 + 1)−1/p‖VU f ‖p. (7)

Proof. According to Delvos [14, Proposition 4.1], we can express

the remainder as a combination of the remainders of blending

operators with lower dimensions:

I − LB =
|B|
∑

k=1

∑

U⊆B,|U|=k

(−1)k−1(I − L
j1
rj1
)(I − L

j2
rj2
) · · · (I − L

jk
rjk
).

Then, the proof follows the same estimate as Equation 6.

Corollary 3.4. In the case of B = D for a function f ∈ HV(Td), the

inequality (Equation 7) takes the form

‖(I − LD)f ‖p ≤ c
∑

∅⊂B⊆D

∏

j∈B
(2rj+1 + 1)−1/p‖VBf ‖p.

Furthermore, if rj = n for all j ∈ D, then Theorem 3.3 implies

that

‖(I − LD)f ‖p ≤ c
∑

∅⊂B⊆D

(2n+1 + 1)−|B|/p‖VBf ‖p

≤ c2−n/pHV(f ).

Remark 3.5. In the case p = 1, the inequality Equation 5 has the

form

‖f − L
j
rj f ‖1 ≤ crj(2

rj+1 + 1)−1V2π
0 (f )

and Equations 4, 7 read as follows:

‖f −MBf ‖1 ≤ c
∏

j∈B
rj(2

rj+1 + 1)−1‖VBf ‖1

and

‖f − LBf ‖1 ≤
∑

∅⊂U⊆B

∏

j∈U
rj(2

rj+1 + 1)−1‖VU f ‖1,

respectively.

Remark 3.6. For f ∈ L1(T
d), we consider the m-th Fourier

coefficients

cm(f ) =
1

(2π)d

∫

Td
f (z)e−imzdz, m = (m1,m2, . . . ,md) ∈ Z

d.

With B(m) ⊆ D, we denote the set of indices j such thatmj 6= 0.

Then, according to Fülöp and Móricz [19] for all m ∈ Z
d, the

trigonometric Fourier coefficients cm(f ) of f ∈ HV(Td) can be

estimated by

|cm(f )| ≤
‖VB(m)f ‖1

(2π)|B(m)| ∏

j∈B(m)

|mj|
. (8)

This estimate is best possible, as demonstrated by the example

f (z) =
∏

j∈B
χ[0,π/mj](zj), (9)

where we have equality in Equation 8.

For p = 2, we want to compare the tensor product interpolation

with the best approximation. The best approximation in the Hilbert

space L2(T)
d is given by the Fourier partial sum

Snf (x) =
∑

m∈Td
n

cm(f )e
imx.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2024.1489137
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Prestin and Semenova 10.3389/fams.2024.1489137

By Parseval equation, we estimate

‖f − Snf ‖22 =
∑

|m|∞>n

|cm(f )|2

≤
d
∑

r=1

∑

|m|∞>2n

|B(m)|=r

‖VB(m)f ‖21
(2π)2r

∏

j∈B(m)

|mj|2

≤
d
∑

r=1

∑

|B|=r

‖VBf ‖21
(2π)2r

(

1

2n−1

)r

.

Hence,

‖f − Snf ‖2 ≤
∑

B6=∅

‖VBf ‖1
(
√
2π)|B|2n|B|/2

≤
HV(f )

π
√
2n+1

.

Based on the examples provided in Equation 9, it is evident that

the order of this estimate cannot be improved.

4 Interpolation on the sparse grid

In the following section, we study an interpolation operator

on a sparse grid related to a corresponding Boolean sum operator

for the d-dimensional case. Our error estimates for functions of

bounded variation complement the results proved in Baszenski and

Delvos [12, 13].

To construct a chain of interpolation operators, we consider

for each coordinate j ∈ D the following set of an even number of

equidistant nodes:

X̃
j
n : = {xj

k
=

2kπ

2n+1
, k = 0, ..., 2n+1 − 1}. (10)

It is known that for a univariate bounded function f :T → C,

the interpolation operator L̃n on the grid (Equation 1) has the form

L̃nf (x) =
1

2n

2n+1−1
∑

k=0

f (xk)K
⋆
n(x− xk),

where

K⋆
n(x) =

1

2
+

2n−1
∑

k=1

cos kx+
1

2
cos nx

is the 2n-th modified Dirichlet kernel. In the same way as it was

done in Section 3, we will introduce the operators L̃B and M̃B. Then,

the same error estimates are obtained for these approximation

methods as in Section 3. The only change is the error estimate for

the one-dimensional interpolation. Here, one can refer to Corollary

3.6 in Prestin and Xu [4], where the exact error bound is derived

although no explicit constants are given.

Remark 4.1. It is well-known that K⋆
n is a Lagrange basis function

for system of nodes (Equation 1). It is easy to check that for any

m ≥ 1 the relation ImL̃n ⊂ ImL̃n+m as well as X̃n ⊂ X̃n+m are

satisfied. Then taking into account Remark 2.2 [13] we have that for

operators L̃n and L̃n+m the ordering L̃n < L̃n+m and the relation

L̃n+mL̃n = L̃nL̃n+m = L̃n (11)

hold for all n such that 0 ≤ n < n+m.

Now, we introduce a d-dimensional Boolean sum interpolation

operator of n-th order in the following way

Gd
n =

⊕

r1+r2+...+rd=n

L̃1r1 L̃
2
r2

. . . L̃drd .

In an analogous manner as in Section 3, a partial variant GB
n

with B ⊂ D can be introduced here and error estimates can be

proven. The approach remains the same. To simplify the notation,

we therefore restrict ourselves to the case B = D.

To determine the set of interpolation points of the operator

Gd
n, we note (cf. [15]) that the grid for the operator L̃1r1 L̃

2
r2

. . . L̃drd
is X̃1

r1
× X̃2

r2
× . . . × X̃d

rd
and for L̃1r1 L̃

2
r2

. . . L̃drd ⊕ L̃1
l1
L̃2
l2

. . . L̃d
ld
is

X̃1
r1
× X̃2

r2
× . . . × X̃d

rd
∪ X̃1

l1
× X̃2

l2
× . . . × X̃d

ld
.

Thus, for the operator Gd
n, we have the sparse grid of n-th order

in the following form

X̃n
sparse : =

⋃

r1+r2+...+rd=n

⊗

j=1,...,d

X̃
j
ri .

Due to Equation 3, it follows that Gd
n interpolates f on each

point such that x0 ∈ X̃n
sparse, that is,

Gd
nf (x0) = f (x0)

for all x0 ∈ X̃n
sparse.

Taking into account (Equation 11), we have the sum

representation (cf. [13])

Gd
n =

d−1
∑

j=0

(−1)j

(

d − 1

j

)

∑

r1+r2+...+rd=n−j

L̃1r1 L̃
2
r2

. . . L̃drd .

Remark 4.2. If we put d = 2, then the operator G2
n has the form

(see for details [13]):

G2
nf =

∑

r1+r2=n

L̃1r1 L̃
2
r2
f −

∑

r1+r2=n−1

L̃1r1 L̃
2
r2
f .

For d = 3, we immediately get the following Boolean sum

operator:

G3
nf =

∑

r1+r2+r3=n

L̃1r1 L̃
2
r2
L̃3r3 f − 2

∑

r1+r2+r3=n−1

L̃1r1 L̃
2
r2
L̃3r3 f

+
∑

r1+r2+r3=n−2

L̃1r1 L̃
2
r2
L̃3r3 f .

Theorem 4.3. If f ∈ HV(Td) and 1 < p < ∞, then for all n

‖(I − Gd
n)f ‖p ≤ cnd−12

− n
p HV(f ), (12)

where c is some constant depending on d and p.

Proof. Following Baszenski and Delvos [12], we have

I − Gd
n =

d
∑

j=1

d
∑

q=j

(−1)j−1

(

q− 1

j− 1

)

∑

B,|B|=q
∑

ri1+...+riq=n−d+j

(I − L̃i1ri1
)× . . . × (I − L̃

iq
riq ).
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Then using Theorem 3.1, we get

‖(I − Gd
n)f ‖p

≤ c

d
∑

j=1

d
∑

q=j

(

q− 1

j− 1

)

∑

B,|B|=q

∑

ri1+...+riq=n−d+j

‖(I − L̃i1ri1
)

× . . . × (I − L̃
iq
riq )f ‖p

≤ c

d
∑

j=1

d
∑

q=j

(

q− 1

j− 1

)

∏

j∈B
(2rj+1 + 1)−1/p

≤ c

d
∑

j=1

d
∑

q=j

(

q− 1

j− 1

)

∑

B,|B|=q

‖VBf ‖p (2n−d+j+q)−1/pnd−1

≤ c2
− n

p nd−1HV(f )

d
∑

j=1

d
∑

q=j

(

q− 1

j− 1

)

(22j−d)−1/p.

Now, the result follows from

d
∑

j=1

d
∑

q=j

(

q− 1

j− 1

)

(22j−d)−1/p < 2
d
p

d
∑

j=1

d
∑

q=j

(

q− 1

j− 1

)

= 2
d
p (2d − 1).

Remark 4.4. Let us compare the cardinality of the tensor product

grid Xn
prod

: = ⊗j∈DX
j
n and the sparse grid X̃n

sparse. The grid Xn
prod

has 2dn nodes which is essentially more than nd−12n nodes of grid

X̃n
sparse. Nevertheless, the approximation order for f ∈ HV(T) is

only worse by a logarithmic factor nd−1.
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