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Biadditive regressionmodels are linear models with an additive structure for their
covariance matrix. We introduce commutative conditions and derive optimal
estimators, namely Best Linear Unbiased Estimators (BLUE) and Best Quadratic
Unbiased Estimators (BQUE). We develop a simulation study to compare the
variance components estimates obtained through the proposed approach with
those derived from Analysis of Variance andMarkov ChainMonte Carlomethods.
This research highlights that commutative orthogonal structures in thesemodels
are highly convenient to strengthen inference.
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1 Introduction

Linear regression serves as the fundamental starting point for regression methods

and remains a valuable and widely used statistical method. In addition, it acts as a solid

foundation for exploring newer approaches. Therefore, the significance of a thorough

understanding of linear regression before diving into more complex statistical methods

cannot be overstated. Mixed-effects models are employed to describe the relationship

between a response variable and one or more covariates in grouped data, structured

according to factors such as longitudinal observations, repeated measures, hierarchical

organization, or block designs [1]. These models extend linear models by incorporating

random effects, which introduce an additional error term to account for the correlation

between observations within the same group. Mixed models demonstrate broader

applicability and greater generality than fixed or randommodels, making them particularly

suitable for analyzing complex data structures with multiple sources of variability. Mixed

models can be orthogonal (e.g. [2]) or non-orthogonal (e.g. [3]). Orthogonal models occur

when the fixed and random effects are independent of each other, which simplifies the

estimation of parameters. Non-orthogonal mixed models arise when there is a correlation

between the fixed and random effects.

Moreover, biadditive regression models, which extend the analysis of variance

(ANOVA) to models with quadratic terms, have frequent applications in ecology, where

the experimental units within a block or stratum are considered a random sample from

a population of units and the blocks or strata themselves are viewed as a random sample

drawn from a population of blocks or strata [4].

Biadditive regression models are a flexible statistical framework designed

to account for both fixed and random effects. The model is given by
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the expression

Y = Xβ +

w
∑

i=1

XiZi,

where Y is a vector of N random variables Y1, . . . ,YN , Xβ

expresses the fixed effects, and

w
∑

i=1

XiZi represents the sum of

w independent random terms, each associated with a specific

source of variability. The covariance matrix of Y is structured

additively as

6 6 (Y) =

w
∑

i=1

σ 2
i Mi,

where Mi = XiCiX
t
i , and σ 2

i and Ci, i = 1, . . . ,w,

unknown and known and invertible, respectively. Random terms

Z1, . . . ,Zw were assumed to have independent and identically

distributed (i.i.d.) components with null mean values and

higher-order cumulants (cr)1, . . . , (cr)w, r = 1, 2, 3, 4. However,

these conditions have been refined. Currently, Zi1, . . . ,Ziw are

treated as independent, with null mean vectors and covariance

matrices σ 2C1, . . . , σ
2Cw. This revised assumption allows for

a more flexible and realistic modeling of variability in the

data, accommodating non-identical covariance structures across

random effects.

Alexandre et al. [5] conducted a detailed analysis to estimate the

covariance components σ 2
1 , . . . , σ

2
w and the coefficient vectors in

the biadditive regression models. This estimation process involved

modeling the variability and dependence structure of the data

through the covariance terms, which represent the scale of variation

for each random effect Zi. Additionally, the coefficient vectors

β were estimated to quantify the contributions of fixed effects,

capturing the systematic relationships between covariates and the

response variable.

In this paper, we present biadditive models with two extended

frameworks: the orthogonal block structure and the commutative

orthogonal block structure. These models introduce a novel

perspective, enabling a more detailed exploration of underlying

covariance structures. We establish commutativity conditions

and derive optimal estimators, focusing specifically on best

linear unbiased estimators (BLUE) and best quadratic unbiased

estimators (BQUE). Furthermore, we extend the concept of

biadditive models to encompass families of biadditive models,

offering additional possibilities and broadening the applicability of

this approach.

This paper is structured as follows. In Section 2, we present

biadditive regressionmodels. In Section 3, estimation and inference

procedures for two extensions of the biadditive model; OBS and

COBS, with controlled heteroscedasticity, including parameter

estimation, variance estimation, and unbiased estimation for the

model’s parameters, are presented. Section 4 presents families of

biadditive regression models with OBS and with COBS and results

for estimable functions and derives chi-square tests. In Section 5, we

developed a simulation study to compare the estimates of variance

components, obtained through the proposed approach with those

derived from analysis of variance and Markov Chain Monte Carlo

methods. Finally, in Section 6, we conclude the paper with some

final remarks.

2 Models and inference

Let us consider a linear mixed model given by

Y = Xβ +

w
∑

i=1

XiZi, (1)

where Z1, . . . ,Zw, i = 1, . . . ,w are independent random

vectors with covariance matrices σ 2C1, . . . , σ
2Cw. If the vectors

Z1, . . . ,Zw have mean vectors µ1, . . . ,µw, we can introduce the

centered vectors Żi = Zi − µi for i = 1, . . . ,w and the extended

coefficients vector β̇ = [β t ,µt
1, . . . ,µ

t
w]

t . This approach simplifies

the treatment by assuming that the centered vectors Żi1, . . . , Żiw

have null mean vectors. Currently, going into inference for Y, given

the independence of Z1, . . . ,Zw we consider its covariance matrix

6 6 (Y) =

w
∑

i=1

σ 2
i Mi,

where the matrices Mi = XiCiX
t
i for i = 1, . . . ,w provide

profound insights into the relationships between variables within

our dataset. This analysis reveals crucial information about how

each component contributes to the overall variance and covariance

observed in the data.

Moreover, we consider the orthogonal basis {α1, . . . ,αṅ} for

�⊥ = R(X)⊥, the orthogonal complement of the range space,R(X)

of matrix X. Currently, the vectors with components

Ẏℓ = αt
ℓY, ℓ = 1, . . . , ṅ,

have null mean vectors and variance given by

σl
2(Ẏℓ) =

w
∑

i=1

hℓiσ
2
i ,

where hℓi = αt
iMiαℓ, ℓ = 1, . . . , ṅ, i = 1, . . . ,w, thus

expressing the transformation’s impact on the covariance structure.

Putting Ẏ[2] = (Ẏ2
1, . . . , Ẏ

2
ṅ), we obtain

E(Ẏ[2]) = Hσ 2,

where H = [hℓi], ℓ = 1, . . . , ṅ, i = 1, . . . ,w, and σ 2 =

(σ 2
1 , . . . , σ

2
w)

t
. The least-square estimator (LSE) for the variance

components is vector σ̃ 2, given by

σ̃ 2 = (HtH)+HtẎ[2], (2)

where the symbol (·)+ indicates the Moore–Penrose inverse

matrix [6].

Similarly, as the expected value of Y is Xβ̇ , the LSE for β̇ will be

˜̇β = (XtX)+XtY.

We also obtain the estimators for 6 6(Y) given by

˜6 6(Y) =

w
∑

i=1

σ̃ 2
i Mi,
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and the generalized least square estimator (GLSE) for ˜̇β ,

˜̃
β̇ = (Xt ˜6 6(Y)+X)+ ˜6 6(Y)Xt ˜6 6(Y)+Y,

as shown in Kariya and Kurata [7].

This method facilitates the estimation of variance components

in mixed models where the random-effects factors may follow

various distributions, including non-normal ones. This flexibility

is achieved by focusing on the structure of the covariance matrix,

rather than imposing a specific distributional assumption for

random effects.

3 Optimal estimators

Let us now consider two classes of models with orthogonal

properties, the OBS and COBS models. Our approach is general

case for these models.

3.1 Orthogonal block structure

Models with OBS are linear mixed models whose variance-

covariance matrices are linear combinations of known pairwise

orthogonal projection matrices (POPM) that add up to the identity

matrix andwere introduced byNelder [8, 9] and continue to play an

important role in the theory of randomized block designs [10, 11].

In this section, we use the commutative conditions on the matrices

Mi to derive optimal estimators for individual biadditive models.

We assume that the matrices Mi = XiCiX
t
i , for i = 1, . . . ,w,

commute. This implies the existence of an orthogonal matrix P that

diagonalizes them, as discussed in Schott [12]. Therefore, we have

{M1, . . . ,Mw} ⊂ A(P),

where A(P) is the family of matrices diagonalized by P. A(P)

is a vector space comprising symmetric matrices that commute

and contains their squares, rendering it a commutative Jordan

algebra (CJA) [13]. Each CJA has a unique basis known as

the principal basis, which is constituted by pairwise orthogonal

orthogonal projection matrices [14, 15].

Let {Q1, . . . ,Qm̄} be the principal basis of A(P). Then, we have

Mi =

m
∑

j=1

bijQj, i = 1, . . . ,w,

which leads to

6 6(Y) =

w
∑

i=1

σ 2
i





m
∑

j=1

bijQj



 =

m
∑

j=1

γjQj,

where

γj =

w
∑

i=1

bijσ
2
i , j = 1, . . . ,m.

Let Pj denote the orthogonal projection matrix in the range

space R(At
j ), the column space of At

j , and let pj represent the rank

of Pj for j = 1, . . . ,m. If pj < qj, then the estimator

γ̃ j =
Ẏj

t
(Iqj − Pj)Ẏj

qj − pj
, j = 1, . . . ,m ,

is the best quadratic unbiased estimator (BQUE) for γ j [5].

This result extends the Hsu theorem to models with OBS. The Hsu

theorem [16], provides a framework for deriving optimal quadratic

unbiased estimators of variance components in mixed models.

3.2 Commutative orthogonal block
structure

In model (1) obtaining the best linear unbiased estimator

(BLUE) for β is critical because it ensures that the fixed-effects

parameters are estimated efficiently, with minimal variance among

all linear unbiased estimators. This is relevant when the model

incorporates both fixed and random effects, as the presence of

random terms
∑w

i=1 XiZi introduces additional complexity into the

covariance structure of the data.

We currently assume that the matricesMi, i = 1, . . . ,w, and

Mw+1 = XXt ,

commute, implying that the model exhibits a commutative

orthogonal block structure (COBS) [5]. Consequently, the model

also satisfies the conditions for orthogonal block structure (OBS).

Under these conditions, there exists an orthogonal matrix P̄ that

diagonalizes the matrices M1, . . . ,Mw+1, all of which belong to

A(P̄). This property simplifies the estimation process by enabling

efficient decomposition of the covariance structure, thus facilitating

the derivation of BLUE for β while respecting the hierarchical and

orthogonal nature of the block structure.

Let A(P̄) have the principal basis {Q̄1, . . . , Q̄m̄}. As

A(P) ⊂ A(P̄),

we haveQj ∈ A(P̄), j = 1, . . . ,m, and thus

Qj =

m̄
∑

h=1

cjlQ̄h, j = 1, . . . ,m.

Moreover, with

L =

m̄
∑

h=1

ℓhQ̄h,

the orthogonal projection matrix onto R(L) is given by

P(L) =
∑

h∈ϕ(L)

Q̄h,

where ϕ(L) = {h : ℓh 6= 0}. Therefore, P(L) ∈ A(P̄). Thus,

T = P(Mw+1) ∈ A(P̄).

Moreover, we observe that

6 6(Y) =

w
∑

i=1

σ 2
i Mi ⊂ A(P̄),
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and thus T and 6 6(Y) commute. This point is crucial as it

implies that

β̃ = (XtX)+XtY,

is BLUE [17].

4 Families of biadditive models

We consider families of models sharing the matrices

X,X1, . . . ,Xw, so

Y(h) = Xβ(h)+

w
∑

i=1

XiZi(h), h = 1, . . . , d,

where the vectors Zi(h), i = 1, . . . ,w, h = 1, . . . , d, are

independent and have null mean vectors. We also have,

β(h) = (β1(h), . . . ,βk(h)), h = 1, . . . , d,

and the random vectors are

Zi(h) = (Zi1(h), . . . ,Zici (h)), i = 1, . . . ,w, h = 1, . . . , d.

The components Zi1(h), . . . ,Zici (h) are i.i.d with cumulants

cri(h), i = 1, . . . ,w, h = 1, . . . , d, r = 2, 3, 4, the same for all

models. In addition, the matricesM = XXt , and

Mi = XiX
t
i , i = 1, . . . ,w,

are the same for all models. In the homogeneous case, in which

the matrices Mi = XiX
t
i , i = 1, . . . ,w, are null, we have the GLSE

given by

β̃(h) = (Xt ˜6 6(Y)+X)+Xt ˜6 6(Y)+XY(h), h = 1, . . . , d,

where

˜6 6(Y) =
1

d

d
∑

i=1

˜6 6(Y(h))

and

Y =
1

d

d
∑

h=1

Y(h).

4.1 Orthogonal block structure

The OBS families will consist of models with OBS. Moreover,

due to the uniqueness of the matrix X for all models, the vectors

{α1, . . . ,αṅ} of the orthonormal basis of R(X)⊥and the orthogonal

complement of the range space of X, are the same. We concentrate

on the moments and cumulants of the random variables within

the mixed model, offering a comprehensive analysis of the

mathematical expressions and properties that form the foundation

of the methodology for estimating variance components.

Therefore, for

Ẏi(h) = αt
iY(h), i = 1, . . . , ṅ, h = 1, . . . , d ,

we have the r-th cumulants of Ẏi(h)

2ri = 2r(Ẏi(h)) =

w
∑

j=1

bij(r)crj, i = 1, . . . , ṅ h = 1, . . . , d ,

where bij(r) =

w
∑

h=1

αr
ijh, i = 1, . . . , ṅ.

Taking B(r) = [bij(r)], r = 2, 3, as well as

2r = B(r)cr , r = 2, 3,

the vectors 2r and cr being the same for the models in the

family. For all the models, we also have the estimators

2̃r(h) = (Ẏr
1(h), . . . , Ẏ

r
ṅ(h)), r = 2, 3, h = 1, . . . , d,

which give rise to the LSE estimators

c̃r(h) = (B(r)tB(r))+B(r)t2̃r(h), r = 2, 3,

from which we obtain

c̃r =
1

d

d
∑

h=1

cr(h), r = 2, 3,

namely, we have

c̃2 =
1

d

d
∑

h=1

σ 2
h .

We estimate the covariance matrices of the models using

˜6 6(Y(h)) =

w
∑

j=1

σ̃ 2
j Mj, h = 1, . . . , d,

thus the models in the family have the same estimated

covariance matrix.

4.2 Commutative orthogonal block
structure

The models within these families have vector coefficient

estimators

β̃(h) = (XtX)+XtY(h), h = 1, . . . , d.

These estimators have identical estimated covariance matrices

˜6 6(β(h)) = (XtX)+Xt ˜6 6(Y)X(XtX), h = 1, . . . , d,

and are BLUE [5].

Additionally, the models have the same pairs of eigenvalues and

eigenvectors (ξj, νj), j = 1, . . . , k for ˜6 6(β(h)). We then obtain the

estimators for the main estimable functions

η̃jh = νtj β̃(h), j = 1, . . . , k, h = 1, . . . , d,
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with estimated variances, vtj
˜6 6(β(h))vj, j = 1, . . . , k. Now, for

any vector v ∈ R
k, we have

v =

k
∑

j=1

(vtνj)νj,

which leads to

vtβ̃(h) =

k
∑

j=1

(vtνj)η̃jh, h = 1, . . . , d.

4.3 Hypotheses test

We currently introduce tests for the equality of the parameters

in the different models. As η̃j1, . . . , η̃jd have the same variance,

when comparing ηj1, . . . , ηjd, j = 1, . . . , k, we use chi-square tests

to test the hypotheses

H0j : ηj1 = . . . = ηjd, j = 1, . . . , k.

As we are in the balanced case, where ANOVA and related

techniques are robust with respect to non-normality [18], these

tests will have test statistics given by

Tj =
1

ξj

d
∑

h=1

(η̃jh − η̃j)
2, j = 1, . . . , k,

where

η̃j =
1

d

d
∑

h=1

η̃jh.

Under the null hypothesis H0j, j = 1, . . . , k, the test statistics

Tj roughly follow a chi-square distribution with d − 1 degrees of

freedom.

Furthermore, the hypothesis

H0(v) : v
tβ1 = . . . = vtβd

can be similarly tested. As the vtβl, l = 1, . . . , d, have the

variance

σ 2(v) = vt( 6 6(β(h)))v

the

V =

d
∑

j=1

(vtβ̃j − vt ˙̃β)2

will be, when H0(v) hold, the product by

σ̃ 2(v) = vt( ˜6 6(β(h)))v

of a chi-square with d − 1 degrees of freedom.

5 Simulation study

A simulation study was conducted to assess the performance

of the proposed estimation method. The R programming language

was used to generate the simulation data, following the procedure

outlined below. The process was repeated a total of N = 1, 000

times to ensure robust and statistically reliable results. In each

iteration, random values for the model parameters were generated

according to the specified distributions for the random effects

and fixed effects. The corresponding observation vectors were

then calculated using the model equation. For each simulated

dataset, the variance components were estimated and performance

metrics such as bias, standard deviation (SD), and efficiency

of the estimators were calculated. This repetition allowed for a

comprehensive evaluation of the accuracy and precision of the

method across a variety of random configurations. Simulate the

observation vectors

Yj = X0β0 + X1β1j + X2β2j, j = 1, . . . , 10,

where X2 and β2j represent an additional design matrix and

random effects term, respectively.

Random effects were generated according to the following

distributions:

β1j ∼ N (03, σ
2
1jI3),

where σ 2
1j is the variance component for the first random effect,

β2j ∼ Gamma(a, b)−
10− j

b
,

where a = j and b = 10− j.

The true variance components (σ 2
j ) for j = 1, . . . , 10 were

estimated using LSE (Equation 2), where

• Z = [Zl] contains the mean values of the squared observation

vectors Ẏl = alY, l = 1, . . . , g.

• K = (BtB)+Bt ,

• B = [bli], with bli = alMial,

• Mi represents the linear transformation matrix for variance

components.

We estimate variance components and evaluate bias, standard

deviation (SD), and δ. to evaluate the performance of methods,

analysis of variance (ANOVA), and Markov chain Monte Carlo

(MCMC) (Table 1).

For the cases j = 1, . . . , 10, our estimator consistently exhibited

the smallest δ. The probability of this occurring by chance,

assuming no superior precision among the methods, would be q =
(

1
3

)10
. This provides strong evidence that ourmethod demonstrates

significantly greater precision.

6 Final remarks

In this paper, we consider biadditive models, often used

in studies of manuring and other agronomic applications.

We incorporated two extensions of these models: orthogonal
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TABLE 1 Bias, SD, and δ for σ 2
j
with model, ANOVA, and MCMCmethods.

j σ 2
j Model ANOVA MCMC

Bias SD δ Bias SD δ Bias SD δ

1 0.93 2.14 4.18 0.51 2.45 4.60 0.53 2.76 5.02 0.55

2 1.68 3.52 7.91 0.44 4.04 8.70 0.46 4.56 9.49 0.48

3 1.11 2.11 4.63 0.46 2.44 5.09 0.48 2.76 5.56 0.50

4 1.82 4.00 8.85 0.45 4.58 9.74 0.47 5.17 10.63 0.49

5 1.91 4.16 8.67 0.48 4.77 9.54 0.50 5.37 10.40 0.52

6 0.57 1.23 2.72 0.45 1.41 2.99 0.47 1.59 3.27 0.49

7 1.29 2.47 5.76 0.43 2.85 6.33 0.45 3.23 6.91 0.47

8 1.84 3.67 8.00 0.46 4.22 8.79 0.48 4.77 9.59 0.50

9 1.33 2.86 6.40 0.45 3.28 7.04 0.47 3.69 7.68 0.48

10 1.18 2.38 5.26 0.45 2.73 5.79 0.47 3.09 6.31 0.49

block structures and commutative orthogonal block structures,

which allow for a more detailed analysis of the additive

structure of covariance matrices. In addition to individual

models, we considered families of biadditive regression models.

By incorporating commutative conditions, we derived optimal

estimators, including best linear unbiased estimators and best

quadratic unbiased estimators. The proposed methodology extends

classical results, such as the Hsu theorem, while providing

a robust framework for hypothesis testing within families of

models. This framework also emphasizes the estimation of

covariance components and coefficients, offering researchers

valuable tools for investigating variability across models. The chi-

square tests presented here establish a solid statistical foundation

for evaluating variability and ensuring precision in agronomic

studies. Furthermore, we highlighted the relevance of commutative

orthogonal structures for factorial models, particularly those based

on prime basis factorials. Such models, often used in studies

of manuring and other agronomic applications, showcase the

versatility of our approach. To evaluate the performance of the

proposed methods, we conducted a simulation study. In this study,

we simulated observation vectors based on biadditive regression

models with predefined covariance structures and random effects.

Using simulations conducted for our model, as well as for the

ANOVA and MCMC methods, we estimated variance components

and computed performance metrics, such as bias, SD, and δ.

Simulation results demonstrated the enhanced precision of our

estimation approach.
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