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Solution analysis for non-linear
fractional di�erential equations

Shiferaw Geremew Kebede1*, Assia Guezane Lakoud2 and

Haider Ebrahim Yesuf1

1Mathematics Department, College of Natural Science, Arba Minch University, Arba Minch, Ethiopia,
2Mathematics Department, Faculty of Sciences, Badji Mokhtar Annaba University, Annaba, Algeria

In this research study, two new types of fractional derivatives, the Caputo-

Fabrizio derivative that does not involve a singular kernel (like the Riemann–

Liouville derivative), which helps in eliminating some drawbacks, such as non-

locality, and the Atangana–Baleanu–Caputo (ABC) derivative that uses a non-

singular and non-local kernel, o�ering di�erent characteristics from other

fractional derivatives and often leading to more accurate models in certain

physical systems, are used. The primary goal of the research is to analyze a

non-linear fractional di�erential equation involving the fractional derivatives of

Caputo–Fabrizio and ABC admit at least one solution. Fixed point theory is

a fundamental tool in mathematical analysis used to prove the existence of

solutions to various equations. Hence, in this study, to achieve the desired

results, we employ a novel fixed point theory known as the F-contraction type.

The study also includes required conditions and inequalities that need to be

satisfied to ensure that a solution exists. One of these conditions is based on

the Lipschitz hypothesis. Therefore, we provide the required conditions and

inequalities, based on the Lipschitz hypothesis, to show that solutions to our

problem exist. Furthermore, we provide two illustrative examples to support our

primary findings.

KEYWORDS

F-contraction type, existence of solution, Caputo-Fabrizio derivative, Atangana-

Baleanu-Caputo derivative, non-linear fractional derivative

1 Introduction

Since Leibniz and L’Hospital’s 1695 introduction to the theory of calculus of integrals

and derivatives of any arbitrary order, eminent mathematicians have made substantial

contributions to the field. Mathematicians like Hadamard, Caputo, Grunwald–Letnikov,

Riemann–Liouville, and others have contributed significantly throughout the years to the

definition of fractional integrals and derivatives within the framework of fractional calculus

[1]. These mathematicians provided valuable information and mathematical formulations

that improved our understanding of fractional calculus and its applications. Their

contributions paved the way for the development of various techniques andmethodologies

to tackle problems involving fractional derivatives and integrals, enabling the exploration

of fractional calculus in various fields of science, engineering, and mathematics. In recent

years, two new types of fractional operators have been introduced: the Caputo–Fabrizio

fractional derivative and the Atangana–Baleanu–Caputo (ABC) fractional derivative. The

Caputo–Fabrizio derivative [2], proposed in 2015 by Caputo and Fabrizio, doesn’t rely on

the Gamma function and has a nonsingular kernel. Similarly, theABC fractional derivative

[3], suggested in 2016 and based on the Mittag-Lefler function, also features a nonsingular

kernel. The use of ABC and Caputo–Fabrizio fractional derivatives in non-linear fractional
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differential equations offers significant potential for practical

applications in fields ranging from physics and engineering to

bioengineering and geophysics. The incorporation of ABC and

Caputo–Fabrizio derivatives into non-linear fractional differential

equations (FDEs) are used to model complex physical and

engineering systems that are not well described by classical integer-

order models by providing more flexibility in capturing real-

world phenomena. The Atangana-Baleanu derivative is gaining

attention in fields where memory, relaxation, and hereditary

properties are critical, such as viscoelastic materials, biological

tissues, and complex fluids. The Caputo–Fabrizio derivative avoids

the singularities of the traditional Caputo derivative, which can

be useful in many engineering contexts. Therefore, in recent years

numerous researchers have been concentrating on modeling real-

world situations with different types of fractional derivatives. A

novel, thorough investigation of using residual neural networks

to approximate Erdélyi–Kober fractional derivatives is presented

in the publication [4], which also provides an upper constraint

on the parameters for these networks. In the research study

[5], a brand-new iteration scheme called Nv
1 was developed.

Its rate of convergence is faster than that of practically all

previous iteration schemes, allowing it to find solutions with the

fewest steps possible, and this new iteration scheme is applied

to solve a specific delay differential equation. In the article

[6], the existence and uniqueness of a solution by using the

Picard iterative technique for a non-linear functional Volterra

integral equation, which belongs to the Urysohn type class of

non-linear integral equations, was demonstrated. The research

studies [5, 7, 8] discussed how to solve weakly singular Volterra

and Fredholm integral equations and second-kind non-linear

Volterra–Fredholm–Hammerstein integral equations numerically

using the modified Lagrange polynomial interpolation technique

in conjunction with the biconjugate gradient stabilized method and

the discretization technique, and these equations are used to model

problems like heat conduction in engineering and the electrostatic

potential theory. They have used fixed-point theory to examine

and solve these mathematical models. Fixed-point theorems have

a crucial component in studying the solutions of non-linear

problems involving ordinary, partial, and fractional differential

equations. By utilizing the Krasnoselskii fixed-point theorem,

scholars have demonstrated the existence of solutions for many

different types of equations. For example, they have investigated

the existence of solutions for non-linear fractional oscillator

equations, sequential fractional integro-differential equations,

and Euler–Bernoulli Beam equations. The application of fixed

point theory, combined with other mathematical techniques like

natural transform and Adomian decomposition, has facilitated

advancements in understanding and solving complex problems in

diverse fields [9–13].

Different fixed-point theorems have recently been devised by

researchers to analyze non-linear fractional differential equation

(FDE) solutions. The existence and uniqueness of solutions for

fractional differential equations with the Atangana–Baleanu

fractional derivative were examined in a paper [14] using

fixed-point techniques. Atangana–Baleanu–Caputo fractional

differential equations’ Hyers–Ulam stability was anayzed in the

research study [15], which used the Wright function and the

Laplace transform technique. The solution analysis for a specific

type of implicit fractional differential equation of a non-local initial

value problem were examined in [16], and in this research study,

the Banach contraction principle and Krasnoselskii’s fixed-point

theorem were applied. In Ref. [17], fractional differential equations

with instantaneous impulses involving the Caputo-Fabrizio

fractional derivative were examined and found that the equation

admits one solution by using fixed point theorems such as

Schauder and Monch along with the measure of non-compactness

approach. The estimation of the Atangana–Baleanu–Caputo

(ABC) fractional derivative at extreme points was investigated in a

paper [18]. The work showed how to use Peano’s existence theorem

to investigate non-linear fractional differential equation solutions.

Furthermore, in another study [19], a fractional derivative

containing the Caputo–Fabrizio alcoholism model was developed.

To show that this model admits at least one solution and that the

solution is unique, the researchers used the fixed-point theorem. In

[20], the authors utilized the Picard–Lindel of technique and fixed

point theory to examine the existence of a unique solution for a

fractional model related to the human liver. The model involved

the Caputo–Fabrizio derivative containing an exponential kernel.

Similarly, in the study [21], the researchers applied the Banach fixed

point theorem to investigate the existence and uniqueness of the

semi-analytical solution for the Pine Wilt Disease (PWD) model

involving Caputo–Fabrizio fractional derivative. In the paper

[22], a fixed point approach was used to investigate the existence

and uniqueness of the solution for a weakly singular non-linear

functional Volterra integral equations of Urysohn type involving

Riemann–Liouville operator. In the paper [23], the existence,

uniqueness, and stability of solutions to the non-linear Volterra–

Fredholm integral equations involving the Erdlyi–Kober fractional

integral operator were examined using the Leray-Schauder

alternative, Banach’s fixed point theorem, and the Hyers–Ulam and

Hyers–Ulam–Rassias stability. Various research studies indicate

that most of the non-linear problems containing different types

of fractional derivatives are analyzed by employing Schauder’s

theorem and Krasnoselskii’s theorem. However, Schauder’s

theorem is very general but relies heavily on the compactness

of the operator, which may not hold in many non-linear FDEs,

and Krasnoselskii’s theorem is effective when the operator can be

decomposed into a compact and a contraction part, but it imposes

restrictive conditions. F-contraction fixed-point theory offers

a more flexible and generalized framework that accommodates

the specific challenges posed by non-linear fractional differential

equations. It does so by relaxing the strict conditions imposed by

classical theorems and introducing a broader class of contraction

mappings suitable for analyzing the existence and uniqueness

of solutions to such equations. Hence, F-contraction theory

is often preferred for its versatility, less restrictive conditions,

and wider applicability, especially in the context of non-linear

FDEs. Some fixed-point theorems in b-dislocated metric space

were established in the article [24], and the application of the

fixed point technique was used to solve non-linear fractional

differential equations of the Caputo type as well as to solve a

non-linear integral equation. The studies, [25, 26] presented new

classes of cyclic contractions of the Hardy–Rogers type and the

concept of a cyclic compatible contraction and established the
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relevant fixed point theorems for these types of contractions in

the generating space of a b-dislocated metric and b-quasi-metric

family. In the studies, [27, 28], the concept of F-contraction

was examined from the perspective of d-metric spaces, as well

as the topological features of a d-neighborhood system derived

from dislocated metric space and the uniqueness of fixed points

and coincidence points of such mappings. Additionally, it used

different cyclic contractions in weaker forms of generating spaces

to prove a few fixed point theorems. In 2020, Afshari and Baleanu

conducted a study that focused on the existence of solutions for

Atangana–Baleanu fractional differential equations in the Caputo

sense. They employed several fixed point theorems for contractive

mappings, including α − γ -Geraghty type, α-type F-contraction,

and other contractions in an F-complete F-metric space [29]. The

stability analysis, existence, and uniqueness of the solution for a

system of non-linear fractional differential equations containing

Caputo–Fabrizio fractional derivatives of order α ∈ (0, 1) were

investigated in the study [30]. This study examines these qualities

using several mathematical techniques, such as the Ulam–Hyers

stability theorem, Schauder’s fixed point theorem, Krasnoselskii’s

fixed point theorem, and the Banach contraction principle. The

research work [41] showed the existence and stability of solutions

for a system of non-linear time-delayed fractional differential

equations involving ABC fractional derivatives, represented by a

six-compartment model, by utilizing a coordinate transformation

and linearizing the system through a matrix coefficient.

The aforementioned study publications mentioned above as

inspiration; this study is highly innovative; the methods used

to investigate the solution of the proposed problems are highly

innovative studies that take the form of a non-linear fractional

differential equation that have never been used before to solve

problems involving the two new operators, the Caputo–Fabrizio

and Atangana–Baleanu–Caputo (ABC) fractional derivatives.

Therefore, the aim of this study is to investigate the solutions for

an initial value problem involving non-linear fractional differential

equations (FDE). The equations under investigation are equipped

with two types of fractional derivatives: the Caputo–Fabrizio

fractional derivative of order ν ∈ (0, 1) and the Atangana–

Baleanu–Caputo (ABC) fractional derivative of order ν ∈ (0, 1).

Non-linear differential equations are already difficult to solve.

When non-linearities are combined with fractional derivatives,

the difficulty increases, and the effects of introducing fractional

derivatives interact with the non-linear terms, leading to highly

complex behaviors that are not easy to find classical solution.

Because of these challenges, researchers often turn to tackle the

solution analysis for non-linear fractional differential equations

with Caputo–Fabrizio and Atangana–Baleanu–Caputo derivatives

by employing fixed point theory. This research work focuses on

examining the existence of solutions for non-linear equations

described in Equations 1, 2, respectively, by using a novel fixed

point theory known as the F-contraction type. This method has

proven to be effective in analyzing solutions to non-linear fractional

differential equations.

{

CFDν
0+χ(t) = ψ(t,χ(t)), t ≥ 0,

χ(0) = χ0 = 0.
(1)

and
{

ABCDν
0+ω(t) = ϕ(t,ω(t)), t ≥ 0,

ω(0) = ω0 = 0.
(2)

This research study is organized into several sections. In

Section 2, the basic definitions of the Caputo–Fabrizio and

Atangana–Baleanu–Caputo fractional derivatives are provided.

The section also includes the presentation of fixed point theorems

of the F-contraction type. These theorems serve as crucial tools

for analyzing the solutions of non-linear fractional differential

equations. Section 3 focuses on the main results of the study. It

delves into the examination of the existence of solutions for various

types of non-linear fractional differential equations and systems

of non-linear differential equations. Specifically, Equations 1, 2

mentioned in the introduction are thoroughly analyzed in this

section. The goal is to establish the conditions under which

solutions exist for these equations. Some illustrative example are

presented in Section 4.

2 Preliminaries

In this section, we begin by introducing some fundamental

definitions and stating theorems related toF-contraction type fixed

point theorems.We also provide the definitions of Caputo-Fabrizio

and Atangana-Baleanu-Caputo fractional derivatives. Additionally,

we describe some relevant lemmas that play a significant role in the

analysis of the solutions.

Definition 2.1. [31] If for every u, v,w ∈ E satisfy the following

three requirements, and a constant λ ≥ 1, the mapping d :E×E →
[0,+∞) on a nonempty set E is said to be b− metric-like space on

E.

(d1) d(u, v) = 0⇔ u = v,

(d2) d(u, v) = d(v, u),

(d3) d(u,w) ≤ λ[d(u, v)+ d(v,w)].

Then, (E, d, λ) is referred to as b−metric-like space.

In 2012, Wardowski [32] suggested a novel type contraction type

known asF-contraction and proposed a novel fixed point theorem

associated with it. The well-known Banach contraction principle is

extended by this theorem.

Definition 2.2. [32] If F is a mapping of the interval (0,+∞)

into the set R = (−∞,+∞) of real numbers, which satisfies the

following three properties:

(F1) For all γ , δ ∈ R
+, F(γ ) < F(δ) whenever 0 < γ < δ;

(F2) If {βn} ⊂ (0,+∞) then limn→∞ βn = 0 if and only if

limn→∞ F(βn) = −∞;
(F3) limβ→0+ β

pF(β) = 0 as β → 0+ for some p ∈ (0, 1).

If there is a positive number τ such that the mapping T :E → E of

the metric space is said to beF−contraction for any u, v ∈ E. Then,

d(Tu,Tv) > 0,⇒ τ + F(d(Tu,Tv)) ≤ F(d(u, v)). (3)
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F stands for the set of all functions that satisfy the definition given

by D.Wardowski above.

Remark 2.1. [32] Let F :R
+ → ∞. Then, F(β) = ln(β) is in F.

Theorem 2.1. [39, 40] Assume that (E, d) is a complete metric

space and T :E → E is F−contraction and for every u ∈ E, if

the sequence {Tnu}n∈N converges to u∗,then T possesses a distinct

fixed point u∗ ∈ E.

Definition 2.3. [33] Assume that the sequence {un} exists in the

b-metric-like space (E, d, λ).

(i) If limn→+∞ d(un, u) = d(u, u), the sequence {un} is said to

converge to u.

(ii) Suppose (E, d, λ) is a b−metric-like space, the sequence {un}
is b−Cauchy in (E, d, λ) if limn,m→+∞ d(un, um) exists and is

finite, then there exists . If limn,m→+∞ d(un, um) = 0, the {un}
sequence is known as the 0− b−Cauchy sequence.

(iii) A b-metric-like space (E, d, λ) is said to be b− complete

(resp. 0 − b−complete) if for every b−Cauchy (resp. 0 −
b− Cauchy) sequence {un} there exists u ∈ E such that

limn,m→+∞ d(un, um) = limn→+∞ d(un, u) = d(u, u).

(iv) A mapping T :(E, d, λ) → (E, d, λ) is said to be

b−continuous if the sequence {Tun} tends to Tu whenever

the sequence {un} ⊂ E converges to u as n →
+∞, that is, if limn→+∞ d(un, u) = d(u, u) as a result

limn→+∞ d(Tun,Tu) = d(Tu,Tu).

Definition 2.4. [34] Let T be a self-mapping on a space that

resembles the b−metric-like space (E, d, λ). If there is strictly

increasing F :(0,+∞) → (−∞,+∞), the mapping T is said to

be generalized (λ, p)−Jaggi F−contraction-type and τ > 0 so that

for any u, v ∈ E:

d(Tu,Tvy) > 0, and, d(u, v) > 0 yields τ + F(λpd(Tu,T v))

≤ F(D(u, v)), (4)

for all u, v ∈ E, where D(u, v) = β · d(u,Tu)·d(v,Tv)
d(u,v)

+ γ · d(u, v) +
δ · d(v,Tu), β , γ , δ ≥ 0 with β + γ + 2δλ < 1 and p > 1. Where

d(u, v) > 0.

Theorem 2.2. [35] Let (E, d, λ) be 0 − b−complete and T :E → E

be a generalized (λ, p)−Jaggi-F−contraction-typemapping. Then,

T possesses a distinct fixed point u∗ ∈ E, if it is b−continuous and

limn→+∞ T
nu = u∗, for every u ∈ E.

Definition 2.5. The space H1(a, b) = {f : f ∈ L2(a, b) and f ′ ∈
L2(a, b)}. Where L2(a, b) is the space of square integrable functions

on the interval (a, b).

Definition 2.6. [2] Suppose f ∈ H1(a, b) and ν ∈ (0, 1). Then the

Caputo-Fabrizio fractional derivative is defined as;

CFDνt
(

u(t)
)

=
M(ν)

1− ν

∫ t

a
u′(s) exp

[

−ν
t − s

1− ν

]

ds. (5)

If the normalization function M(ν) has the property that

M(0) = M(1) = 1. As stated in definition (2.6), the kernel does

not have singularity for t = s, even though the CFDνt is zero when

u(t) is constant.

Definition 2.7. [36] Later, Losada and Nieto modified the Caputo-

Fabrizio fractional derivative and the fractional integral that

corresponds to its derivative for 0 < ν < 1, as shown in

Equations 6, 7 below.

CFDνt
(

u(t)
)

=
(2− ν)M(ν)

2(1− ν)

∫ t

a
u′(s) exp

[

−ν
t − s

1− ν

]

ds. (6)

CF Iνt
(

u(t)
)

=
2(1− ν)

(2− ν)M(ν)
u(t)+

2ν

(2− ν)M(ν)

∫ t

0
u(s)ds, t ≥ 0.

(7)

Lemma 2.1. ([37]) The initial value problem

{

CFDν
0+u(t) = φ(t), t ≥ 0, 0 < ν < 1,

u(0) = u0.
(8)

has a solution in terms of the integral given by:

u(t) = u0+
2(1− ν)

(2− ν)M(ν)
(φ(t)−φ(0))+

2ν

(2− ν)M(ν)

∫ t

0
φ(s)ds.

(9)

Definition 2.8. [3] TheABC derivative of an absolutely continuous

function f and 0 < ν ≤ 1 is given by:

ABCDνt v(t) =
ABC(ν)

1− ν

∫ t

0

d

dx
f (s)Mθ

[

−
ν

1− ν
(t − s)ν

]

, (10)

where ABC(ν) is a normalizing function that makes 1 =
ABC(1) = ABC(0) andMθ is a special Mittag-Leffler function.

Lemma 2.2. [38] The solution to

{

ABCDν
0+v(t) = ϕ(t), t ∈ [0,T], 0 < ν < 1,

v(0) = v0.
(11)

is given by:

v(t) = v0 +
1− ν

ABC(ν)
ϕ(t)+

ν

ABC(ν)Ŵ(ν)

∫ t

0
(t − s)ν−1 ϕ(s)ds.

(12)

3 Main result

Let E = C
(

[0,T],R
)

and d :E × E → R
+ is a continuous

function endowed with the b-metric-like defined by:

d(ϕ,ψ) = |ϕ − ψ |p, (13)

where

|ϕ| = sup
t∈[0,T]

(

|ϕ(t)|
)

e−τp for all ϕ,∈ E and p > 1.

In order to establish the existence of solutions for Equations 1, 2,

we will utilize the F-contraction type approach. We introduce the

following assumptions:

(H1) ψ :[0,T]× R → R be a continuous function.

(H2) There exist a constants κ ∈ (0, 1), such that:

|ψ(t,χ)−ψ(t,ω)| ≤ κ|χ−ω| for any χ ,ω ∈ R and t ∈ [0,T].
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3.1 Existence of solution for (FDE) with
Caputo–Fabrizio fractional derivative

The solution to the initial value problem of Equation 1 of a

non-linear fractional differential equation with Caputo–Fabrizio

fractional derivatives is examined in this subsection. Utilizing

Lemma 2.1 and the initial value given in Equation 1, χ0 = 0, we

obtain the integral solution for Equation 1 as follows:

χ(t) = 2(1−ν)
(2−α)M(ν)

[

ψ(t,χ(t))− ψ0(t)
]

+ 2ν
(2−ν)M(ν)

∫ t
0 ψ(s,χ(s))ds. (14)

Define for all t ∈ [0,T], the mapping T :C
(

[0,T],R
)

→

C
(

[0,T],R
)

as:

Tχ(t) = 2(1−ν)
(2−ν)M(ν)

[

ψ(t,χ(t))− ψ0(t)
]

+ 2ν
(2−ν)M(ν)

∫ t
0 ψ(s,χ(s))ds. (15)

Theorem 3.1. Consider Equation 1, where υ :R×R → R is a given

mapping and the hypotheses (H1) and (H2) are satisfied.We further

assume that the following claims hold:

i) Let χ ,ω ∈ E. If d(Tχ ,Tω) > 0 and d(χ ,ω) > 0, then there

exists τ > 0 such that the following inequality yields,

|ψ(t,χ(t))− ψ(t,ω(t))| ≤ κ
1

λ

p
√

D(χ ,ω)e−τ , (16)

for all t ∈ [0,T]. Where D(χ ,ω) is defined as given in

definition 2.4.

ii) If υ(χ(t),ω(t)) ≥ 0 for all t ∈ [0,T], then υ(Tχ(t),Tω(t)) ≥
0.

iii) If the following inequality holds,

2κ

(2− ν)M(ν)
[1− ν + νT] ≤ 1. (17)

Then Equation 1 has a solution.

Proof

Our aim is to establish the existence of an element χ∗ ∈ E that

serves as a fixed point for the mapping T. Let χ ,ω ∈ E such that

υ(χ(t),ω(t)) ≥ 0 for all t ∈ [0,T]. Based on condition (ii), we can

deduce that υ(Tχ ,Tω) ≥ 0. Furthermore, according to hypothesis

(i), the following inequalities hold.

|Tχ(t)− Tω(t)| = | 2(1−ν)
(2−ν)M(ν)

[

(ψ(t,χ(t))− ψ0(t))

−(ψ(t,ω(t))− ψ0(t))
]

‘

+
2ν

(2− ν)M(ν)

∫ t

0

[

ψ(s,χ(s))− ψ(s,ω(s))ds
]

|

≤
2(1− ν)

(2− ν)M(ν)
|ψ(t,χ(t)− ψ(t,ω(t)|

+
2ν

(2− ν)M(ν)

∫ t

0
|ψ(s,χ(s))− ψ(s,ω(s))|ds

≤
2(1− ν)

(2− ν)M(ν)

[

κ
1

λ

p
√

D(χ ,ω)e−τ
]

+
2ν

(2− ν)M(ν)

∫ t

0

[

κ
1

λ

p
√

D(χ ,ω)e−τ
]

ds

≤
2(1− ν)κ

(2− ν)M(ν)

1

λ

p
√

D(χ ,ω)e−τ +
2νκT

(2− ν)M(ν)

1

λ

p
√

D(χ ,ω)e−τ .

By taking the supremum of both sides, we obtain:

sup
t∈[0,T]

|Tχ(t)− Tω(t)| ≤ sup
t∈[0,T]

[

2(1− ν)κ
(2− ν)M(ν)

1

λ

p
√

D(χ ,ω)e−τ

+
2νκT

(2− ν)M(ν)

1

λ

p
√

D(χ ,ω)e−τ
]

≤
[

2(1− ν)κ
(2− ν)M(ν)

+
2νκT

(2− ν)M(ν)

]

1

λ
sup

t∈[0,T]

p
√

D(χ ,ω)e−τ .

(18)

Using Equation 17, we get:

sup
t∈[0,T]

|Tχ(t)− Tω(t)|p ≤
1

λp
D(χ ,ω)e−τ . (19)

Hence

λpd(Tχ ,Tω) ≤ D(χ ,ω)e−τ . (20)

If we take F(χ) = ln(χ) for all χ > 0 and since F ∈ F, we have:

ln(λpd(Tχ ,Tω)) ≤ ln
(

D(χ ,ω)e−τ
)

.

That is;

τ + ln(λpd(Tχ ,Tω)) ≤ ln
(

D(χ ,ω)
)

. (21)

This is equivalent to

τ + F(λpd(Tχ ,Tω)) ≤ F

(

β ·
d(χ ,Tχ) · d(ω,Tω)

d(χ ,ω)

+γ · d(χ ,ω)+ δ · d(ω,Tχ)
)

, (22)

where β , γ , δ ≥ 0 with β + γ + 2δλ < 1 and p > 1. Therefore,

based on the satisfaction of the assumption in Theorem 2.2, we

can conclude that the mapping T possesses a fixed point. This fixed

point represents a solution to Equation 1.

3.2 Existence of solution for (FDE) with
ABC fractional derivative

In this subsection, we apply Lemma 2.2 to derive an integral

solution for Equation 2 and from the given initial value ω0 = 0, as

shown below.

ω(t) = 1−ν
ABC(ν)

[

ϕ(t,ω(t))− ϕ0(t)
]

+ ν
ABC(ν)Ŵ(ν)

∫ t
0 (t − s)ν−1 ϕ(s,ω(s))ds. (23)
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Furthermore, we can utilize Theorem 2.2 to establish the existence

of a solution for Equation 2.

Define the mapping T :C
(

[0,T],R
)

→ C
(

[0,T],R
)

as:

Tω(t) = 1−ν
ABC(ν)

[

ϕ(t,ω(t))− ϕ0(t)
]

+ ν
ABC(ν)Ŵ(ν)

∫ t
0 (t − s)ν−1 ϕ(s,ω(s))ds. (24)

Theorem 3.2. Consider Equation 2withABC fractional derivative.

Let υ :R × R → R be a given mapping and ϕ :[0,T] × R → R

be a continuous function. Assume that the following claims are

satisfied:.

i) There exists τ > 0 such that if d(Tω,T̟ ) > 0 and d(ω,̟ ) >

0 for all ω,̟ ∈ E, then

|ϕ(t,ω(t))− ϕ(t,̟ (t))| ≤ κ
1

λ

p
√

D(ω,̟ )e−τ , (25)

for all t ∈ [0,T]. WhereD(ω,̟ ) is as given in definition 2.4.

ii) For all t ∈ [0,T], if υ(ω(t),̟ (t)) ≥ 0, then

υ(Tω(t),T̟ (t)) ≥ 0.

iii) If the inequality

[

(1− ν)κ
ABC(ν)

+
κTν

ABC(ν)Ŵ(ν)

]

≤ 1, (26)

holds. Then, there exists at least one solution for Equation 2.

Proof

Let ω,̟ ∈ E, such that υ(ω(t),̟ (t)) ≥ 0 for all t ∈ [0,T]. By

(ii) we have υ(Tω,T̟ ) ≥ 0. Consequently, based on assumption

(i), the following inequality exists.

|Tω(t)− T̟ (t)| = |
[

ϕ(t,ω(t))− ϕ0(t)
] 1− ν
ABC(ν)

+
ν

ABC(ν)Ŵ(ν)

∫ t

0
(t − s)ν−1 ϕ(s,ω(s))ds

−
(

[

ϕ(t,̟ (t))− ϕ0(t)
] 1− ν
ABC(ν)

+
ν

ABC(ν)Ŵ(ν)
∫ t
0 (t − s)ν−1 ϕ(s,̟ (s))ds

)

|

≤
∣

∣

∣

∣

1− ν
ABC(ν)

[

ϕ(t,ω(t))− ϕ(t,̟ (t))
]

∣

∣

∣

∣

+
∣

∣

∣

∣

ν

ABC(ν)Ŵ(ν)
∫ t
0 (t − s)ν−1

[

ϕ(s,ω(s))− ϕ(s,̟ (s))
]

ds
∣

∣

∣

≤
1− ν

ABC(ν)

∣

∣ϕ(t,ω(t))− ϕ(t,̟ (t))
∣

∣+
ν

ABC(ν)Ŵ(ν)
∫ t
0 (t − s)ν−1

∣

∣ϕ(s,ω(s))− ϕ(s,̟ (s))
∣

∣ ds

≤
1− ν

ABC(ν)
κ
1

λ

p
√

D(ω,̟ )e−τ +
ν

ABC(ν)Ŵ(ν)
∫ t
0 (t − s)ν−1 κ

1

λ

p
√

D(ω,̟ )e−τds

≤
[

(1− ν)κ
ABC(ν)

+
κTν

ABC(ν)Ŵ(ν)

]

1

λ

p
√

D(ω,̟ )e−τ .

Taking the supremum of both sides, we get:

supt∈[0,T] |Tω(t)− T̟ (t)| ≤ supt∈[0,T]

[[

(1−ν)κ
ABC(ν)

+ κTν

ABC(ν)Ŵ(ν)

]

1
λ

p
√
D(ω,̟ )e−τ

]

≤
[

(1− ν)κ
ABC(ν)

+
κTν

ABC(ν)Ŵ(ν)

]

1

λ
sup

t∈[0,T]

p
√

D(ω,̟ )e−τ . (27)

From Equation 26, we obtain:

sup
t∈[0,T]

|Tω(t)− T̟ (t)|p ≤
1

λp
D(ω,̟ )e−τ . (28)

Which gives us:

λpd(Tω,T̟ ) ≤ D(ω,̟ )e−τ . (29)

Since F ∈ F, then F(ω) = ln(ω) for all ω > 0. Thus Equation 29

becomes:

ln(λpd(Tω,T̟ )) ≤ ln
(

D(ω,̟ )e−τ
)

.

Thus

τ + ln(λpd(Tω,T̟ )) ≤ ln
(

D(ω,̟ ))
)

. (30)

Equivalently written as:

τ + F(λpd(Tω,T̟ )) ≤ F

(

β · d(ω,Tω)·d(̟ ,T̟ )
d(ω,̟ )

+γ · d(ω,̟ )+ δ · d(̟ ,Tω)
)

, (31)

where β , γ , δ ≥ 0 with β + γ + 2δλ < 1 and p > 1. Therefore,

by applying Theorem 2.2, we can conclude that T has a fixed point.

Therefore, Equation 2 has at least one solution.

4 Illustrative examples

In this section, we provide examples to demonstrate the

application and effectiveness of Theorems 3.1 and 3.2. These

examples serve to illustrate the theoretical results.

Example 4.1. Consider the following fractional differential

equation (FDE) involving the Caputo–Fabrizio fractional

derivative:















CFD

1

2
0+u(t) =

1

4 (t + 2)2
1

1+ |u(t)|
, t ∈ [0, 1] ,

u(0) = 0.

(32)

For u, v ∈ E and t ∈ [0, 1] we have:

|Tu(t)− Tv(t)| ≤
2(1− ν)

(2− ν)M(ν)

∣

∣ψ(t, u(t))− ψ(t, v(t))
∣

∣

+
2ν

(2− ν)M(ν)

∣

∣

∣

∣

∫ t

0

[

ψ(s, u(s))− ψ(s, v(s))
]

ds

∣

∣

∣

∣

.

where

ψ(t, u(t)) =
1

4 (t + 2)2
1

1+ |u(t)|
, t ∈ [0, 1] .
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Moreover we get:

|ψ(t, u(t))− ψ(t, v(t))| =
∣

∣

∣

∣

1

4 (t + 2)2

(

1

1+ |u(t)|
−

1

1+ |v(t)|

)
∣

∣

∣

∣

≤
1

16

∣

∣

∣

∣

1

1+ |u(t)|
−

1

1+ |v(t)|

∣

∣

∣

∣

≤
1

16
|u− v|.

Hence

|Tu(t)− Tv(t)| ≤
[1− ν + νT]
8(2− ν)M(ν)

1

λp
D(u, v)e−τ .

It remains to show that the condition (iii) of Theorem 3.1 is

satisfied:

[1− ν + νT]
8(2− ν)M(ν)

=
[

1− 1
2 + 1

2 (1)
]

8(2− 1
2 )M( 12 )

= 0.0625 ≤ 1.

It follows from Theorem 3.1 that the problem (32) has at least one

solution.

Figure 1 shows the plots for the illustrative example containing

Caputo–Fabrizio fractional derivatives given in Equation 32 for

different values of the fractional orders ν = 0.1, 0.5, 0.7, 0.8, 0.9,

respectively. As shown in Figure 1, we can observe from these plots

that the curves for different values of ν have the same trend when

ν is changed, and the solution is bounded in (0, 1). Therefore, we

again conclude that there is a solution for Equation 32.

Example 4.2. Consider the following non-linear initial value

problem involvingABC fractional derivative:



















ABCD

1

2
0+v(t) =

cos(t)

π

(√
2 cos(t)+ sin(t)

)

[

1+ |v(t)|
]

, t ∈ [0, 1] ,

v(0) = 0.

(33)

Set

ϕ(t, v(t)) =
cos(t)

π

(√
2 cos(t)+ sin(t)

)

[

1+ |v(t)|
]

, t ∈ [0, 1] .

Let v, w ∈ E and t ∈ [0, 1]. Then

|Tv(t)− Tw(t)| ≤
1− ν

ABC(ν)

∣

∣ϕ(t, v(t))− ϕ(t,w(t))
∣

∣

+
ν

ABC(ν)Ŵ(ν)

∫ t

0
(t − s)ν−1

∣

∣ϕ(s, v(s))− ϕ(s,w(s))
∣

∣ ds.

For all t ∈ [0, 1], we have:

|ϕ(t, v(t))− ϕ(t,w(t))| =

∣

∣

∣

∣

∣

(

cos(t)

π

(√
2 cos(t)+sin(t)

)

[1+|v(t)|]

)

−

(

cos(t)

π

(√
2 cos(t)+sin(t)

)

[1+|w(t)|]

)
∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

cos(t)

π

(√
2 cos(t)+sin(t)

)

(

1
1+|v(t)| −

1
1+|w(t)|

)

∣

∣

∣

∣

∣

,

since sin(t) and cos(t) are continuous positive functions ∀t ∈ [0, 1],

we have
√
2
2 ≤ cos(t) ≤ 1 and 0 ≤ sin(t) ≤

√
2
2 . Then:

|ϕ(t, v(t))− ϕ(t,w(t))| ≤
1

π

∣

∣

∣

∣

1

1+ |v(t)|
−

1

1+ |w(t)|

∣

∣

∣

∣

≤
1

π

∣

∣v(t)− w(t)
∣

∣ .

Hence

|Tv(t)− Tw(t)| ≤
[

(1− ν)
πABC(ν)

+
Tν

πABC(ν)Ŵ(ν)

]

1

λp
D(v,w)e−τ .

We check that condition (iii) of Theorem 3.2 is satisfied. We have

[

(1−ν)
πABC(ν)

+ Tν

πABC(ν)Ŵ(ν)

]

=







(1− 1
2 )

πABC( 12 )
+

[π4 ]
1
2

πABC( 12 )Ŵ(
1

2
)







= 0.1194 ≤ 1.

Thus, by Theorem 3.2 we conclude that the problem (Equation 33)

has at least one solution.

Plots for the numerical example involving Atangana-Baleanu-

Caputo fractional derivatives, which given in Equation 33 for

varying fractional orders ν = 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9,

are displayed in Figure 2. These plots, as illustrated in Figure 2,

demonstrate that the solution is bounded in (0, 1) and that the

curves for various values of ν have the same trend as ν is changed.

As a result, we draw the conclusion that Equation 33 has a solution.

Conclusions

In this research study, we successfully explored the existence of

solutions to non-linear fractional differential equations involving

the Atangana–Baleanu–Caputo and Caputo–Fabrizio fractional

derivatives admit at least one solution. We have investigated

whether the Equations 1, 2 under consideration have a solution

through our research. We have developed necessary conditions

and inequalities based on Lipschitz assumptions, and our

analysis was based on a novel approach using F-contraction-

type fixed point theorems and b-metric-like spaces. The use of

the Atangana–Baleanu–Caputo and Caputo–Fabrizio fractional

derivatives represents a significant advancement in the field of

fractional calculus, as these derivatives provide better modeling

capabilities for various real-world phenomena that exhibit

memory and hereditary properties. The ABC fractional derivative

incorporates a non-singular kernel, while the Caputo–Fabrizio

derivative is defined through an exponential kernel, making

them highly suitable for describing complex systems such as

viscoelasticity, diffusion processes, and control theory applications.

Our application of F-contraction theory allowed us to overcome

some of the complexities associated with non-linear fractional

differential equations. This theory, which generalizes classical

contraction mappings, was instrumental in showing the existence

of at least one solution. By constructing appropriate conditions

and assumptions on the non-linear terms involved, we ensured

the applicability of F-contraction, proving the existence of fixed

points corresponding to the solutions of the differential equations.

Furthermore, we have presented relevant examples to show how

successful the findings. Future work could extend these findings

by investigating uniqueness and stability solutions under various

boundary and initial conditions.
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FIGURE 1

Plots for the solution of illustrative example (Equation 32).

FIGURE 2

Plots for the solution of (Equation 33).
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