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A robust, exponentially fitted
higher-order numerical method
for a two-parameter singularly
perturbed boundary value
problem

Adisie Fenta Agmas, Fasika Wondimu Gelu* and

Meselech Chima Fino

Department of Mathematics, Dilla University, Dilla, Ethiopia

This study constructs a robust higher-order fitted operator finite di�erence

method for a two-parameter singularly perturbed boundary value problem. The

derivatives in the governing ordinary di�erential equation are substituted by

second-order central finite di�erence approximations, after which the fitting

parameter is introduced and determined. The resulting systemof linear equations

may then be solved using the Thomas method. The stability, consistency, and

convergence of the currentmethod have been thoroughly validated. To enhance

accuracy and achieve a higher-order numerical solution, a post-processing

technique was employed to upgrade the method from second-order to fourth-

order convergence. Finally, three test examples were used to confirm the

method’s appropriateness. The numerical results demonstrate that the proposed

technique is stable, consistent, and produces a higher-order numerical solution

than the existing ones in the literature.

KEYWORDS

an exponentially fitted, higher order method, two parameters, post-processing

technique, twin boundary layers

1 Introduction

Singularly perturbed differential equations involve the highest-order derivative term

being multiplied by a small perturbation parameter, ε. In the context of singularly

perturbed problems, differential equations with two small parameters affecting the

diffusion and convection terms are intriguing areas of research. The main purpose of

this study is to obtain a robust higher-order numerical method to solve a two-parameter

singularly perturbed boundary value problem. Find ϒ such that

5ε,µϒ(θ) ≡ −εϒ ′′(θ)+ µa(θ)ϒ ′(θ)+ b(θ)ϒ(θ) = f (θ), θ ∈ � = (0, 1), (1)

subject to the boundary conditions

ϒ(0) = γ0, ϒ(1) = γ1, (2)

where ε(0 < ε ≪ 1) and µ(0 < µ ≪ 1) are the small parameters that make

the differential equation singularly perturbed. Let us assume the functions a(θ), b(θ)
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and f (θ) are sufficiently smooth and bounded to ensure the

existence of a unique solution. Assume that there exist constants

α, β and ζ independent of ε and µ such that for any θ = [0, 1] the

conditions,

a(θ) ≥ α > 0, b(θ) ≥ β > 0, b(θ)−
1

2
µa′(θ) ≥ ζ > 0,

hold for some constant α, β and ζ . Assume δ ≈ min
x∈�̄

b(θ)
a(θ)

.

When µ = 1, Equation 1 is reduced to the singularly perturbed

convection-diffusion boundary value problem. When µ = 0,

Equation 1 reduces to a well-known singularly perturbed reaction-

diffusion boundary value problem. The mathematical model for

the kind of Equation 1 often arises in chemical reactor theory

[1], transport phenomena in chemistry and biology [2], and

lubrication theory [3]. The nature of the two-parameter problem

was asymptotically examined by O’Malley [4], where the ratio

of µ to ε has significant role in the solution. For this problem,

two boundary layers occur at θ = 0 and θ = 1. Because of

the presence of these layers, some standard numerical methods

in Lodhi et al. [5], Kambampati et al. [6], Pandit and Kumar

[7], Khandelwal and Khan [8] are applied to a uniform mesh,

which provides an oscillatory numerical solution. Consequently,

considerable attention has been devoted to using non-uniform

meshes to solve two-parameter singularly perturbed boundary

value problems, as discussed in works by O’Riordan and Pickett [9],

Roos and Uzelac [10], Kadalbajoo and Yadaw [11], Kadalbajoo and

Jha [12], Brdar and Zarin [13], Luo et al. [14], Brdar and Zarin [15,

16], Padmaja et al. [17], Andisso and Duressa [18], Linß and Roos

[19], Cheng [20], Zhang and Lv [21], Valarmathi and Ramanujam

[22], Patidar [23] to solve two-parameter singularly perturbed

boundary value problems. Themajority of the previously developed

methods to solve the problem at hand are less accurate and of lower

order. Inspired by this, the goal of this study is to offer a high order

and more accurate fitted operator method with the help of post-

processing technique to solve the considered problem. Because

of the presence of boundary layer in the solution of Equation 1,

devising a higher-order convergent numerical method is a big

challenge. In this study, we apply the well-known post-processing

technique of Richardson extrapolation method to obtain fourth

order uniformly convergent numerical solution of Equation 1. The

present approach yields a more accurate solution in terms of

maximum absolute errors than previous approaches found in the

literature.

Some robust numerical methods for one-parameter and two-

parameter singularly perturbed problems in studies by Hassen and

Duressa [24], Mohye et al. [25], Tesfaye et al. [26], Cheru et al.

[27], Daba et al. [28], Gupta et al. [29], singularly perturbed turning

point problem in Gupta et al. [30], time-fractional singularly

perturbed convection-diffusion problem [31], singularly perturbed

problems with spatio-time delays the study by Ejere et al. [32] and

singularly perturbed problems Burger-Huxley problem in the study

by Daba and Duressa [33] and Derzie et al. [34]. Some methods are

employed studies by Li et al. [35], El Ahmadi et al. [36], Nachaoui

[37], Mardanov et al. [38] to solve different types of differential

equations.

The remaining part of the article is arranged as follows:

In Section 2, we have provided a brief description of the

present method for the numerical solution of Equations 1, 2. The

convergence analysis of the method is presented in Section 3.

Section 4 presents the numerical results, and comparisons are made

with other existing methods. Finally, the conclusion is provided at

the end of the article in Section 5.

2 The continuous problem

In this section, we provide a priori bounds for the solution

and its corresponding derivatives. The governing problem in

Equations 1, 2 exhibits twin boundary layers with different layer

widths depending on the relation between the values of ε and

µ. If αµ2 ≤ δε, then the reduced problem corresponding to

Equations 1, 2 is given by

b(θ)ϒ(θ) = f (θ).

Thus, the boundary layers are expected near θ = 0 and θ = 1,

with a width of O(
√

ε) if ϒ0(0) 6= γ0 and ϒ0(1) 6= γ1. If αµ2 ≥ δε,

then the reduced problem corresponding to Equations 1, 2 is given

by

µa(θ)ϒ ′
µ(θ)+ b(θ)ϒµ(θ) = f (θ),

ϒµ(0) = γ0.

Thus, the boundary layer of width O(ε/µ) is expected in the

right neighborhood of θ = 0 if ϒµ(0) 6= γ0 and the boundary

layer of width O(µ) is expected in the left neighborhood of θ = 1

if ϒµ(1) 6= γ1. The assumptions given for Equations 1, 2 ensure

that the differential operator 5ε,µ satisfies the following maximum

principle.

Lemma 1. Let ̟ (θ) be a smooth function such that ̟ (0) ≥ 0 and

̟ (1) ≥ 0. If 5ε,µ̟ (θ) ≥ 0, for θ ∈ �, then ̟ (θ) ≥ 0, for θ ∈ �̄.

Proof. Assume θ∗ be such that ̟ (θ∗) = min
θ∈�̄

̟ (θ) and ̟ (θ∗) <

0. Then, it is obvious that θ∗ /∈ {0, 1}. Hence, ̟ ′(θ∗) = 0 and

̟ ′′(θ∗) ≥ 0. Now,

5ε,µ̟ (θ∗) ≡ −ε̟ ′′(θ∗)+ µa(θ)̟ ′(θ∗)+ b(θ)̟ (θ∗) < 0,

which is contradiction. Hence, we conclude that ̟ (θ) ≥ 0 for all

θ ∈ [0, 1].

The following lemma proves the stability estimate to obtain a

unique solution.

Lemma 2. On θ ∈ �̄, the solution ϒ(θ) to the problem in

Equations 1, 2 satisfy the bound

‖ϒ(θ)‖ ≤ max{|γ0|, |γ1|} + β−1‖f (θ)‖.

Proof. Defining two functions ζ±(θ) such that

ζ±(θ) = max{|γ0|, |γ1|} + β−1‖f (θ)‖ ± ϒ(θ).

It is straightforward that ζ±(0) ≥ 0 and ζ±(1) ≥ 0. Now, for

θ ∈ �,

5ε,µζ±(θ) = −ε
[

±ϒ ′′(θ)
]

+ µa(θ)
[

±ϒ ′(θ)
]

+
b(θ)

[

max{|γ0|, |γ1|} + β−1‖f (θ)‖ ± ϒ(θ)
]

= b(θ)
[

max{|γ0|, |γ1|} + β−1‖f (θ)‖
]

± 5ε,µϒ(θ)

≥ β max{|γ0|, |γ1|} + ‖f (θ)‖ ± f (θ), since b(θ)

≥ β > 0,≥ 0.
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Therefore, the desired result follows by applying Lemma

(1).

The solution to the reduced problem µa(θ)ϒ ′(θ) + b(θ)ϒ(θ) =
f (θ), in general, does not satisfy both the boundary conditions;

therefore, there exist boundary layers at both the boundaries,

θ = 0 and θ = 1 [10]. To describe these boundary layers, the

characteristic equation for the homogeneous part of Equation 1

with constant coefficients that are the minimum values of the

corresponding variable coefficients is considered as

− ε92(θ)+ µα9(θ)+ β = 0. (3)

The characteristic equation in Equation 3 has two real solutions

90(θ) =
−µα −

√

µ2α2 + 4εβ

−2ε
and

91(θ) =
−µα +

√

µ2α2 + 4εβ

−2ε
.

The solution 90(θ) < 0 describes the boundary layer at θ = 0,

whereas 91(θ) > 0 describes the boundary layer at θ = 1. To

bound the solution and its derivatives, we define

λ0 = − max
θ∈[0,1]

90(θ) and λ1 = min
θ∈[0,1]

91(θ).

The two real solutions90(θ) < 0 and91(θ) < 0 describing the

boundary layers, respectively, at θ = 0 and θ = 1 are based on the

two cases below.

Case 1. If µ2

ε
→ 0 as ε → 0, then

9(θ) =
−µα ±

√

µ2α2 + 4εβ

−2ε
=

−µα ± 2
√

εβ

√

1+ µ2α2

4εβ

−2ε

=
µα

2ε
∓
√

β

ε

√

1+
µ2α2

4εβ
= ∓

√

β

ε
.

The governing Equation 1 has two boundary layers that behave

like the reaction-diffusion case (µ ≈ 0) with each of width O(
√

ε)

at θ = 1 and θ = 0. The complementary function of Equation 1

may be expressed as

ϒ(θ) = A1e

√

β
ε
θ + B1e

√

β
ε
(1−θ)

,

where A1 and B1 are real constant numbers.

Case 2. If ε
µ2 → 0 as µ → 0, then

9(θ) =
−µα ±

√

µ2α2 + 4εβ

−2ε
=

−µα ± µα

√

1+ 4εβ
µ2α2

−2ε

=
µα

2ε

(

1∓

√

1+
4εβ

µ2α2

)

=
µα

2ε
(1∓ 1).

In this case, the governing Equation 1 has two boundary layers

near θ = 0 and θ = 1 with different layer widthsO(ε/µ) andO(µ),

respectively. Now, the complementary function of Equation 1 can

be given as

ϒ(θ) = A2 + B2e
µα
ε
(1−θ),

where A2 and B2 are real constant numbers. Note that most

numerical methods give an accurate numerical solution for case

1, since µ ≈ 0 behaves like a reaction-diffusion problem. For

case 2, it is challenging to produce an accurate numerical solution.

Therefore, in this study, we focus on case 2.

Theorem 1. For any 0 < p < 1, we have up to a certain order q

that depends on the smoothness of the data. If a, b, f ∈ Ck(�̄), then

the solution u(θ) satisfies

|ϒ (i)(θ)| ≤ C
(

1+ λi0e
−pλ0θ + λi1e

−pλ1(1−θ)
)

, for 0 < k < q.

Proof. The details of the proof is well established in studies by Roos

and Uzelac [10].

3 The discrete problem

Let N be a positive integer and [0,1] be the closed domain,

where N is the subinterval such that 0 = θ0 < θ1 < · · · <

θN = 1 and θi = iℓ, ℓ = 1
N i = 0, 1, · · · ,N. Using the notation

ϒi as a numerical approximation to the analytical solution ϒ(θi)

and second-order central finite difference approximations for the

second- and first derivatives, we have the discrete problem as

5N
ε,µϒi ≡ −ε

(

ϒi+1 − 2ϒi + ϒi−1

ℓ2

)

+µai

(

ϒi+1 − ϒi−1

2ℓ

)

+ biϒi = fi + TE, (4)

with the discrete boundary conditions

ϒ0 = γ0, ϒN = γ1, (5)

where TE = ℓ2
(

1
12ϒ

(4)
i + 1

6ϒ
(3)
i

)

≈ O(h2). In order

to regulate the solution behavior of the singular perturbation

parameter ε, we have introduced the fitting factor η on the

homogeneous part of Equation 4.

5N
ε,µϒi ≡ −εη

(

ϒi+1 − 2ϒi + ϒi−1

ℓ2

)

+ µai

(

ϒi+1 − ϒi−1

2ℓ

)

+ biϒi = fi.

(6)

The discrete problem in Equation 6 can be written as the

three-term recurrence relation of the form

5N
ε,µϒi ≡ Liϒi−1 +Miϒi + Riϒi+1 = fi, (7)

with the discrete boundary conditions in Equation 5 and where

the coefficients are given by

Li =
−εη

ℓ2
−

µai

2ℓ
, Mi =

2εη

ℓ2
+ bi, Ri =

−εη

ℓ2
+

µai

2ℓ
. (8)

The developed method is considered as an exponentially

fitted operator finite difference method to solve the problem in

Equations 1, 2. The coefficients Li,Mi, and Ri are given to satisfy the

conditions |Li| > 0, |Mi| > 0, |Ri| > 0 and |Mi| ≥ |Li|+|Ri|. These
conditions guarantee that the linear system is diagonally dominant

and can be solved by a tri-diagonal solver, which is the Thomas

algorithm.
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3.1 Determination of fitting factor

It is possible to rewrite the equation in the following form to

determine the fitting factor.

5N
ε,µϒi ≡ −εη

(

ϒi+1 − 2ϒi + ϒi−1

ℓ2

)

+µai

(

ϒi+1 − ϒi−1

2ℓ

)

+ biϒi = fi. (9)

Multiplying Equation 9 by ℓ and taking the limit on both sides

as h → 0 yields

−
η

ρ
lim
ℓ→0

[

ϒ((i− 1)ℓ)− 2ϒ(iℓ)+ ϒ((i+ 1)ℓ)

]

+
1

2
lim
ℓ→0

a(iℓ)

[

ϒ((i− 1)ℓ)− ϒ((i+ 1)ℓ)

]

= 0, (10)

where ρ = µℓ
ε
. To determine the fitting factor in Equation 10,

the theory of singular perturbations have been applied. Based on

O’Malley’s [39] theory of singular perturbations, the asymptotic

solution of Equation 10 for the left boundary layer is as follows

ϒ(θ) = ϒ0(θ)+
a(0)

a(θ)
(γ0 − ϒ0(0))e

−
∫ θ
0

µa(θ)
ε

dθ + O(ε/µ), (11)

where ϒ0(θ) represents the solution of the reduced problem

µa(θ)ϒ ′(θ)+ b(θ)ϒ(θ) = f (θ).

Taking the Taylor series expansion for a(θ) restricted to the first

term about the point θ = 0 and also evaluating the limit as ℓ → 0

for θi = iℓ, we get

lim
ℓ→0

ϒ(iℓ) = ϒ0(0)+ (γ0 − ϒ0(0))e
−a(0)iρ + O(ε/µ), (12)

where ρ = µℓ
ε
. Similarly,

lim
ℓ→0

ϒ((i− 1)ℓ) = ϒ0(0)+ (γ0 − ϒ0(0))e
−a(0)(i−1)ρ ,

lim
ℓ→0

ϒ((i+ 1)ℓ) = ϒ0(0)+ (γ0 − ϒ0(0))e
−a(0)(i+1)ρ .

(13)

Substituting Equations 12 and 13 into Equation 10 and

simplifying gives the following fitting factor:

ηL = a(0)
ρ

2
coth(a(0)

ρ

2
). (14)

For the right boundary layer, consider the asymptotic solution

of the form

ϒ(θ) = ϒ0(θ)+
a(1)

a(θ)
(γ1 − ϒ0(1))e

−
∫ 1
θ

µa(θ)
ε

dθ + O(µ). (15)

Using Taylor’s series expansion for a(θ) restricting to the first

term about θ = 1 and also taking the limit as ℓ → 0, we obtain

lim
ℓ→0

ϒ(iℓ) = ϒ0(0)+ (γ1 − ϒ0(1))e
−a(1)( µ

ε
−iρ) + O(µ). (16)

Similarly, we have

lim
ℓ→0

ϒ((i− 1)ℓ) = ϒ0(0)+ (γ1 − ϒ0(1))e
−a(1)( µ

ε
−(i−1)ρ),

lim
ℓ→0

ϒ((i+ 1)ℓ) = ϒ0(0)+ (γ1 − ϒ0(1))e
−a(1)( µ

ε
−(i+1)ρ).

(17)

Substituting Equations 16 and 17 into Equation 10 and simplifying

gives the following fitting factor:

ηR = a(0)
ρ

2
coth(a(1)

ρ

2
). (18)

Combining Equations 14 and 18 gives variable fitting factor as

follows

ηi = ai
ρ

2
coth(ai

ρ

2
). (19)

4 Convergence analysis

In this section, we prove the stability and convergence analysis

of the discrete problem. First, we want to prove the discrete

comparison principle for the discrete scheme in Equation 12.

Theorem 2. Assume 5N
ε,µ be discrete operator and 2i be

comparison function such that 5N
ε,µϒi ≤ 5N

ε,µ2i, ∀i =
1, 2, · · · ,N − 1. If ϒ0 ≤ 20 and ϒN ≤ 2N , then ϒi ≤ 2i ∀i =
0, · · · ,N.

Proof. Thematrix associated with operator5N
ε,µ is of size (N−1)×

(N − 1) and satisfies the property of M-matrix. That is, the inverse

matrix exists, and it is nonnegative. See the detailed proof in Kellogg

and Tsan [40]. This guarantees the existence and uniqueness of the

discrete solution.

Lemma 3. Let ϒi be the discrete solution. Then, we have the

following bound

‖ϒi‖ ≤ β−1 max
∀i∈�̄

|5N
ε,µϒi| +max{|γ0|, |γ1|}.

Proof. Let 4 = β−1 max
∀i∈[0,1]

|5N
ε,µϒi| + max{|γ0|, |γ1|} and define

the two barrier functions 9±
i by 9±

i = 4 ± ϒi. At the boundary

points, we have9±
0 = 4±ϒ0 = 4±γ0 ≥ 0, and9±

N = 4±ϒN =
4 ± γN ≥ 0. On the discretized domain 1 ≤ i ≤ N − 1, we have

5N
ε,µ9±

i ≡ −
εσ

ℓ2

[

(4 ± ϒi−1)− 2(4 ± ϒi)+ (4 ± ϒi+1)
]

+
µai

2ℓ

(

(4 ± ϒi+1)− (4 ± ϒi−1)
)

+ bi (4 ± ϒi) ,

= bi4 ± 5N
ε,µϒi,

= bi4 ± fi,

≥ 0,

where bi ≥ β > 0 and from Theorem (2), we get 9±
i ≥ 0, for

θi ∈ �̄.

We use the truncation error given in Equation 5 to show the

convergence analysis of the present method as follows:

Theorem 3. Let ϒ(θi) be the continuous solution and ϒi be the

discrete solution. Then, the error bound satisfies

sup
0<ε≪1,0<µ≪1

max
0≤i≤N

|ϒi − ϒ(θi)| ≤ CN−2, (20)

where C is a constant independent of ε,µ and the mesh

lengths h.

The above theorem shows that the present method is second-

order convergent, independent of the parameters ε andµ. Next, we

develop the post-processing technique to improve the accuracy of

the present method and order of convergence.
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TABLE 1 Computation of eN
ε,µ, (e

N
ε,µ)

post−processed
ρ
N
ε,µ, (ρ

N
ε,µ)

post−processed for Example (1) using ε = 10−2.

µ ↓ N = 8 16 32 64 128 256 512

After post-processing technique

10−2 1.6519e-3 2.0171e-4 1.3977e-5 8.9780e-7 5.6504e-8 3.5430e-9 2.2154e-10

3.0338 3.8512 3.9605 3.9900 3.9953 3.9993

10−4 1.5542e-3 1.9569e-4 1.3559e-5 8.7097e-7 5.4943e-8 3.4438e-9 2.1536e-10

2.9895 3.8512 3.9605 3.9866 3.9959 3.9992

10−6 1.5533e-3 1.9563e-4 1.3555e-5 8.7070e-7 5.4929e-8 3.4428e-9 2.1529e-10

2.9891 3.8512 3.9605 3.9865 3.9959 3.9992

10−8 1.5533e-3 1.9563e-4 1.3555e-5 8.7070e-7 5.4928e-8 3.4428e-9 2.1526e-10

2.9891 3.8512 3.9605 3.9865 3.9959 3.9994

10−10 1.5533e-3 1.9563e-4 1.3555e-5 8.7070e-7 5.4928e-8 3.4428e-9 2.1526e-10

2.9891 3.8512 3.9605 3.9865 3.9959 3.9994

Before post-processing technique

10−2 2.5765e-2 8.7837e-3 2.3472e-3 6.0374e-4 1.5171e-4 3.8004e-5 9.5035e-6

1.5525 1.9039 1.9589 1.9926 1.9971 1.9996

10−4 2.4226e-2 8.5211e-3 2.2770e-3 5.8116e-4 1.4660e-4 3.6691e-5 9.1753e-6

1.5074 1.9039 1.9701 1.9871 1.9984 1.9996

10−6 2.4211e-2 8.5184e-3 2.2763e-3 5.8093e-4 1.4655e-4 3.6678e-5 9.1721e-6

1.5070 1.9039 1.9703 1.9870 1.9984 1.9996

10−8 2.4210e-2 8.5184e-3 2.2763e-3 5.8093e-4 1.4655e-4 3.6678e-5 9.1720e-6

1.5069 1.9039 1.9703 1.9870 1.9984 1.9996

10−10 2.4210e-2 8.5184e-3 2.2763e-3 5.8093e-4 1.4655e-4 3.6678e-5 9.1720e-6

1.5069 1.9039 1.9703 1.9870 1.9984 1.9996

4.1 Post-processing technique

To improve the accuracy of the numerical solution ϒN by

the post-processing technique, we solve the discrete scheme in

Equation 7 on the fine mesh D2N = �̄2N with 2N mesh intervals.

From Equation 20, we have

|ϒi − ϒ(θi)| ≤ Cℓ2, (21)

where ϒ(θi) and ϒi are continuous and numerical solutions,

respectively, and C is a constant independent of the perturbation

parameters ε,µ and mesh size ℓ and ℓ2 = 1
N2 . Assume �N ⊂ �2N ,

where �N is the mesh obtained from the mesh interval ℓ, and �2N

is the mesh obtained by bisecting the mesh interval ℓ. Denoting

the numerical solution obtained with the mesh points �2N by ϒ̃i.

Consider the mesh θi ∈ �N and Equation 21 works for any ℓ 6= 0

which implies

ϒi − ϒ(θi) = Cℓ2 + RN , (22)

where RN is the remainder term of the truncation error with

O(ℓ2). Now, we construct another mesh �̃2N = {0 = θ̃0 < θ̃1 <

· · · < θ̃2N = 1} which is obtained by bisecting the mesh �N . Let us

define the step size as ℓ̃ = θ̃i − θ̃i−1. Then, θ̃i − θ̃i−1 = ℓ̃ = ℓ
2 for

θ̃i ∈ �2N . For the mesh θ̃i ∈ �2N , we have

ϒ̃i − ϒ(θi) = C

(

ℓ

2

)2

+ R2N , (23)

where R2N is the remainder term of the truncation error with

O(ℓ4). Multiplying Equation 23 by four and subtracting the result

obtained from Equation 22 yields

ϒi − ϒ(θi)− (4ϒ̃i − 4ϒ(θi)) = RN − 4R2N . (24)

Dropping the error term in Equation 24 and rearranging, we

have

3ϒ(θi)− (4ϒ̃i − ϒi) ≈ O(h4), (25)

from which the following extrapolation formula is developed

ϒext
i =

1

3

(

4ϒ̃i − ϒi

)

, (26)

which is also the numerical solution for ϒ(θi). The error

bound for after post-processing technique can now be stated in the

theorem below.

Theorem 4. Let ϒ(θi) be the solution to the continuous problem

andϒext
i be the post-processed solution. Then, the new error bound

takes the form

sup
0<ε≪1,0<µ≪1

max
0≤i≤N

|ϒext
i − ϒ(xi)| ≤ CN−4,
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TABLE 2 Computation of eN
ε,µ, (e

N
ε,µ)

post−processed
ρ
N
ε,µ, (ρ

N
ε,µ)

post−processed for Example (2) using ε = 10−2.

µ ↓ N = 8 16 32 64 128 256 512

After post-processing technique

10−2 1.9900e-3 1.6335e-4 1.0856e-5 6.9830e-7 4.3785e-8 2.7389e-9 1.7166e-10

3.6067 3.9114 3.9585 3.9953 3.9988 3.9960

10−4 2.3288e-3 1.8567e-4 1.2537e-5 8.0046e-7 5.0197e-8 3.1434e-9 1.9646e-10

3.6488 3.8885 3.9692 3.9952 3.9972 4.0000

10−6 2.3324e-3 1.8590e-4 1.2555e-5 8.0152e-7 5.0266e-8 3.1478e-9 1.9699e-10

3.6492 3.8882 3.9694 3.9951 3.9972 3.9981

10−8 2.3324e-3 1.8590e-4 1.2555e-5 8.0153e-7 5.0266e-8 3.1479e-9 1.9672e-10

3.6492 3.8882 3.9694 3.9951 3.9971 4.0002

10−10 2.3324e-3 1.8590e-4 1.2555e-5 8.0153e-7 5.0266e-8 3.1476e-9 1.9702e-10

3.6492 3.8882 3.9694 3.9951 3.9973 3.9978

Before post-processing technique

10−2 4.9479e-2 1.3862e-2 3.7521e-3 9.4615e-4 2.3705e-4 5.9296e-5 1.4826e-5

1.8357 1.8854 1.9876 1.9969 1.9992 1.9998

10−4 6.0435e-2 1.6855e-2 4.4492e-3 1.1217e-3 2.8157e-4 7.0429e-5 1.7611e-5

1.8422 1.9216 1.9879 1.9941 1.9993 1.9997

10−6 6.0545e-2 1.6886e-2 4.4562e-3 1.1235e-3 2.8202e-4 7.0542e-5 1.7640e-5

1.8422 1.9219 1.9878 1.9941 1.9992 1.9996

10−8 6.0546e-2 1.6886e-2 4.4562e-3 1.1235e-3 2.8203e-4 7.0543e-5 1.7640e-5

1.8422 1.9219 1.9878 1.9941 1.9993 1.9997

10−10 6.0546e-2 1.6886e-2 4.4562e-3 1.1235e-3 2.8203e-4 7.0543e-5 1.7640e-5

1.8422 1.9219 1.9878 1.9941 1.9993 1.9997

where C is a constant independent of ε,µ and the mesh

length h.

As a result, the post-processing technique enhances

the second-order parameter-uniformly convergent method

to achieve fourth-order parameter-uniform convergence.

Consequently, the current approach is fourth-order convergent

and more efficient. We now implement the theoretical

findings from the preceding sections through computerized

calculations.

5 Numerical computations and
discussions

In this section, we undertake computerized calculations to

validate the efficacy of the proposed method against the theoretical

results described in previous sections.

Example 1. Consider variable coefficient two parameter singularly

perturbed problem

−εϒ ′′(θ)+ µ(1+ θ2)ϒ ′(θ)+ (2− θ)ϒ(θ) = θ3, 0 < θ < 1,

ϒ(0) = 1, ϒ(1) = 0.

Example 2. Consider variable coefficient two parameter singularly

perturbed problem

−εϒ ′′(θ)+ µ(3− 2θ2)ϒ ′(θ)+ ϒ(θ) = (1+ θ)2, 0 < θ < 1,

ϒ(0) = 0, ϒ(1) = 0.

Since the exact solutions for each example are not available, the

double mesh principle was employed to compute the maximum

absolute errors for each (ε,µ):

eNε,µ = max
0≤i≤N

∣

∣ϒN
i − ϒ2N

i

∣

∣,

where ϒN
i is the numerical solution with N mesh points and

ϒ2N
i is the numerical solution at the finer mesh with 2N mesh

points.

Example 3. Consider constant coefficient two parameter singularly

perturbed problem

−εϒ ′′(θ)+ µϒ ′(θ)+ ϒ(θ) = 1, 0 < θ < 1,

ϒ(0) = 0, ϒ(1) = 0,

for which the analytical solution is given by

ϒ(θ) = 1+
(eλ1 − 1)eλ0θ

eλ0 − eλ1
+

(1− eλ0 )eλ1θ

eλ0 − eλ1
,
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TABLE 3 Computation of eN
ε,µ, (e

N
ε,µ)

post−processed
ρ
N
ε,µ, (ρ

N
ε,µ)

post−processed for Example (3) using ε = 10−2.

µ ↓ N = 8 16 32 64 128 256 512

After post-processing technique

10−2 6.6606e-4 5.1057e-5 3.4926e-6 2.2115e-7 1.3920e-8 8.7067e-10 5.4437e-11

3.7055 3.8697 3.9812 3.9898 3.9989 3.9995 -

10−4 6.2544e-4 4.9465e-5 3.3314e-6 2.1259e-7 1.3329e-8 8.3469e-10 5.2194e-11

3.6604 3.8922 3.9700 3.9954 3.9972 3.9993 -

10−6 6.2504e-4 4.9450e-5 3.3298e-6 2.1250e-7 1.3323e-8 8.3435e-10 5.2153e-11

3.6599 3.8925 3.9699 3.9955 3.9971 3.9998 -

10−8 6.2504e-4 4.9449e-5 3.3298e-6 2.1250e-7 1.3323e-8 8.3434e-10 5.2164e-11

3.6599 3.8925 3.9699 3.9955 3.9971 3.9998 -

10−10 6.2504e-4 4.9449e-5 3.3298e-6 2.1250e-7 1.3323e-8 8.3434e-10 5.2164e-11

3.6599 3.8925 3.9699 3.9955 3.9971 3.9998 -

Before post-processing technique

10−2 2.2007e-2 6.0012e-3 1.5499e-3 3.9241e-4 9.8268e-5 2.4593e-5 6.1490e-6

1.8746 1.9531 1.9817 1.9976 1.9985 1.9998 -

10−4 2.0787e-2 5.6657e-3 1.4847e-3 3.7366e-4 9.3780e-5 2.3455e-5 5.8645e-6

1.8754 1.9321 1.9904 1.9944 1.9994 1.9998 -

10−6 2.0774e-2 5.6623e-3 1.4840e-3 3.7349e-4 9.3734e-5 2.3443e-5 5.8617e-6

1.8753 1.9319 1.9903 1.9944 1.9994 1.9998 -

10−8 2.0774e-2 5.6623e-3 1.4840e-3 3.7349e-4 9.3734e-5 2.3443e-5 5.8617e-6

1.8753 1.9319 1.9903 1.9944 1.9994 1.9998 -

10−10 2.0774e-2 5.6623e-3 1.4840e-3 3.7349e-4 9.3734e-5 2.3443e-5 5.8617e-6

1.8753 1.9319 1.9903 1.9944 1.9994 1.9998 -

where

λ0 =
µ +

√

µ2 + 4ε

2ε
and λ1 =

µ −
√

µ2 + 4ε

2ε
.

The maximum absolute errors for each (ε,µ) may be

determined using the following formula, as the exact solution for

Example (3) is known.

eNε,µ = max
0≤i≤N

∣

∣ϒN
i − ϒN(θi)

∣

∣,

where ϒN
i is the numerical solution with N mesh points and

ϒN(θi) is the analytical solution. The (ε,µ)-maximum errors for

all the Examples are calculated using the following formula

eN = max
ε,µ

eNε,µ.

Furthermore, we compute the numerical rate of convergence

before and after post-processing technique with the following

formulas, respectively:

ρN
ε,µ = log2

(

eNε,µ

e2Nε,µ

)

and (ρN
ε,µ)

post−processed

= log2

(

(eNε,µ)
post−processed

(e2Nε,µ)
post−processed

)

.

The (ε,µ)−maximum rates of convergence before and after

post-processing techniques were calculated using the following

formulas, respectively

ρN = max
ε,µ

ρN
ε,µ and ρN

post−processed = max
ε,µ

(ρN
ε,µ)

post−processed.

Tables 1–3 show the calculated maximum errors eNε,µ and the

parameter-uniform errors eN for Examples (1)–(3), respectively.

These findings demonstrate that the current approach provides

parameter-uniform convergence for both the before and after

post-processing technique. Figures 1–3 display the plots of the

numerical simulations for Examples (1)–(3). Figures 1–3 illustrate

the plots of the numerical solution profile for Examples (1)–

(3) for fixed µ and varying ε. From these figures, we observe

that for fixed µ as ε → 0, strong layers are formed.

Figures 4–6, respectively, show the log–log scale plots of the

maximum errors for Examples (1), (2), and (3). The numerical

findings show that the current higher-order fitted operator finite

difference technique provides a numerical solution with more

accuracy. The application of post-processing approach improves

the accuracy of the numerical solution and speeds up the rate of

convergence, as demonstrated by the numerical findings in all of

the Tables.
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FIGURE 1

A plot of the numerical solution for Example (1) at N = 64 and µ = 10−6. (A) ε = 10−2. (B) ε = 10−6.

FIGURE 2

A plot of the numerical solution for Example (2) at N = 64 and µ = 10−6. (A) ε = 10−2. (B) ε = 10−6.

FIGURE 3

Plot of the numerical solution for Example (3) at N = 64 and µ = 10−6. (A) ε = 10−2. (B) ε = 10−3.

6 Conclusion

A higher-order exponentially fitted operator finite difference

method for two parameter singularly perturbed boundary

value problems is presented in this study. The stability

and uniform convergence of the current method are well

established, ensuring second-order convergence. The post-

processing technique is then applied to enhance the convergence

order of the method and improve accuracy in terms of

maximum errors. Theoretically, we have proven that the
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FIGURE 4

Log-log plot of the maximum point-wise errors for Example (1). (A) Before post-processing. (B) After post-processing.

FIGURE 5

Log-log plot of the maximum point-wise errors for Example (2). (A) Before post-processing. (B) After post-processing.

FIGURE 6

Log-log plot of the maximum point-wise errors for Example (3). (A) Before post-processing. (B) After post-processing.

post-processing technique provides fourth-order parameter-

uniform convergence. Three numerical examples are computed

for various perturbation parameter values in order to verify the

applicability of the current method. The present method can

be applied to singularly perturbed parabolic problem with or

without delay.
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