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Exploring a novel approach for
computing topological
descriptors of graphene structure
using neighborhood multiple
M-polynomial

Tumiso Kekana1, Kazeem Olalekan Aremu1,2* and

Maggie Aphane1

1Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University,

Pretoria, South Africa, 2Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria

Graphene, composed of a single layer of carbon atoms arranged in a hexagonal

lattice pattern, has been the focus of extensive research due to its remarkable

properties and practical applications. Topological indices (TIs) play a crucial

role in studying graphene’s structure as mathematical functions mapping

molecular graphs to real numbers, capturing their topological characteristics.

To compute these TIs, we employ the M-polynomial approach, an e�cient

method for deriving degree-based descriptors of molecular graphs. In this study,

we analyze the neighborhood multiple M-polynomial of graphene’s structure

and use it to derive eleven neighborhood multiple degree-based TIs. These

TIs allow us to predict various properties of graphene theoretically, bypassing

the need for experiments or computer simulations. Furthermore, we showcase

various numerical and graphical representations emphasizing the intricate

connections between TIs and structural parameters. These computations were

further employed to analyze the Quantitative Structure-Property Relationship

(QSPR) between TIs and the mechanical properties of graphene, such as

Young’s Modulus, Poisson’s Ratio, Shear Modulus, and Tensile Strength. The

results showed strong correlations between neighborhood multiple TIs and

Poisson’s Ratio and Shear Modulus, underscoring their predictive power for

these mechanical properties. These findings highlight the e�ectiveness of

neighborhood multiple degree-based TIs in characterizing and predicting the

mechanical properties of graphene structures, providing valuable insights for

future applications in material science.

KEYWORDS

graphene, neighborhood multiple M-polynomial, TI, regression, chemical graph theory

1 Introduction

The emergence of graphene, a nanomaterial with a two-dimensional structure, ignited
enthusiasm for research in the realm of two-dimensional materials. It is the world’s first
two-dimensional material, isolated from graphite in 2004 by Professors Andre Geim and
Kostya Novoselov [1]. It serves as the fundamental building block for various other
carbon-based structures, such as graphite, charcoal, carbon nanotubes, and fullerenes.
Additionally, it can be viewed as a huge aromatic molecule, representing the ultimate
form of a class of planar polycyclic aromatic hydrocarbons. The discovery of graphene
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has significantly impacted the field of materials, greatly enhancing
the utilization of two-dimensional materials across diverse fields
and applications. Remarkably, graphene is 200 times stronger
than steel and incredibly thin–one million times thinner than
human hair. At present, numerous products available in the market
leverage the prominent influence of graphene, which often plays a
substantial or even primary role in enhancing the properties and
functionalities of these products. For instance, graphene and other
two-dimensional materials can be utilized to create microwave
shields and absorbers with specific, predetermined properties [2].
Its unrivaled conductivity has sparked global interest among
scientists, researchers, and industries. With its extraordinary
properties, graphene holds immense promise across diverse fields,
from electronics and optics to sensors and biomedical devices.
Notably, it stands out as the top-performing material for shielding
against electromagnetic interference (EMI) (see [3–6] for further
details). Graphenes have been a subject of discussion in chemical
graph theory over the years. The establishment of the fundamental
principles of contemporary chemical graph theory (CGT) can be
attributed to the groundbreaking contributions of mathematicians
Arthur Cayley (1821–1895) and James Sylvester (1814–1897).
In their effort to describe chemical structures using purely
mathematical concepts, they determined that an isomorphism
exists between chemical structures and mathematical graphs [7].
With the exception of certain mathematical disciplines, chemistry
represents the primary domain where graph theory finds extensive
application. The immense importance of graph theory in the field
of chemistry has gained widespread recognition, particularly in
the realm of CGT, where considerable attention is devoted to
renowned topological indices (TIs) or index (TI). TIs are typically
categorized into distance-based, entropy-based, spectral-based, and
degree-based indices. TIs find extensive application in correlating
and predicting a wide array of molecular properties through QSPR
analysis (see [8–14] for further details). Harold Wiener introduced
the initial distance-based TI known as the Wiener index in 1947.
Wiener’s index gained prominence when his experiment revealed
a significant correlation between the boiling points of alkane
molecules and the corresponding Wiener index values [9]. Since
then, a multitude of degree-based TIs have been developed in
the field of CGT, with numerous publications discussing these
advancements with aid to create more TIs that accurately correlate
with the structural properties of chemical compounds (see [12, 15–
28] for more details).

In a graph H = (V ,E), with V(H) representing the vertices
(such as carbon atoms) and E(H) representing the edges (such as
bonds), the degree du of a vertex u ∈ V(H) is the count of edges
incident to it. The neighborhood of a vertex u, denoted by N(H)u,
refers to the set containing all vertices v that are directly connected
to u. The neighborhood sum degree of a vertex u is defined as
the sum of the degrees of the neighboring vertices connected to u,
expressed as:

λu =
∑

v∈N(H)u

dv.

In recent years, researchers have increasingly focused on
designing TIs that are based on the neighborhood degree of
vertices. In 2019, Mondal et al. [29] introduced the first class
of neighborhood versions of degree-based TIs, including the

neighborhood second Zagreb index, the neighborhood forgotten
index, the modified neighborhood forgotten index, and the
neighborhood hyper-Zagreb index. For example, let H be a graph.
The first and second neighborhood Zagreb indices of H are defined
as follows:

M1(H) =
∑

uv∈E(H)
λu + λv.

M2(H) =
∑

uv∈E(H)
λuλv.

In their QSPR analysis, Mondal et al. [29] observed that the
newly introduced neighborhood TIs outperformed their degree-
based TIs counterparts when applied to model the physicochemical
properties of octane isomers. Subsequently, Mondal et al. [30]
additionally proposed a range of neighborhood versions of the
following degree-based TIs, specifically the secondmodified Zagreb
index, the general Randić index, the harmonic index, and the
inverse sum index, which were derived from the neighborhood M-
polynomials of crystallographic structures. Further research into
the extension of neighborhood degree-based TIs can be found in
the following works [31–35].

TIs can be computed through direct computation or by using
algebraic polynomials. However, employing direct computation to
compute TIs can become cumbersome when deriving multiple
TIs within a specific category. To address this issue, numerous
algebraic polynomials [36–40] have been introduced, from which
TIs can be derived by differentiation, integration, or a combination
of both at an invariant point. Chemistry also benefits from the
valuable applications of algebraic polynomials, such as the Hosoya
polynomial (commonly referred to as the Wiener polynomial). For
instance, evaluating the derivatives of the Hosoya polynomial at
x = 1 yields both the Wiener index and the Hyper Wiener index
[37]. This polynomial is considered instrumental in determining
distance-based TIs. Among various algebraic polynomials, Deutsch
and Klavžar [41] introduced the concept of the M-polynomial
in 2015. The M-polynomial is the most versatile polynomial for
generating a wide range of degree-based TIs, providing closed-
form expressions for degree-based TIs. In 2017, Kwun et al. [42]
derived degree-based TIs using the M-polynomial method for V-
phenylenic nanotubes and nanotori. Since then, the versatility
of the M-polynomial has attracted significant research attention,
leading to the derivation of numerous TIs for diverse graph
structures. These include line graphs of subdivision graphs [43],
linear chains of aromatic hydrocarbons like benzene, naphthalene,
and anthracene [44], antituberculosis drugs [45], and borophene
nanosheets [14], among others. Every day, significant progress is
made in the development of new TIs. One notable advancement
is the concept of the neighborhood M-polynomial (NM), which
emerges from the field of neighborhood degree-based TIs. This
concept was initially introduced by Mondal et al. in their 2019
works [30]. The NM- polynomial stands out from the classical M-
polynomial by employing a neighborhood edge partitioning system
to divide the graph’s edges. The NM-polynomial defined byMondal
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et al. [30] for the graph H is given by:

NM(H; y, z) =
∑

i≤k

rik(H)y
izk,

where rik(H), i, k ≥ 1 denotes the total number of edges e = uv of
H such that {λu, λv} = {i, k}.

Several studies have explored the application of NM-
polynomials to obtain neighborhood TIs for various molecular
structures. Verma et al. [46] employed the NM-polynomial to
investigate the topological properties of bismuth tri-iodide. In
2020, Mondal et al. [47] obtained TIs for chemical structures
for the treatment of COVID-19 via M-polynomial and NM-
polynomial. Shanmukha et al. [48] determined the M-polynomial
and NM-polynomial to derive TIs of porous graphene . Molecular
descriptors based on the neighborhood degree sum for fractal and
Cayley tree dendrimers were obtained by Mondal et al. [49] via
NM-polynomial. Present authors [50] obtained neighborhood TIs
using NM-polynomial of graphene networks and their line graph of
graphene networks. A recent study by Xavier et al. [51] conducted a
comparative analysis of pent-heptagonal nanostructures using TIs
derived from the NM-polynomial approach. Most recently in 2024,
Abubakar et al. [38] explored the applications of NM-polynomials
in characterizing oligothiophene dendrimers. This expanding
area of research highlights the promise of NM-polynomials in
characterizing different molecular structures. However, a thorough
understanding of neighborhood TIs is still being developed, with
ongoing efforts to enhance their efficiency. Addressing this gap,
this paper introduces the neighborhood multiple M-polynomial,
an extension of the NM-polynomials, which will be applied to
characterize the structure of graphene. This approach will retrieve
eleven neighborhood versions of multiple degree-based TIs listed
in Table 1, utilizing neighborhood multiple-edge partition sets.

2 Preliminaries

Let H = (V ,E) be a graph. The following definitions are
adaptations of the multiple degree TIs proposed by Gao et al. [52].

Definition 2.1. The neighborhood multiple degree function ξu =
∏

v∈N(H)u dv is defined as the product of the degrees of all vertices v
in the neighborhood of vertex u.

Definition 2.2. In a graph H, the neighborhood multiple-edge
partition sets for all edges uv ∈ E(H) are defined by the pairs
(ξu, ξv), where ξu and ξv are the neighborhood multiple degree
functions of the vertices u and v, respectively.

The following definitions are a reformulation of neighborhood
M-polynomial and neighborhood sum degree-based TIs byMondal
et al. [30].

Definition 2.3. Let H be a graph, the neighborhood multiple M-
polynomial (NMM) is defined as,

NMM(H; p, q) =
∑

i≤k

τik(H)p
iqk, (2.1)

where τik(H), i, k ≥ 1 denotes the total number of edges e = uv of
Hv such that {ξu, ξv} = {i, k}, and p, q denotes the variables.

TABLE 1 Derivation of TIs for a graph H using the neighborhood multiple

M-polynomial.

Neighborhood
multiple TIs

f (p, q) Derivation from
NMM(H)

ŴNMM1(H) p+ q (Dp + Dq)(NMM(H)
∣

∣

p=q=1

ŴNMM2(H) pq (DpDq)(NMM(H))
∣

∣

p=q=1

ŴNMF(H) p2 + q2 (D2
p + D2

q)(NMM(H))
∣

∣

p=q=1

ŴNMRα(H) (pq)α (Dα
pD

α
q )(NMM(H))

∣

∣

p=q=1

ŴNMH(H) 2
p+q

2SpJ(NMM(H))
∣

∣

p=q=1

ŴNMABC(H) ( p+q−2
pq

)α Sα
pQ−2JD

α
pD

α
q (NMM(H))

∣

∣

p=1

ŴNMGA(H) 2(pq)α

p+q
2SxJ(DpDq)α(NMM(H))

∣

∣

p=1

ŴNMRRα(H)
1

(pq)α Sα
p S

α
q (NMM(H)

∣

∣

p=q=1

ŴNMNMnm
2 (H) 1

pq
(SpSq)(NMM(H))

∣

∣

p=q=1

ŴNMNI(H) pq
p+q

SpJDpDq(NMM(H))
∣

∣

p=q=1

ŴNMSDD(H) p2+q2

pq
(DpSq +

DqSp)(NMM(H))
∣

∣

p=q=1

FIGURE 1

Graph H.

Neighborhood multiple degree-based TIs defined by using
neighborhood multiple degree edge partition in an arbitrary graph
H can be defined as,

I(H) =
∑

uv∈E(H)
f (ξu, ξv), (2.2)

where f (ξu, ξv) represents the function of ξu and ξv employed in
definition of neighborhoodmultiple degree-based TIs in Definition
2.4. An alternative way to represent the previous result is,

I(H) =
∑

i≤k

τi,kf (i, k). (2.3)

Now, let’s provide an example to illustrate the previously
mentioned definitions.

Example 2.1. Consider the undirected graphH from Figure 1, such
that |V(H)| = 6 and |E(H)| = 7.

By Definition 2.1, we have ξ1 = 9, ξ2 = 12, ξ3 = 9,
ξ4 = 6, ξ5 = 18, and ξ6 = 3. Thus, by Definition 2.2, we
partition the edge sets via the neighborhood multiple degrees of
the end vertices for all τ(ξu ,ξv): τ(9,12) = 2, τ(6,9) = 1, τ(6,18) =
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1, τ(9,18) = 1, and τ(3,6) = 1. Therefore, from Equation 2.1,
we obtain

γ (p, q) = p3q6 + p6q9 + 2p9q12 + p6q18 + p9q18.

Definition 2.4. Let H be a graph.

(i) The neighborhood multiple first Zagreb index is defined by

ŴNMM1(H) =
∑

uv∈E(H)
(ξu + ξv). (2.4)

(ii) The neighborhoodmultiple second Zagreb index is defined by

ŴNMM2(H) =
∑

uv∈E(H)
(ξuξv). (2.5)

(iii) The neighborhood multiple Forgotten index is defined by

ŴNMF(H) =
∑

uv∈E(H)
(ξ 2u + ξ 2v ). (2.6)

(iv) The neighborhoodmultiple general Randic index is defined by

ŴNMRα(H) =
∑

uv∈E(G)
(ξuξv)

α . (2.7)

(v) The neighborhood multiple Harmonic index is defined by

ŴNMNH(H) =
∑

uv∈E(H)

2

ξu + ξv
. (2.8)

(vi) The neighborhood multiple Atom-bond connectivity index is
defined by

ŴNMABC(H) =
∑

uv∈E(H)

√

ξu + ξv − 2

ξuξv
. (2.9)

(vii) The neighborhood multiple Geometric arithmetic index is
defined by

ŴNMGA(H) =
∑

uv∈E(H)

2
√

ξuξv

ξu + ξv
. (2.10)

(viii) The neighborhoodmultiple inverse Randic index is defined by

ŴNMRRα(H) =
∑

uv∈E(H)

1

(ξuξv)α
. (2.11)

(ix) The neighborhood multiple second modified Zagreb index is
defined by

ŴNMMnm
2 (H) =

∑

uv∈E(H)

1

ξuξv
. (2.12)

(x) The neighborhood multiple Inverse Sum index defined by

ŴNMNI(H) =
∑

uv∈E(H)

ξuξv

ξu + ξv
. (2.13)

(xi) The neighborhood multiple Symmetric Division index
defined by

ŴNMSDD(H) =
∑

uv∈E(H)

ξ 2u + ξ 2v

ξuξv
. (2.14)

Table 1 displays the relationship between neighborhood
multiple TIs and neighborhood multiple M-polynomial using the
function defined in Definition 2.3, with α = 1

2 .
Where,

Dp(f (p, q)) = p
∂

∂p
(f (p, q)), Dq(f (p, q)) = q

∂

∂q
(f (p, q)),

Sp(f (p, q)) =
∫ p

0

f (t, q)

t
dt,

Sq(f (p, q)) =
∫ q

0

f (p, t)

t
dt, J(f (p, q)) = f (p, p),

Qα(f (p, q)) = pα f (p, q) f (p, q);α 6= 0.

(2.15)

3 Methodology

This study focuses on the neighborhood multiple degree-
based TIs of the graphene structure when t > 1 and s >

1. First, we calculate the neighborhood multiple M-polynomial.
By leveraging integration and differentiation techniques, we
then derive eleven neighborhood multiple-degree-based TIs.
This is achieved using graph theory algorithms, combinatorial
computation, and neighborhood multiple-degree partition sets
to extract the results. We employed Matlab 24.1 to calculate
all neighborhood multiple degree-based TIs values for various
graphene structures (t, s). The resulting TIs are presented
with comprehensive analysis through graphical and tabular
comparisons. Specifically, 3D plots of the neighborhood multiple
M-polynomial and the visualization of numerical values were
created using Matlab 24.1, while comparison scatter plots were
generated using Python 3.12.5.

4 Neighborhood multiple
m-polynomial of graphene structure

Graphene’s structure resembles a hexagonal lattice as shown in
Figure 2. In this lattice, the vertices correspond to carbon atoms,
and the edges represent their covalent bonds. This honeycomb-like
arrangement consists of t rows and s columns, forming a total of ts
hexagons. Mathematically, the entire structure can be represented
as H(t, s). The structure of graphene consists of four cases:

Case 1: t > 1, s > 1, Case 2: t = 1, s = 1, Case 3: t = 1,
s > 1, and Case 4: t > 1, s = 1. In each case, the values of t and s

determine the specific structure of graphene.
However, this study investigates only the instance of Case 1 of

the graphene structure. To achieve this, we sort the neighborhood
multiple edge partition sets τ(ξu ,ξv) from the graphene structure
shown in Figure 2, resulting in Table 2.
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FIGURE 2

Graphene structure when t > 1 and s > 1.

TABLE 2 Neighborhood multiple-edge partition sets.

No of rows τ(4,6) τ(6,6) τ(6,12) τ(6,18) τ(9,12) τ(12,27) τ(18,18) τ(18,27) τ(27,27)

1 2 1 3 1 2s-4 s 0 1 2s-3

2 0 1 1 1 0 0 1 2 3s-4

3 0 1 0 2 0 0 1 2 3s-4

4 0 1 0 2 0 0 1 2 3s-4

5 0 1 0 2 0 0 1 2 3s-4

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

t-2 0 1 0 2 0 0 1 2 3s-4

t-1 0 1 1 1 0 0 1 1 3s-4

t 2 1 3 1 2s-4 s 0 0 0

Total 4 t 8 2t-4 4s-8 2s t-2 2t-4 3ts-4t-4s+5

Theorem 4.1. Let H be a graphene structure
(t, s). The neighborhood multiple M-polynomial is
given by:

NMM(H; p, q) = 4p4q6 + (t)p6q6 + 8p6q12 + (2t − 4)p6q18

+ (4s− 8)p9q12 + (2s)p12q27 + (t − 2)p18q18

+ (2t − 4)p18q27 + (3ts− 4t − 4s+ 5)p27q27.

Proof. By examining the graphene structure (t, s) reveals that the
corresponding graph H, possesses a total of 2ts + 2t + 2s vertices

and 3ts + 2t + 2s − 1 edges. Furthermore, by Definition 2.1 the
neighborhood multiple degrees of vertices withinH can take on the
following distinct values: 4, 6, 9, 12, 18, and 27. This observation
leads to the identification of nine distinct neighborhood multiple-
edge partition sets for all edges uv ∈ E(H) defined by the
pairs (ξu, ξv), respectively. The identified partition sets are τ(4,6),
τ(6,6), τ(6,12), τ(6,18), τ(9,12), τ(12,27), τ(18,18), τ(18,27), and τ(27,27) as
shown in Figure 2. Table 2 details these neighborhood multiple-
edge partition sets and the corresponding number of edges within
each partition.
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The neighborhood multiple M-polynomial of H, derived from
Definition 2.3 and utilizing Table 2, is obtained as follows:

NMM(H; p, q) =
∑

i≤k

τik(H)p
iqk (4.1)

= τ(4,6)p
4q6 + τ(6,6)p

6q6 + τ(6,12)p
6q12 + τ(6,18)p

6q18 + τ(9,12)p
9q12

+ τ(12,27)p
12q27 + τ(18,18)p

18q18 + τ(18,27)p
18q27 + τ(27,27)p

27q27

= 4p4q6 + (t)p6q6 + 8p6q12 + (2t − 4)p6q18 + (4s− 8)p9q12

+ (2s)p12q27 + (t − 2)p18q18 + (2t − 4)p18q27

+ (3ts− 4t − 4s+ 5)p27q27.

Thus, the proof is complete.
Figure 3 visually represents the aforementioned result, with

the given parameters t=6 and s=9 of graphene structure. The plot
visualizes how the function behaves over the range of p and q from
10 to -10.

Remark 4.1. For simplicity, we denote NMM(H; p, q) as γ (p, q)
throughout this work.

Theorem 4.2. Let H be a graphene structure when t > 1 and
s > 1, then we have:

(i) ŴNMM1(H) = 162ts− 31t − 54s− 62,

(ii) ŴNMM2(G) = 2187ts− 1368t − 1836s+ 357,

(iii) ŴNMF(G) = 4374ts− 2286t − 3186s− 386.

Proof. The neighborhood multiple M-polynomial ofH when t > 1
and s > 1 is given as follows,

NMM(H; p, q) = 4p4q6 + (t)p6q6 + 8p6q12 + (2t − 4)p6q18

+ (4s− 8)p9q12 + (2s)p12q27 + (t − 2)p18q18

+ (2t − 4)p18q27 + (3ts− 4t − 4s+ 5)p27q27.

Let γ (p, q) = NMM(H; p, q). Thus, we have:

(Dp + Dq)(γ (p, q)) = 40p4q6 + (12t)p6q6 + 144p6q12

+ (48t − 96)p6q18 + (84s− 168)p9q12

+ (78s)p12q27

+ (36t − 72)p18q18 + (90t − 180)p18q27

+ (162ts− 216t − 216s+ 270)p27q27.

(DpDq)(γ (p, q)) = 24p4q6 + (36t)p6q6 + 576p6q12

+ 216(t − 2)p6q18 + 432(s− 2)p9q12

+ (648s)p12q27

+ 324(t − 2)p18q18 + 972(t − 2)p18q27

+ (2187ts− 2916t − 1836s+ 3645)p27q27.

(D2
p + D2

q)(γ (p, q)) = 208p4q6 + (72t)p6q6 + 864p6q12

+ 720(t − 2)p6q18 + 900(s− 2)p9q12

+ (1746s)p12q27

+ 648(t − 2)p18q18 + 1053(2t − 4)p18q27

+ 1458(3ts− 4t − 4s+ 5)p27q27.

Therefore, from Table 1, we get:

(i) ŴNMM1(H) = (Dp + Dq)(γ (p, q))
∣

∣

p=q=1

= 162ts− 31t − 54s− 62,

(ii) ŴNMM2(H) = (DpDq)(γ (p, q))
∣

∣

p=q=1

= 2187ts− 1368t − 1836s+ 357,

(iii) ŴNMF(H) = (D2
p + D2

q)(γ (p, q))
∣

∣

p=q=1

= 4374ts− 2286t − 3186s− 386.

Theorem 4.3. Consider the graphene structure for t > 1 and s > 1,
then the following results hold:

(i) ŴNMRα(H) = 24α4+ 36αt + 72α8+ 108α(2t − 4)

+ 108α(4s− 8)+ 324α2s

+ 324α(t − 2)+ 486α(2t − 4)

+ 729α(3ts− 4t − 4s+ 5),

(ii) ŴNMRRα(H) =
4

24α
+

t

36α
+

8

72α

+
2t − 4

108α
+

4s− 8

108α
+

2s

324α
+

t − 2

324α

+
2t − 4

486α
+

3ts− 4t − 4s+ 5

729α
,

(iii) ŴNMGA(H) =
(24)α4

5
+

(36)αt

6
+

8(72)α

9

+
(108)α(t − 2)

6
+

8(108)α(s− 2)

21
+

4(324)αs

39

+
2(324)α(t − 2)

45
+

4(486)α(t − 2)

45

+
(729)α(3ts− 4t − 4s+ 5)

27
,

(iv) ŴNMABC(H) = (3)α4+
(

18

5

)α

t +
(

9

2

)α

8+
(

54

11

)α

(2t − 4)

+
(

108

19

)α

(4s− 8)+
(

324

37

)α

2s

+
(

162

17

)α

(t − 2)+
(

486

43

)α

(2t − 4)+
(

729

52

)α

(3ts− 4t − 4s+ 5).

Proof. The proof follows a similar approach to Theorem
4.2. Define γ (p, q) = NMM(H; p, q). Therefore,
we obtain:

(i) ŴNMRα(H) = (Dα
p Dα

q )(γ (p, q))
∣

∣

p=q=1

= 24α4+ 36αt + 72α8+ 108α(2t − 4)

+ 108α(4s− 8)+ 324α2s+ 324α(t − 2)

+ 486α(2t − 4)+ 729α(3ts− 4t − 4s+ 5),

(ii) ŴNMRRα(H) = (Sα
p S

α
q )(γ (p, q))

∣

∣

p=q=1

=
4

24α
+

t

36α
+

8

72α
+

2t − 4

108α
+

4s− 8

108α

+
2s

324α
+

t − 2

324α
+

2t − 4

486α
+

3ts− 4t − 4s+ 5

729α
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FIGURE 3

Visualization of the NMM(H;p,q) for graphene structure.

(iii) ŴNMGA(H) = (2SxJ(DpDq)
α)(γ (p, q))

∣

∣

p=q=1

=
4(24)α

5
+

(36)αt

6
+

8(72)α

9
+

(108)α(t − 2)

6

+
8(108)α(s− 2)

21
+

4(324)αs

39

+
2(324)α(t − 2)

45
+

4(486)α(t − 2)

45

+
(729)α(3ts− 4t − 4s+ 5)

27
,

(iv) ŴNMABC(H) = (Sα
pQ−2JD

α
pD

α
q )(γ (p, q))

∣

∣

p=q=1

= (3)α4+
(

18

5

)α

t +
(

9

2

)α

8+
(

54

11

)α

(2t − 4)+
(

108

19

)α

(4s− 8)+
(

324

37

)α

2s

+
(

162

17

)α

(t − 2)+
(

486

43

)α

(2t − 4)

+
(

729

52

)α

(3ts− 4t − 4s+ 5).

Theorem 4.4. LetH be a graphene structure when t > 1 and s > 1,
then we have:

(i) ŴNMMnm
2 (H) =

3

729
ts+

35

729
t +

55

1458
s+

116

729
,

(ii) ŴNMH(H) =
1

9
ts+

89

270
t +

950

2457
s+

463

945
,

(iii) ŴNMI(H) =
81

2
ts−

57

5
t −

1530

91
s−

787

70
,

(iv) ŴNMSDD(H) = 6ts+ 7t +
103

18
s− 4.

Proof. Define γ (p, q) = NMM(H; p, q). Using Table 1, we obtain:

(i) ŴNMMmn
2 (H) = (SpSq)(γ (p, q))

∣

∣

p=q=1

=
3

729
ts+

35

729
t +

55

1458
s+

116

729
,

(ii) ŴNMH(H) = (2SpJ)(γ (p, q))
∣

∣

p=q=1

=
1

9
ts+

89

270
t +

950

2457
s+

463

945
,

(iii) ŴNMI(H) = (SpJDpDq)(γ (p, q))
∣

∣

p=q=1

=
81

2
ts−

57

5
t −

1530

91
s−

787

70
,

(iv) ŴNMSDD(H) = (DpSq + DqSp)(γ (p, q))
∣

∣

p=q=1

= 6ts+ 7t +
103

18
s− 4.

5 QSPR analysis with neighborhood
multiple M-polynomial descriptors for
the mechanical properties of
graphene variations

The veil of uncertainty surrounding the properties of 2D
nanomaterials like graphene is thinning thanks to the power of
molecular descriptors. These computational tools act as crystal
balls, allowing scientists to peer into a material’s potential based
on its atomic arrangement. Particularly in graphene research,
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molecular descriptors play a crucial role in property prediction.
While these descriptors can incorporate aspects of 3D electronic
structure (relevant for some properties), their primary strength
lies in capturing the unique features of graphene’s 2D structure.
Different categories of descriptors, ranging from simple measures

FIGURE 4

Flowchart illustrating the QSPR analysis.

of connectivity (1D) to complex electronic considerations, offer
valuable insights into various aspects of graphene’s behavior, such as
its exceptional electrical conductivity, thermal stability, or potential
for gas adsorption. Additionally, advanced methods can generate
quantum-chemical descriptors. These descriptors delve into the
electronic structure of the molecule, providing even deeper insights
(refer [53, 54]). The recent surge in artificial intelligence and
machine learning has opened doors for developing even more
sophisticated descriptors and identifying the most informative ones
for specific applications (refer [55, 56]). The core principle of
QSPR is that a molecule’s structure holds the key to its properties.
QSPR methods aim to capture these properties using mathematical
codes called descriptors. QSPR modeling rely on a vast library
of pre-calculated descriptors, encompassing both physical and
structural properties of molecules. This computational approach is
much faster and more cost-effective than traditional experimental
methods, which often require significant effort and expensive
equipment. QSPR analysis workflow is depicted as a flowchart
in Figure 4. Notably, the workflow emphasizes the utilization of
structural descriptors specifically tailored for graphene structure.

Building upon the established interest in graphene structures,
this section focuses on developing linear regression models to
predict various properties of these materials. Here, we employ the
least squares method to establish relationships between a selection
of properties and corresponding neighborhood multiple degree-
based TIs of the graphene structures. The following equation serves
as the foundation for our analysis:

Z = n · TI +m, (5.1)

where Z is a mechanical property of the nanomaterial, n is the
regression coefficient, m is a constant, and TI is a neighborhood
multiple degree-based TI. Computational approaches, such as
theoretical analysis, have the potential to aid pharmaceutical
scientists, including chemists, in the prediction of nanomaterial
features, thereby reducing the need for extensive experimentation.
This also facilitates the design of new nanomaterials with desired
properties. The neighborhood multiple M-polynomial technique
offers a more efficient and concise approach to TIs computation for
graphene structures compared to traditional algorithmic methods.

FIGURE 5

Graphene variations: (A) Pristine graphene (9,6) [59], (B) AGNR (9,3) [60], and (C) ZGNR (4,9) [60].
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TABLE 3 Results of computed neighborhood multiple degree-based TIs for various values of (t, s).

(t, s) ŴNMM1(H) ŴNMM2(H) ŴNMF(H) ŴNMRα(H) ŴNMRRα(H) ŴNMGA(H) ŴNMABC(H) ŴNMMnm
2 (H)

(1, 3) 231 42 892 106.17 2.2314 15.467 31.357 0.33265

(1, 6) 555 1,095 4,456 257.88 3.6083 29.883 66.49 0.45816

(1, 9) 879 2,148 8,020 409.59 4.9852 44.298 101.62 0.58368

(3, 3) 1,141 10,428 22,564 553.92 3.6126 36.451 101.08 0.45336

(3, 6) 2,437 24,603 52,372 1,191.6 5.6562 68.866 203.61 0.60357

(3, 9) 3,733 38,778 82,180 1,829.3 7.6997 101.28 306.14 0.75377

(6, 3) 2,506 26,007 55,072 1,225.5 5.6843 67.926 205.66 0.63443

(4, 9) 5,160 57,093 119,260 2,539.2 9.057 129.77 408.39 0.83882

(6, 6) 5,260 59,865 124,250 2,592.3 8.7279 127.34 409.28 0.82167

(6, 9) 8,014 93,723 193,420 3,959 11.771 186.76 612.91 1.0089

(9, 3) 3,871 41,586 87,580 1,897.2 7.756 99.401 310.24 0.8155

(9, 6) 8,083 95,127 196,120 3,992.9 11.8 185.82 614.96 1.0398

(9, 9) 12,295 148,668 304,660 6,088.6 15.843 272.23 919.67 1.2641

The efficiency of the neighborhood multiple M-polynomial
approach derives from its unique methodology. Unlike traditional
methods that require separate calculations for each neighborhood
multiple TI, this technique enables the derivation of numerous TIs
through differentiation and integration, eliminating the need for
repetitive computations.

5.1 Property prediction of graphene
variations via neighborhood multiple
degree-based TIs

This subsection focuses on predicting the mechanical
properties of pristine graphene and its captivating derivatives–
zigzag nanoribbon (ZGNR) and armchair nanoribbon (AGNR).
Pristine graphene [57], the cornerstone of this study, possesses a
perfect hexagonal lattice of carbon atoms, embodying the ideal
defect-free state. In contrast, graphene nanoribbons (GNRs)
represent a fascinating class of nanomaterials derived from
graphene. These materials essentially consist of long, narrow strips
of graphene with tailored edge configurations. Notably, zigzag and
armchair nanoribbons have distinct edge structures, characterized
by a zigzag pattern at the edge and a smooth, armchair-like edge,
respectively [58].

By using neighborhoodmultiple degree-based TIs, this research
unveils the underlying structure-property relationships for Young’s
Modulus (stiffness, a measure of a material’s resistance to elastic
deformation under a tensile load), Poisson’s Ratio (the ratio of
transverse contraction to longitudinal extension when a material
is stretched), Shear Modulus (a measure of a material’s ability
to resist shear deformation), and Tensile Strength (resistance to
deformation under stress). These TIs, mathematically derived from
the atomic arrangements within a material, act as fingerprints,
offering a powerful tool to decipher the intricate code that
links structure to a material’s mechanical behavior. Ultimately,
this research holds the key to unlocking the full potential of

TABLE 4 Results of computed neighborhood multiple degree-based TIs

for various values of (t, s).

(t, s) ŴNMH(H) ŴNMNI(H) ŴNMSDD(H)

(1, 3) 2.3129 48.418 38.167

(1, 6) 3.8061 119.48 73.333

(1, 9) 5.2994 190.54 108.5

(3, 3) 3.6388 268.62 88.167

(3, 6) 5.7987 582.68 159.33

(3, 9) 7.9587 896.74 230.5

(6, 3) 5.6277 598.92 163.17

(4,9) 9.2883 1249.8 291.5

(6, 6) 8.7876 1277.5 288.33

(6, 9) 11.948 1956 413.5

(9, 3) 7.6166 929.22 238.17

(9, 6) 11.777 1972.3 417.33

(9, 9) 15.936 3015.3 596.5

graphene derivatives by guiding the design of materials with tailor-
made mechanical properties for groundbreaking applications.
Figure 5, Table 5 present the variations in graphene and provide
a comprehensive summary of the properties of Young’s Modulus,
Poisson’s Ratio, Shear Modulus, and Tensile Strength of these
graphene variants.

Researchers have explored graphene’s mechanical properties
through experiments and simulations, with computational
methods being more widely used. The synthesis methods and
edge configurations of graphene nanoribbons (GNRs) significantly
influence their mechanical properties [78]. Bottom-up approaches
like chemical vapor deposition (CVD) and surface-assisted
synthesis strive for precise edge control. At the same time, top-
down methods like lithography and CNT unzipping often yield a
mix of configurations (see [79, 80]). While experimental techniques
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TABLE 5 Mechanical properties of graphene variations.

Variation Young’s Modulus
(GPa)

Poisson’s Ratio Shear Modulus
(GPa)

Tensile Strength
(GPa)

Pristine Graphene 730–1,370 [61–66] 0–0.3[60, 66, 67] 244–485 [68–70] 60–140 [68, 71]

Zigzag Nanoribbon 960–1,360[60, 72, 73] 0.1–0.35 [60, 73–75] 60–140 [76] 107 [77]

Armchair Nanoribbon 760–1,020[60, 72] 0.07–0.35 [60, 74, 75] 20–100 [76] 90 [77]

TABLE 6 Correlation table between mechanical properties and neighborhood multiple TIs for graphene variants.

Graphene variants Neighborhood
multiple TIs

Young’s
Modulus

Poisson’s Ratio Shear Modulus Tensile
Strength

Pristine graphene (1,3), ZGNR
(3,6), AGNR (6,3)

ŴNMM1(H) -0.13278 0.97659 -0.99554 -0.12785

ŴNMM2(H) -0.15399 0.97176 -0.99733 -0.14907

ŴNMF(H) -0.15017 0.97266 -0.99704 -0.14525

ŴNMRα(H) -0.13274 0.9766 -0.99553 -0.12781

ŴNMRRα(H) -0.11334 0.98062 -0.9935 -0.1084

ŴNMGA(H) -0.091007 0.98477 -0.99069 -0.086049

ŴNMABC(H) -0.11649 0.97999 -0.99385 -0.11155

ŴNMMnm
2 (H) -0.19825 0.96017 -0.99961 -0.19337

ŴNMH(H) -0.062946 0.98927 -0.98647 -0.057978

ŴNMNI(H) -0.13205 0.97675 -0.99547 -0.12711

ŴNMSDD(H) -0.13313 0.97652 -0.99557 -0.12819

Pristine graphene (3,3), ZGNR
(3,9), AGNR (6,3)

ŴNMM1(H) 0.37682 0.95452 -0.81733 0.38142

ŴNMM2(H) 0.35224 0.96206 -0.83225 0.35689

ŴNMF(H) 0.3568 0.96072 -0.82954 0.36144

ŴNMRα(H) 0.37687 0.95451 -0.8173 0.38147

ŴNMRRα(H) 0.39781 0.94748 -0.804 0.40238

ŴNMGA(H) -0.79066 0.54409 -0.77492 -0.7876

ŴNMABC(H) 0.39452 0.94863 -0.80613 0.39909

ŴNMMnm
2 (H) 0.29457 0.97689 -0.86448 0.29932

ŴNMH(H) 0.44643 0.92897 -0.77096 0.45088

ŴNMNI(H) 0.37764 0.95426 -0.81682 0.38224

ŴNMSDD(H) 0.37646 0.95464 -0.81755 0.38107

Pristine graphene (6,6), ZGNR
(4,9), AGNR (6,3)

ŴNMM1(H) 0.90084 -0.35741 0.62629 0.89866

ŴNMM2(H) 0.88192 -0.3961 0.6583 0.87956

ŴNMF(H) 0.88616 -0.38775 0.65144 0.88384

ŴNMRα(H) 0.89984 -0.35954 0.62806 0.89766

ŴNMRRα(H) 0.94653 -0.24243 0.52793 0.94492

ŴNMGA(H) 0.92778 -0.29435 0.57292 0.92591

ŴNMABC(H) 0.91273 -0.33091 0.60404 0.91068

ŴNMMnm
2 (H) 0.94229 -0.25492 0.53884 0.94061

ŴNMH(H) 0.95807 -0.20553 0.4954 0.95663

ŴNMNI(H) 0.89907 -0.36119 0.62944 0.89688

ŴNMSDD(H) 0.92283 -0.30679 0.58356 0.9209
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TABLE 7 Correlation table between mechanical properties and neighborhood multiple TIs for graphene variants.

Variants Neighborhood
multiple TIs

Young’s
Modulus

Poisson’s
Ratio

Shear
Modulus

Tensile
Strength

Pristine graphene (9,6), ZGNR (4,9),
AGNR (9,3)

ŴNMM1(H) 0.3984 -0.88074 0.98347 0.39383

ŴNMM2(H) 0.38186 -0.8891 0.98656 0.37726

ŴNMF(H) 0.38413 -0.88797 0.98616 0.37953

ŴNMRα(H) 0.39871 -0.88057 0.9834 0.39414

ŴNMRRα(H) 0.41421 -0.87241 0.98019 0.40968

ŴNMGA(H) 0.44412 -0.85574 0.97309 0.43966

ŴNMABC(H) 0.4146 -0.8722 0.9801 0.41007

ŴNMMnm
2 (H) 0.19985 -0.95971 0.99965 0.19497

ŴNMH(H) 0.49446 -0.82487 0.95838 0.49013

ŴNMNI(H) 0.39972 -0.88005 0.9832 0.39515

ŴNMSDD(H) 0.38997 -0.88504 0.98509 0.38538

Pristine graphene (9,9), ZGNR (4,9),
AGNR (9,3)

ŴNMM1(H) 0.24647 -0.94518 0.99977 0.24164

ŴNMM2(H) 0.23858 -0.94781 0.99991 0.23374

ŴNMF(H) 0.23965 -0.94745 0.9999 0.23482

ŴNMRα(H) 0.24662 -0.94513 0.99977 0.24179

ŴNMRRα(H) 0.25406 -0.94259 0.99957 0.24925

ŴNMGA(H) 0.26849 -0.93749 0.99903 0.26369

ŴNMABC(H) 0.25423 -0.94253 0.99957 0.24942

ŴNMMnm
2 (H) 0.15211 -0.97221 0.99719 0.14719

ŴNMH(H) 0.29323 -0.92821 0.99756 0.28847

ŴNMNI(H) 0.2471 -0.94497 0.99976 0.24228

ŴNMSDD(H) 0.24243 -0.94653 0.99985 0.2376

Pristine graphene (3,3), ZGNR (3,9),
AGNR (9,3)

ŴNMM1(H) -0.15082 0.97251 -0.99709 -0.14589

ŴNMM2(H) -0.18695 0.96332 -0.99922 -0.18206

ŴNMF(H) -0.18042 0.96508 -0.99893 -0.17553

ŴNMRα(H) -0.15082 0.97251 -0.99709 -0.14589

ŴNMRRα(H) -0.11808 0.97967 -0.99403 -0.11314

ŴNMGA(H) -0.080959 0.98647 -0.98927 -0.075997

ŴNMABC(H) -0.12334 0.9786 -0.99459 -0.1184

ŴNMMnm
2 (H) -0.26336 0.93933 -0.99925 -0.25856

ŴNMH(H) -0.035216 0.99295 -0.98154 -0.030242

ŴNMNI(H) -0.14957 0.9728 -0.997 -0.14465

ŴNMSDD(H) -0.15134 0.97239 -0.99713 -0.14642

(e.g., nanoindentation [73]) and computational simulations (MD
[81], DFT [72, 82], and Continuum mechanics [61]) offer valuable
insights, achieving perfect agreement between them remains a
challenge (see [83]). Experimental measurements can be affected
by sample size and handling limitations, while simulations rely on
accurate models and assumptions. These discrepancies highlight
the need for further research to bridge the gap between theoretical
predictions and experimental realities. However, a general trend
still emerges: zigzag-edged GNRs are predicted to exhibit higher
Tensile Strength and fracture toughness compared to armchair-
edged GNRs. This is attributed to each configuration’s unique

atomic arrangements and edge states [84]. Tables 3, 4 presents the
computed the neighborhood multiple degree-based parameters for
graphene structures.

6 Discussion of results

The Least Squares Approximation method was employed to
elucidate the relationship between neighborhood multiple degree-
based TIs and the properties of various graphene variations, as
detailed in Table 5. Correlation, a statistical measure, quantifies
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FIGURE 6

Visualization of the correlations of mechanical properties for various graphene variants.

the strength and direction of a linear relationship between two
variables via the correlation coefficient, r, which ranges from -1 to
1. An r value of 1 signifies a strong positive linear relationship,
-1 indicates a strong negative linear relationship, and 0 denotes
no linear relationship. Regression analyses were performed using
analytical tools such as Matlab 24.1 and Python 3.12.5. The
resulting correlation coefficients, r, are summarized and visualized
in Tables 6, 7, Figure 6. See Figure 7 also.

6.1 Performance of neighborhood multiple
TIs across mechanical properties

In this subsection, we analyze the correlation between
neighborhood multiple TIs and the mechanical properties of
various graphene variants, highlighting linear regression models
with strong correlations. Scatter plots showing the relationship
between properties and their best-fitted TIs are presented.

(i) Pristine (1,3), ZGNR (3,6), AGNR (6,3)

• The Shear Modulus demonstrates strong negative
correlations with various neighborhood multiple TIs,
most notably with ŴNMMnm

2 (H) (r = −0.99961) and
ŴNMF(H) (r = −0.9955). The corresponding regression
models are:

Shear Modulus = −996.15282 · ŴNMMnm
2 (H)+ 696.36914.

Shear Modulus = −0.00540 · ŴNMF(H)+ 369.96936.

• In contrast, Poisson’s Ratio consistently exhibits strong
positive correlations across multiple TIs, with the
strongest observed for ŴNMH(H) (r = 0.98927).

• Weak correlations are observed for Young’sModulus and
Tensile Strength across all neighborhood multiple TIs,
ranging from (r = −0.19825) with ŴNMMnm

2 (H) to (r =
−0.062946) with ŴNMH(H). This suggests that these
properties are influenced by more complex structural
factors beyond the scope of neighborhood multiple TIs.

(ii) Pristine (3,3), ZGNR (3,9), AGNR (6,3)

• Poisson’s Ratio exhibits a robust positive correlation,
particularly with ŴNMMnm

2 (H) (r = 0.97689), while
Tensile Strength shows a strong negative correlation with
ŴNMGA(H) (r = −0.78760). The regression models are:

Poisson’s Ratio = 0.011 · ŴNMMnm
2 (H)+ 0.212.

Tensile Strength = −0.018 · ŴNMGA(H)+ 100.391.

• Shear Modulus demonstrated strong negative
correlations, particularly with ŴNMMnm

2 (H)
(r = −0.86448).

• Also, Young’s Modulus exhibit a strong negative
correlation with ŴNMGA(H) (r = −0.79066), while the
other TIs show moderate to weak correlations, ranging
from (r = 0.29457) to (r = 0.45088).

(iii) Pristine (6,6), ZGNR (4,9), AGNR (6,3)

• Strong positive correlations are observed for
Young’s Modulus (r = 0.95807) and Tensile
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FIGURE 7

Visualization of numerical values of graphene structure via neighborhood multiple TIs.

Strength (r = 0.95663) with ŴNMH(H).
Regression models:

Young’s Modulus = 65.53754 · ŴNMH(H)+ 515.50815.

Tensile Strength = 4.11810 · ŴNMH(H)+ 66.46204.

• Shear Modulus show a moderate correlation across
neighborhood TIs ranging from (0.4954 to 0.6583)

• Poisson’s Ratio shows weak negative correlations
(−0.3961 to−0.20553).

(iv) Pristine (9,6), ZGNR (4,9), AGNR (9,3)

• The Shear Modulus exhibits the strongest positive
correlation among the TIs, particularly with
ŴNMMnm

2 (H) (r = 0.99965). ŴNMM2(H) also
performed well with (r = 0.98656). Conversely,
Poisson’s Ratio demonstrates strong negative
correlations, with the highest observed for
ŴNMMnm

2 (H), yielding a correlation coefficient of
(r = −0.95971). The corresponding regression
models are:

Shear Modulus = 0.006 · ŴNMM2(H)− 207.975.

Poisson’s Ratio = 0.017 · ŴNMMnm
2 (H)+ 0.203.

• Young’s Modulus and Tensile Strength exhibit weaker
relationships with the TIs, with themaximum correlation
coefficient being r = 0.49446.

(v) Pristine (9,9), ZGNR (4,9), AGNR (9,3)

• Shear Modulus exhibits a very strong correlation with
all TIs, with the highest correlation observed for
ŴNMM2(H) (r = 0.99991). Additionally, ŴNMM1(H)
and ŴNMABC(H) demonstrates excellent performance
with (r = 0.99977) and (r = 0.99957), as described by
the following regression models:

Shear Modulus = 0.036 · ŴNMM1(H)− 84.340.

Shear Modulus = 0.505 · ŴNMABC(H)− 101.199.

• In contrast, Poisson’s Ratio shows the strongest negative
correlation with ŴNMMnm

2 (H) (r = −0.97221)
• Young’s Modulus and Tensile Strength demonstrate

weaker correlations (r = 0.15211 to r = 0.26849).
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FIGURE 8

Scatter plots illustrating the correlation between mechanical properties and neighborhood multiple TIs.

(vi) Pristine (3,3), ZGNR (3,9), AGNR (9,3)

• Shear Modulus exhibits strong negative correlations
among all TIs, particularly with ŴNMMnm

2 (H) (r =
−0.99925). Additionally, ŴNMSDD(H) demonstrated
robust performance with Shear Modulus. Conversely,
Poisson’s Ratio displays strong positive correlation with
ŴNMMnm

2 (H). The corresponding regression models are
given as follows:

Shear Modulus = −1.953 · ŴNMSDD(H)+ 537.358,

r = −0.99713.

Poisson’s Ratio = −0.014 · ŴNMMnm
2 (H)+ 0.227,

r = 0.93933.

• Weak correlations are observed for Young’s Modulus
and Tensile Strength across all TIs (−0.26336
to−0.11808).

The scatter plots illustrating the relationships between
properties and their best-fit TIs are presented in Figures 8,
9. Therefore, it can be concluded that the mechanical
properties of various graphene variations can be predicted
using regression models derived from the computed

neighborhood multiple TIs. Strong correlations, particularly
in the Poisson ratio and Shear Modulus across all neighborhood
multiple TIs, highlight the effectiveness of TIs such as
ŴNMMnm

2 (H), ŴNMF(H), ŴNMM2(H), and ŴNMH(H) as
robust predictors of mechanical properties across most
graphene variants.

6.2 Comparitive analysis via closed
neighborhood degre-based TIs of
graphene variations

Sankarraman et al. [85] introduced seven newly defined
TIs: the closed neighborhood first Zagreb index, CM1(H); the
modified closed neighborhood first Zagreb index, CM∗

1 (H); the
closed neighborhood second Zagreb index, CM2(H); the closed
neighborhood Forgotten index, CF(H); the modified closed
neighborhood Forgotten index, CF∗(H); the closed neighborhood
first hyper Zagreb index, CHM1(H); and the closed neighborhood
second hyper Zagreb index, CHM2(H). These TIs were computed
for graphene structures under the following cases: Case 1:

t > 1, s > 1; Case 2: t = 1, s = 1; Case 3:

t = 1, s > 1; and Case 4: t > 1, s = 1. In
this comparison, these TIs were used to establish correlations
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FIGURE 9

Scatter plots illustrating the correlation between mechanical properties and neighborhood multiple TIs.

with the mechanical properties of Pristine Graphene (9,6),
ZGNR (4,9), and AGNR (9,3). The comparative results of
these correlations are presented in Table 8 and visualized
in Figure 10.

Neighborhood Multiple TIs and Closed Neighborhood TIs
demonstrate strong performance in predicting Poisson’s Ratio
and Shear Modulus. Neighborhood Multiple TIs exhibit strong
negative correlations with Poisson’s Ratio (r = −0.82487)
to (r = −0.95971), with ŴNMMnm

2 (H) achieving the highest
(r = −0.95971). In contrast, Closed Neighborhood TIs
also show strong negative correlations with Poisson’s Ratio
(-0.86658 to -0.86916). For Shear Modulus, Neighborhood
Multiple TIs show strong positive correlations (r = −0.98154)
to (r = −0.99925), with ŴNMMnm

2 (H) having the strongest
(r = −0.99965), while Closed Neighborhood TIs show
strong positive correlations (r = 0.97778) to (r = 0.97886),
with CHM2(H) the highest (r = 0.97886). Among these,
ŴNMH(H) performed better across all properties, showing
moderate correlations with Young’s Modulus (r = 0.49446)
and Tensile Strength (r = 0.49013). Both TIs performed
poorly with Young’s Modulus and Tensile Strength, showing
weak correlations across graphene variants. Neighborhood
Multiple TIs are particularly effective at predicting Poisson’s
Ratio and Shear Modulus, with high positive and negative
correlations, respectively.

7 Discussion and limitations

The results of our study provide valuable insights into the
relationship between neighborhood multiple degree-based TIs and
the mechanical properties of various graphene structures. We
have observed that certain TIs exhibit strong correlations with
specific properties, while others show weaker correlations. These
findings highlight the importance of selecting appropriate TIs
for accurate property prediction. The correlation performance
across neighborhood multiple TIs varies significantly among
different mechanical properties of graphene variants, primarily
due to their underlying structural topology. Key factors include
the number of hexagonal rings, edge effects, and defects. Strong
correlations, such as those observed in the Poisson Ratio and
Shear Modulus for TIs like ŴNMMnm

2 (H),ŴNMF(H), ŴNMM2(H),
and ŴNMH(H), across most graphene variations, highlight a
consistent relationship between structural topology andmechanical
properties. These TIs are particularly effective, often demonstrating
linear relationships, as evidenced by near-perfect regression
equations. This suggests that such mechanical properties are
strongly tied to the uniformity and symmetry of graphene’s
structural features, which these TIs effectively encode. Overall,
neighborhood multiple TIs show exceptional performance with
specific graphene variants, particularly for predicting certain
mechanical properties.
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TABLE 8 Comparison of correlations between neighborhood multiple TIs and closed neighborhood TIs.

TIs type Neighborhood
TIs

Young’s
Modulus

Poisson’s Ratio Shear Modulus Tensile
strength

Neighborhood multiple TIs ŴNMM1(H) 0.3984 -0.88074 0.98347 0.39383

ŴNMM2(H) 0.38186 -0.8891 0.98656 0.37726

ŴNMF(H) 0.38413 -0.88797 0.98616 0.37953

ŴNMRα(H) 0.39871 -0.88057 0.9834 0.39414

ŴNMRRα(H) 0.41421 -0.87241 0.98019 0.40968

ŴNMGA(H) 0.44412 -0.85574 0.97309 0.43966

ŴNMABC(H) 0.4146 -0.8722 0.9801 0.41007

ŴNMMnm
2 (H) 0.19985 -0.95971 0.99965 0.19497

ŴNMH(H) 0.49446 -0.82487 0.95838 0.49013

ŴNMNI(H) 0.39972 -0.88005 0.9832 0.39515

ŴNMSDD(H) 0.38997 -0.88504 0.98509 0.38538

Closed neighborhood TIs CM1(H) -0.30648 -0.86658 0.97778 0.42042

CM∗
1 (H) -0.30702 -0.86686 0.97790 0.41990

CM2(H) -0.30794 -0.86734 0.97810 0.41902

CF(H) -0.30344 -0.86498 0.97711 0.42330

CF∗(H) -0.30907 -0.86794 0.97835 0.41794

CHM1(H) -0.30816 -0.86746 0.97815 0.41881

CHM2(H) -0.31142 -0.86916 0.97886 0.41570

FIGURE 10

Visualization of correlations between neighborhood multiple TIs and closed neighborhood TIs.

Weaker or moderate correlations, such as those observed
for Young’s Modulus and Tensile Strength in most graphene
variants, indicate that these properties may depend on
factors not adequately captured by neighborhood multiple
TIs. Alternatively, certain TIs might lack the sensitivity to

detect subtle structural variations significantly influencing
these properties. By examining the structural descriptors
inherent in each TI, we can hypothesize their relevance to
specific mechanical properties. For example, some TIs yield
smaller numerical values, while others produce larger ones,
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depending on their sensitivity to structural features. By thoroughly
analyzing these relationships, we can investigate how properties
with smaller numerical ranges align with TIs that produce
smaller values, and similarly, how properties with larger ranges
correspond to TIs that yield higher values. This alignment could
help uncover patterns that deepen our understanding of the
relationship between TIs and physical properties. A notable
observation is the descriptor ŴNMMnm

2 (H), which produces
values ranging from 0 to 1.2641. These values align well with
Poisson’s Ratio, which typically falls within the range of 0 to
0.5. In all graphene variants, ŴNMMnm

2 (H) demonstrated strong
performance, showing a high correlation when used to predict
Poisson’s Ratio.

These limitations can be attributed to the mathematical design
of the indices and their focus on either local or global connectivity
within the molecular graph. Addressing these gaps may require
refining existing TIs or developing new ones to better align
with the target properties. Additionally, incorporating machine
learning techniques could help identify the most predictive
TIs and enable the creation of more accurate models for
property estimation.

8 Conclusion

In this study, we introduced the neighborhood multiple M-
polynomial for graphene structure, enabling the derivation of
eleven neighborhood multiple degree-based multiple TIs across
various (t, s) parameters. This approach significantly enhances
the generality, speed, and efficiency of analyzing graphene’s
structural properties, offering a robust framework for systematic
exploration. These TIs provided a theoretical framework for
predicting graphene’s properties without relying on experiments
or simulations. Numerical and graphical representations were
presented, showcasing the intricate connections between TIs and
structural parameters. The QSPR analysis revealed a perfect
linear relationship between TIs and mechanical properties,
particularly for Poisson’s Ratio and Shear Modulus. TIs such as
ŴNMMnm

2 (H), ŴNMGA(H), ŴNMM2(H), and ŴNMH(H) emerged
as robust predictors across most graphene variants. Linear
regression models based on these TIs demonstrated the ability
to accurately predict mechanical properties across graphene
variants, effectively capturing the QSPR and offering a promising
tool for understanding and designing graphene-based materials.
However, weak correlations were observed for Young’s Modulus
and Tensile Strength across graphene variants, except in Pristine
Graphene (6,6), ZGNR (4,9), and AGNR (6,3), where ŴNMH(H)
showed stronger predictive capability with Young’s Modulus
and Tensile Strength. A comparative study further highlighted

the superior performance of neighborhood multiple TIs over
closed neighborhood TIs, particularly in predicting Poisson’s
Ratio and Shear Modulus. This study highlights the potential
of neighborhood multiple TIs for robust nanomaterial property
prediction, advancing graphene-based design and applications.
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16. Gutman I, Trinajstić N. Graph theory and molecular orbitals Total ϕ-
electron energy of alternant hydrocarbons. Chem Phys Lett. (1972) 17:535–8.
doi: 10.1016/0009-2614(72)85099-1
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