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Laplacian spectra and structural
insights: applications in
chemistry and network science

Ali Raza* and Muhammad Mobeen Munir

Department of Mathematics, University of the Punjab, Lahore, Pakistan

This paper presents the practical applications of Laplacian and signless Laplacian

spectra across various fields including theoretical chemistry, computer science,

electrical engineering, and complex network analysis. By focusing on the

spectrum-based evaluation of generalized mesh network and ladder graphs, the

research aims to uncover valuable relationships with the structural properties of

real-world networks. The study not only explores the theoretical underpinnings

but also applies these spectra to calculate essential network measures such

as mean-first passage time, average path length, spanning trees, and spectral

radius. These analyses o�er a deeper understanding of how graph spectra

influence network characteristics, enriching our ability to predict and analyze

complex networks. This comprehensive approach enhances our knowledge

acrossmultiple scientific disciplines, facilitatingmore informed predictions about

drugs infrastructure.
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1 Introduction

Spectral graph theory is an important part of algebraic graph theory which mainly

utilizes matrix theory, polynomial theory, and combinatorial methods to study the

different spectra (or ranges of values) that come from graphs. Furthermore, spectral theory

investigates how these spectra are connected to the structure and properties of graphs.

It links the algebraic (math-based) aspects of graphs to their topological (shape-based)

aspects. By studying how a graph’s spectrum relates to its structure, we can not only better

understand these graphs but also find useful applications in areas like improving networks,

designing computer circuits, and solving operational problems. Some key areas of study

in spectral theory include the adjacency spectrum, Laplacian spectrum, signless-Laplacian

spectrum, and distance spectrum of graphs. Among these, the Laplacian spectrum is the

most studied and produces the most results. Studying the Laplacian spectrum is not only

valuable for theoretical knowledge but also has many uses in chemistry, physics, complex

networks, and electronic engineering. Over the last few decades, significant attention has

been given to examining the structure of graphs, along with their spectral, topological,

and combinatorial characteristics. Laplacian eigenvalues have proven useful in identifying

various graph invariants, including the Kirchhoff index, global mean-first passage time,

and the count of spanning trees. Typically, the characteristic polynomial and spectrum of

the graph matrix for certain graph operations, such as the complement, union, Cartesian

product, direct product, and strong product, can be derived from the factor graphs. Since

complex molecular graphs can be effectively described using graph operations, it is feasible

to represent the properties of these complex molecular graphs through the invariants of

their factor graphs.
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From the perspective of spectral graph theory, numerous

structural features and dynamic behaviors of graphs have been

investigated. The literature on spectral graph theory covers diverse

aspects of Laplacian matrices across different graph structures.

Merris provides a comprehensive survey, discussing the Laplacian

matrix’s spectrum, algebraic connectivity, and applications in areas

such as chemistry [1]. Hong and Zhang investigate Laplacian

eigenvalues in simple and bipartite graphs, establishing key

bounds and structural insights, particularly for trees and regular

graphs [2]. Agaev and Chebotarev (2006) extended the study

to weighted directed graphs, exploring the connections between

Laplacian and stochastic matrices and their semiconvergent

properties [3]. Rojo and Soto focused on unweighted rooted trees,

analyzing the eigenvalues of adjacency and Laplacian matrices

based on symmetric tridiagonal matrices [4]. Ding and Jiang

investigate the spectral norms and eigenvalue distributions of

random graph matrices, revealing key convergence behaviors

aligned with Wigner’s semi-circular law [5]. Wu extends the

use of Laplacian matrices into quantum mechanics, exploring

conditions for separability in weighted graphs [6]. Kaveh and

Rahami (2006) focus on the eigenvalues and eigenvectors of graph

products, presenting efficient methods for solving eigenproblems

in structural mechanics, especially for Cartesian and lexicographic

products [7]. Spielman emphasizes the significance of Laplacian

matrices in algorithm design, highlighting their role in fast

solutions for linear equations and their application to graph theory

through innovations like graph sparsifiers and local clustering [8].

In 2012, Estrada introduced path Laplacian matrices as a

new concept that generalized the combinatorial Laplacian and

applied them to consensus analysis in networks, thus showing

its potential for enhancing network synchronization and other

applications [9]. In their 2013 publication, Krishnan et al. came up

with a novel scheme of multi-level preconditioning for Laplacian

matrices used in computer graphics which resulted in substantial

performance benefits in applications such as image colorization

and mesh processing [10]. Another similar work by Dong et al.

aimed toward exploring laplacian matrix learning for smooth

graph signal representation that contributed to advancement in

graph signal processing [11]. Pirani and Sundaram analyzed the

smallest eigenvalue properties of grounded Laplacian matrices

giving out insights into spectral graph theory and its applications

[12]. Efficient methods have been developed by Bergamaschi and

Martínez to approximate the generalized inverse of Laplacian

matrices which are important when solving large scale graph

problems [13]. Recent research on Laplacian matrices has led

to notable advancements. In 2016, Jog and Kotambari analyzed

the spectra of coalesced complete graphs, studying the adjacency,

Laplacian, and signless Laplacian energies to understand their

spectral properties and applications [19]. Moving to 2018, Bandeira

explored random Laplacian matrices, revealing that the largest

eigenvalue often approximates the largest diagonal entry, with

implications for convex relaxation techniques and Erdos-Rényi

graph connectivity thresholds [14]. Li provided insights into

the constrained Rayleigh quotient for eigen-balanced Laplacian

matrices, which proved valuable for cooperative control problems

and convergence rates in consensus protocols [16]. The work

by Bergamaschi and Bozzo focused on comparing algorithms for

computing the smallest eigenpairs of graph Laplacians, including

the Implicitly Restarted Lanczos Method and Jacobi-Davidson

method, particularly for large, sparse networks [18]. Zhou et al.

introduced an optimal neighborhoodmulti-view spectral clustering

algorithm, which enhances clustering performance by effectively

combining first-order and high-order Laplacian matrices [15].

Hermann and Konigorski addressed the optimization of edge

weights in directed graph Laplacians to achieve desired spectral

properties [17].

In 2019, Alhevaz et al. explored the Brouwer-type conjecture

related to the eigenvalues of the distance signless Laplacian matrix.

Their findings provided bounds for the sums of the largest and

smallest eigenvalues, applying these results to graphs with specific

diameters and transmission properties [20]. Moving forward to

2022, Ganie and Shang investigated the spectral radius and energy

of the signless Laplacian matrix of digraphs, proposing new lower

bounds and characterizing extremal digraphs based on vertex

degrees and walk lengths [21]. Also in 2022, Morbidi examined

matrix functions of the Laplacian matrix and their applications

to distributed formation control, showing how these functions

can enhance performance and flexibility in consensus protocols

[22]. Recent studies have significantly advanced our understanding

of various Laplacian matrices and their applications. In 2021,

Reinhart introduced the normalized distance Laplacian matrix,

offering new insights into its spectral properties and connections

with the normalized Laplacian matrix. The study showed that this

matrix has fewer cospectral pairs compared to other matrices [23].

The same year, Chakrabarty et al. explored the spectral properties

of adjacency and Laplacian matrices in inhomogeneous Erdõs-

Rényi random graphs. Their work detailed the empirical spectral

distributions and their convergence to deterministic limits [24].

The paper by Alazemi et al. [25] explores chain graphs, a

specific class of bipartite graphs, with unique Laplacian eigenvalues.

The authors provide structural insights, degree constraints, and

analyze the eigenspaces of these graphs. Notably, they highlight

conditions such as the absence of vertex triplets sharing identical

neighborhoods and propose applications in Laplacian dynamics,

including the controllability of multi-agent systems. Meanwhile,

And̄elić et al. [26] introduce a family of tridiagonal matrices with

eigenvalues as perfect squares, applying this result to analyze the

Laplacian controllability of half graphs, a subclass of chain graphs,

further advancing the understanding of spectral graph theory. The

authors in [28] investigate the Laplacian controllability of graphs

formed using standard graph products, including joins, Cartesian,

tensor, and strong products. The study provides theoretical insights

and introduces an iterative method to construct infinite families of

controllable Laplacian pairs. Additionally, And̄elić et al. [29] focus

on the Q-index, the largest eigenvalue of the signless Laplacian

matrix, for connected graphs with fixed order and size. The authors

derive spectral bounds for the Q-index of nested split graphs,

offering both theoretical results and computational comparisons to

improve understanding of spectral properties in graph theory.

More recently, in 2023, Bapat et al. extended the concept of

bipartite matrices by examining the bipartite Laplacian matrix of

nonsingular trees. They provided a combinatorial description of

this matrix and established several key identities [27]. Additionally,

Mallik expanded the Matrix Tree Theorem to signed graphs,
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introducing a new oriented incidence matrix and offering a

combinatorial formula for the determinant of the signless net

Laplacian matrix [30]. Raza et al. focused on generalized prism

graphs and found that spectral analysis helps measure network

features like passage time and path length [31]. Raza and Munir

extended this by showing how Laplacian and signless Laplacian

spectra can be used to understand network properties and predict

behaviors in various fields [32]. In a later study, Raza et al. applied

these methods to torus grid graphs, deriving key network measures

and improving our knowledge of network structures [33].

We define a path of length αm ∈ N as the graph Pαm that has

vertex set V = {v ∈ N : 0 ≤ v ≤ αm} and where two vertices

determine an edge if and only if
∣

∣vi − vj
∣

∣ = 1 for vi, vj ∈ V .

Then, amesh network graphMn
m, often known as two-dimensional

lattice graph or grid graph, is defined as the Cartesian product

Mn
m = Pαm ⊡ Pαn , exhibits a total of 2mn−m− n = (m− 1)n+

(n − 1)m edges, reflecting the combined count of horizontal and

vertical edges. Simultaneously, Mn
m boasts mn vertices, aligning

with the Cartesian product of the vertex sets of Pm and Pn. The

mentioned graph operation have gained significant attention in

the field of graph theory and computer science. These graphs are

widely used to model spatial relationships and connectivity in

various applications, such as computer networks, image processing,

and computational geometry. The study of grid graphs has

evolved over the years, with researchers exploring their properties,

algorithms, and applications. Harel and Sardashti [34] presented

a comprehensive analysis of the structural characteristics of mesh

network graph, highlighting their regularity and symmetry. Smith

et al. [35] investigated efficient algorithms for computing shortest

paths in mesh network graphs, providing valuable insights into

optimizing navigation in grid-based environments. Additionally,

Chen and Du [36] explored the application of Mn
m in wireless

sensor networks, showcasing their relevance in practical scenarios.

Recent work by Hinz and Holz auf der Heide [35] delved into

the dynamic aspects, addressing challenges related to real-time

updates and adaptability. Furthermore, the survey by Kumar et al.

[37] offers a holistic overview of mesh network graph applications

and algorithmic advancements. Building on earlier research about

mesh network graphs and their spectra, our study thoroughly

examined the Adjacency et al. Laplacian spectra of Mn
m. We

didn’t just calculate these spectra; we also applied them to real-

world network analysis. Using our results, we computed important

network measures such as graph energies, Kirchhoff index, mean-

first passage time, path length, spanning trees, and spectral radius.

This approach aimed to give a deeper insight into the properties

of Mn
m, such as its connectivity, resilience, and efficiency. In this

section, we review key findings from earlier studies that relate to

the solutions discussed in this paper. This study distinguishes itself

by conducting a comprehensive spectral analysis of generalized

mesh networks, focusing on the adjacency, Laplacian, and signless

Laplacian spectra to derive explicit expressions for critical network

parameters such as the Kirchhoff index, spectral radius, average

FIGURE 1

Structuring the research: a detailed map of the paper’s content.
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path length, global mean first passage time, graph energies,

and the number of spanning trees. While previous research has

applied spectral methods to various network types, such as torus

networks and categorical product networks, your work uniquely

emphasizes generalized mesh networks, providing detailed spectral

characterizations that enhance the understanding of their structural

and dynamic properties. The complete structure of our article

is presented hierarchically in Figure 1. By presenting results

graphically, your study offers clear visualizations of how these

parameters vary with network dimensions, facilitating deeper

insights into their interplay and impact. This approach not only

broadens the applicability of spectral methods but also offers a

robust framework for exploring and optimizing complex real-

world networks, thereby contributing valuable perspectives across

multiple scientific disciplines.

2 Preliminaries

Before discussing graph-based matrices and the related lemmas

associated with the Kronecker product, let’s first revisit the notion

of ψ-sum graphs. Let $ = (V($),E($)) be a simple undirected

graph, where V($) represents its vertex set and E($) represents its

edge set. The number of vertices in $ is denoted by |V($)|, and the

number of edges is denoted by |E($)|. If an edge e connects two

vertices u and v, the edge uv can also be referred to as e. For a given

vertex v ∈ V($), its neighborhood in $, denoted by N$(v), is the set

of vertices adjacent to v, specifically N$(v) = {u ∈ V($) | uv ∈

E($)}. The degree of a vertex v, symbolized as d$(v), is the number

of vertices in its neighborhood, i.e., d$(v) =
∣

∣N$(v)
∣

∣.

Definition 1. The diagonal matrix is defined asDg($) = diag
[

dυij

]

for i = j and the LaplacianmatrixLp($) = Dg($)−Ad($) is defined

by the subtraction of the adjacencymatrix from the diagonal matrix

of vertex degrees. Elaborating in matrix form, Lp($) is defined as:

Lp($) =











−1 for all υi D υj,

dυij for all i = j,

0 for all υi 4 υj.

Lemma 1. Let E ∈ Mp,p(G), F ∈ Mp,q(G),G ∈ Mq,p(G),H ∈

Mq,q(G) with H being invertible, such that

T =

(

E F

G H

)

Then,

det(T) = det(H)− det
(

E− FH−1G
)

Lemma 2. Let C =
(

cij
)

∈ Mr,s(G),D ∈ Mt,u(G). Then the

Kronecker product of C and D is defined as

C⊗ D =













c11D c12D · · · c1rD

c21D c22D · · · c2rD
...

...
. . .

...

cs1D cs2D · · · csrD













Lemma 3. Let C and D be square matrices of order r and s,

respectively, with eigenvalues λi (1 ≤ i ≤ r) and νj (1 ≤ j ≤ s).

Then the eigenvalues of C ⊗ Is + Ir ⊗ D are λi + νj. Moreover,

if Vi is an eigenvector of C corresponding to λi and Wj is an

eigenvector ofD corresponding to νj, thenVi⊗Wj is an eigenvector

of C⊗ Is + Ir ⊗ D corresponding to λi + νj.

Lemma 4. Let C ∈ Mr,s(G),D ∈ Mt,u(G),E ∈ Mr,t(G), F ∈

Ms,u(G), and β ∈ G. The following properties hold:

(a) (C⊗ D)T = CT ⊗ DT .

(b) (C⊗ D)(E⊗ F) = (CE)⊗ (DF).

(c) (C⊗ D)⊗ E = C⊗ (D⊗ E).

(d) β(C⊗ D) = βC⊗ D = C⊗ βD.

(e) If C and D are invertible, then (C⊗ D)−1 = C−1 ⊗ D−1.

Lemma 5. The eigenvalues of the Adjacency matrix, Laplacian

matrix, and Signless Laplacian matrix for a path graph Pn are

expressed as 2 cos
(

πk
n+1

)

, 2 − 2 cos
(

πk
n

)

, and 2 + 2 cos
(

2πk
n+1

)

,

respectively, where k = 0, 1, 2, . . . , n− 1.

3 Methodologies and results

In this section, we have evaluated the exact values for

the Adjacency, Laplacian and signless Laplacian spectrum of

the generalized Mesh Network graphs utilizing the graph and

algebra techniques. Theorem 1 provides expressions for the

sum of reciprocals and the product of adjacency eigenvalues

of the generalized mesh graph Mn
m, which are fundamental in

understanding network connectivity and robustness [38]. The

sum of the reciprocals of the eigenvalues is often associated

with resistance distance and other network invariants, while their

product is related to graph determinant properties, which have

applications in quantum networks and structural analysis [39].

Extending this analysis, Theorem 2 focuses on the Laplacian

eigenvalues, which play a crucial role in describing network

dynamics such as diffusion processes and synchronization [41]. The

sum of the reciprocals of the Laplacian eigenvalues is connected

to important network measures like Kirchhoff’s index, influencing

resistance-based properties, while their product is associated with

the number of spanning trees, a key quantity in evaluating network

reliability and resilience [42]. Furthermore, Theorem 3 explores

the Signless Laplacian spectrum, which is particularly useful in

applications involving directed flows and energy distribution in

networks [40]. The sum of the reciprocals of these eigenvalues helps

in analyzing clustering tendencies in complex networks, whereas

their product provides ameasure of structural stability andmodular

properties. These interpretations establish strong connections

between spectral properties and real-world applications, enhancing

the accessibility of the results for researchers in diverse fields such

as physics, computer science, and engineering.

Theorem 1. Let the summation of the reciprocals and the product

of the adjacency eigenvalues of the generalized mesh graphMn
m be

denoted by Zn
m andWn

m, respectively. Then:

Zn
m =

1

2

m−1
∑

j=0

n−1
∑

i=0

(

cos
π i

n+ 1
+ cos

π j

m+ 1

)−1
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Wn
m = 2

m−1
∏

j=0

n−1
∏

i=0

(

cos
π i

n+ 1
+ cos

π j

m+ 1

)

Proof. The adjacency matrix of the mesh graphMn
m is:

B(Mn
m) =















In if k = ℓ− 1 and k ≥ 1,

B(Qn) if k = ℓ,

In if k = ℓ+ 1 and k ≥ 2,

On otherwise.















m

,

By matrix addition, it can be expressed as:

B(Mn
m) =

[

B(Qn) for k = ℓ,

On otherwise.

]

m

+

[

In if k ≥ 1, ℓ = k+ 1 or k ≥ 2, ℓ = k− 1,

On otherwise.

]

m

.

Using Lemma 2, we have:

B(Mn
m) =

[

1 for k = ℓ,

Om otherwise.

]

m

⊗ B(Qn)

+

[

1 for k ≥ 1, ℓ = k+ 1 or k ≥ 2, ℓ = k− 1,

Om otherwise.

]

m

⊗ In.

The matrix

[

1 for k ≥ 1, ℓ = k+ 1 or k ≥ 2, ℓ = k− 1,

Om otherwise.

]

m

is the adjacency matrix of Qm, a path graph withm vertices. Thus:

B(Mn
m) = B(Qn)⊗ Im + B(Qm)⊗ In.

Now, assume two invertible matrices U and V related to the

matrices Qn and Qm, such that:

B(Qn)
′ = U−1B(Qn)U,

and

B(Qm)
′ = V−1B(Qm)V ,

Since, the eigenvalues of the Adjacency matrix for a path graph

Qn are given by λk = 2 cos
(

πk
n+1

)

, k = 0, 1, 2, . . . , n − 1, so the

diagonal entries of the upper triangular matrices are:

2 cos
π i

n+ 1
, and 2 cos

π j

m+ 1
, with i = 0, 1, . . . , n− 1

and j = 0, 1, . . . ,m− 1.

Consequently:

(U ⊗ V)−1(B(Qn)⊗ Im + B(Qm)⊗ In)(U ⊗ V)

= B(Qn)
′ ⊗ Im + B(Qm)

′ ⊗ In,

and the diagonal entries of this upper triangular matrix are

given by:

2

(

cos
π i

n+ 1
+ cos

π j

m+ 1

)

, with i = 0, 1, . . . , n− 1

and j = 0, 1, . . . ,m− 1.

Thus, the adjacency eigenvalues for the generalized mesh graph

are:

2 cos
π i

n+ 1
+ 2 cos

π j

m+ 1
, with i = 0, 1, . . . , n− 1

and j = 0, 1, . . . ,m− 1.

Using this result, we obtain:

Zn
m =

1

2

m−1
∑

j=0

n−1
∑

i=0

(

cos
π i

n+ 1
+ cos

π j

m+ 1

)−1

,

and

Wn
m = 2

m−1
∏

j=0

n−1
∏

i=0

(

cos
π i

n+ 1
+ cos

π j

m+ 1

)

.

Corollary 1. For a mesh graph with equal dimensions (n = m),

the product and sum of the reciprocals of the adjacency eigenvalues

are given by:

Zn
n =

1

4

n−1
∑

j=0

sec
π j

n+ 1
, and Wn

n = 4

n−1
∏

j=0

cos
π j

n+ 1
.

The proof follows directly from Theorem 1.

Theorem 2. LetZm
n L andWm

n L denote the sum of the reciprocals

and the product of the Laplacian eigenvalues, respectively, for the

generalized mesh network graph Mn
m. Then, these quantities are

given by:

Zm
n L =

n−1
∑

j=0

m−1
∑

i=0

(

4− 2 cos
π i

m
− 2 cos

π j

n

)−1

,

and

Wm
n L = 2

n−1
∏

j=0

m−1
∏

i=0

(

2− cos
π i

m
− cos

π j

n

)

.

Proof. The Laplacian matrix associated with the mesh network

graphMn
m is expressed as:

Lq(M
n
m) =















−Im if j = i− 1, when i ≥ 1,

Lq(Qm) if j = i,

−Im if j = i+ 1, when i ≥ 2,

Om elsewhere.















n

.
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By decomposing this matrix, it can be rewritten as:

Lq(M
n
m) =

[

Lq(Qm) for j = i,

Om elsewhere.

]

n

+















−Im if j = i+ 1 when i ≥ 1

−Im if j = i− 1 when i ≥ 2,

δi if j = i,

Om elsewhere.















n

.

Referring to Lemma 2, this is further simplified as:

=

[

1 for j = i,

Om elsewhere.

]

n

⊗ Lq(Qm)

+















−1 if j = i+ 1 when i ≥ 1

−1 if j = i− 1 when i ≥ 2,

δi if j = i,

Om elsewhere.















n

⊗ Im.

The matrix









−1 if j = i+ 1 when i ≥ 1 or j = i− 1 when i ≥ 2,

δi if j = i,

Om elsewhere.









n

is the Laplacian matrix for the path graph Qn with n nodes.

Therefore:

Lq(M
n
m) = Lq(Qm)⊗ In + Lq(Qn)⊗ Im.

SupposeU and V are invertible matrices related to the matrices

Qn and Qm, respectively. Then:

(

Lq(Qm)
)′
= U−1Lq(Qm)U, and

(

Lq(Qn)
)′
= V−1Lq(Qn)V ,

Since, The eigenvalues of the Laplacian matrix for a path graph

Qn are given by µk = 2 − 2 cos
(

πk
n

)

, k = 0, 1, 2, . . . , n − 1, so

the diagonal entries of the upper triangular matrices are:

2− 2 cos
π i

m
and 2− 2 cos

π j

n
,

where i = 0, 1, 2, . . . ,m− 1 and j = 0, 1, 2, . . . , n− 1.

Clearly:

(U ⊗ V)−1(Lq(Qm)⊗ In + Lq(Qn)⊗ Im)(U ⊗ V)

= Lq(Qm)
′ ⊗ In + Lq(Qn)

′ ⊗ Im,

with diagonal elements of the resulting matrix given by:

4− 2 cos
π i

m
− 2 cos

π j

n
,

where i = 0, 1, 2, . . . ,m− 1 and j = 0, 1, 2, . . . , n− 1.

Thus, the eigenvalues of the Laplacian matrix for the mesh

network graph are:

4− 2

(

cos
π i

m
+ cos

π j

n

)

, (1)

where i = 0, 1, 2, . . . ,m− 1 and j = 0, 1, 2, . . . , n− 1.

Finally, using the eigenvalues in Equation 1, we derive:

Zm
n L =

n−1
∑

j=0

m−1
∑

i=0

(

4− 2 cos
π i

m
− 2 cos

π j

n

)−1

,

and

Wm
n L = 2

n−1
∏

j=0

m−1
∏

i=0

(

2− cos
π i

m
− cos

π j

n

)

.

Corollary 2. For a mesh network graph of equal dimensions

(n = m), the product and reciprocal of the sum of the Laplacian

eigenvalues are given by:

Zn
nL =

n−1
∑

i=0

(

4− 4 cos
π i

n

)−1

, andWn
nL =

n−1
∏

i=0

(

4− 4 cos
π i

n

)

.

The proof follows directly from Theorem 2.

Theorem 3. Let the sum of the reciprocals and the product of all

Signless Laplacian eigenvalues of the generalized mesh graph Mn
m

be denoted by Sm
n Q and Pm

n Q, respectively. Then,

Sm
n Q =

1

2

n−1
∑

j=0

m−1
∑

i=0

(

2+ cos
2π i

m+ 1
+ cos

2π j

n+ 1

)−1

,

Pm
n Q = 2

n−1
∏

j=0

m−1
∏

i=0

(

2+ cos
2π i

m+ 1
+ cos

2π j

n+ 1

)

.

Proof. The Signless Laplacian matrix for the mesh graph Mn
m

is expressed as:

QS(M
n
m) =















Im i = j− 1, if i ≥ 1,

QS(Pm) if j = i,

Im i = j+ 1, if i ≥ 2,

Om otherwise















n

,

which can be broken down by matrix addition as follows:

QS(M
n
m) =

[

QS(Pm) for i = j,

Om otherwise

]

n

+









Im if i ≥ 1, j = i+ 1 or i ≥ 2, j = i− 1,

di if i = j,

Om otherwise









n

.

According to Lemma 1.1, we have:

QS(M
n
m) =

[

1 for i = j,

Om elsewhere

]

n

⊗QS(Pm)

+









1 if i ≥ 1, j = i+ 1 or i ≥ 2, j = i− 1,

di if i = j,

Om elsewhere









n

⊗Im.
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The matrix given by









1 if i ≥ 1, j = i+ 1 or i ≥ 2, j = i− 1,

di if i = j,

Om elsewhere









n

,

is, in fact, the Signless Laplacian matrix of the path graph Pn with n

vertices. Thus, we obtain:

QS(M
n
m) = QS(Pm)⊗ In +QS(Pn)⊗ Im.

Introducing two invertible matrices A and B that correspond to

the matrices Pn and Pm, we have:

(

QS(Pm)
)′
= A−1QS(Pm)A,

and

(

QS(Pn)
)′
= B−1QS(Pn)B.

Since, the eigenvalues of the Signless Laplacianmatrix for a path

graphQn are given by qk = 2+2 cos
(

2πk
n+1

)

, k = 0, 1, 2, . . . , n−1

so the diagonal entries of the upper triangular matrices are:

2+ 2 cos
2π i

m+ 1
and 2+ 2 cos

2π j

n+ 1
,

where i = 0, 1, 2, . . . ,m− 1 and j = 0, 1, 2, . . . , n− 1.

Clearly, the following holds:

(A⊗ B)−1(QS(Pm)⊗ In +QS(Pn)⊗ Im)(A⊗ B)

= QS(Pm)
′ ⊗ In +QS(Pn)

′ ⊗ Im,

where the diagonal elements of this matrix are given by:

4+ 2 cos
2π i

m+ 1
+ 2 cos

2π j

n+ 1
,

where i = 0, 1, 2, . . . ,m− 1 and j = 0, 1, 2, . . . , n− 1.

Thus, the adjacency eigenvalues for the mesh graph can be

expressed as:

2

(

2+ cos
2π i

m+ 1
+ cos

2π j

n+ 1

)

, (2)

where i = 0, 1, 2, . . . ,m− 1 and j = 0, 1, 2, . . . , n− 1.

From the results in Equation 3, we can derive:

Sm
n Q =

n−1
∑

j=0

m−1
∑

i=0

1

λ j,i

=
1

2

n−1
∑

j=0

m−1
∑

i=0

(

2+ cos
2π i

m+ 1
+ cos

2π j

n+ 1

)−1

,

(j, i) 6= (0, 0).

and

Pm
n Q =

n−1
∏

j=0

m−1
∏

i=0

λj,i = 2

n−1
∏

j=0

m−1
∏

i=0

(

2+ cos
2π i

m+ 1
+ cos

2π j

n+ 1

)

,

(j, i) 6= (0, 0).

Corollary 3. For regular dimension mesh graph (n = m),

the products and reciprocals of the sums of Signless Laplacian

eigenvalues are defined as

X n
nQ =

n−1
∑

ν=0

(

4+ 2 cos
2πν

n+ 1

)−1

,

and Yn
nQ =

n−1
∏

ν=0

(

4+ 2 cos
2πν

n+ 1

)

.

The proof is obvious by Theorem 3.

4 Laplacian spectra and
implementations in networking

The framework developed in the previous section allows for the

calculation of important network metrics, including graph energy,

Kirchhoff indexKI , spectral radius SR, average path lengthAPL,

global mean first passage timeMFT , and the number of spanning

trees T N . To facilitate these computations, two key quantities,

MA and MB, are introduced. The quantity MA is defined as

the product of all non-zero eigenvalues, denoted as λi, of a given

matrix, whileMB is the sum of the reciprocals of these eigenvalues:

MA =

n
∏

i=1

λi and MB =

n
∑

i=1

1

λi
.

Here, λi represents the eigenvalues of the Laplacian matrix

associated with the graph Mn
m, where i ranges from 1 to n. These

quantities serve as the basis for further analysis and provide a

deeper understanding of various network properties.

4.1 Average path length

The networks with an extremely short mean path length,

often referred to as "Small-world" networks, are common in real-

world applications. This trait is frequently observed, and various

parameters, such as the clustering coefficient, mean path length,

and degree distribution, serve as strong indicators of the network’s

structure. Specifically, for a givenmesh graphMn
m, the average path

length, denoted byAPL, is defined as the average number of steps

along the shortest path dij. This metric is essential for measuring the

efficiency of material transport or information exchange between

all possible node pairs within the network. For the network Mn
m,

APL is given by:

APL(Mn
m) =

2

n(n− 1)

∑

i<j

gij(M
n
m).

In an electrical network modeled as a complete graph, there

exists a notable connection between the shortest paths dij(M
n
m) and

the effective resistance gij(M
n
m), as detailed in reference [43]:

dij =
2 gij

n
.

Here, n represents the order of the complete graphMn
m, which

is the total number of vertices. By combining the equations above, a
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simplified expression is derived that reveals the relationship within

the graph:

APL(Mn
m) =

2

n(n− 1)
·
n

2

∑

i<j

1

λij
=

n

n− 1
·
∑

i<j

1

λij

=
nm

2(nm− 1)

n−1
∑

i=0

m−1
∑

j=0

(

2− cos
π j

m
− cos

π i

n

)−1

.

Corollary 4. For a ladder graph, denoted as M2
m, the average

path length APL(M2
m) can be derived from the general formula

for the mesh graph by setting n = 2. The expression for the average

path length of the ladder graph is given by:

APL(M2
m) =

1

(2m− 1)

1
∑

i=0

m−1
∑

j=0

(

2− cos
π j

m
− cos

π i

2

)−1

.

4.2 The number of spanning trees

The count of spanning trees (T N ) plays a crucial role in

various complex network phenomena, including random walks,

network reliability, resistor networks, transport systems, loop-

erased random walks, and self-organized criticality, as explored in

studies like [44–47]. Kirchhoff’s Matrix-Tree Theorem, as detailed

in [48, 49], reveals a fundamental link by showing that the product

of all nonzero eigenvalues of a graph’s Laplacian matrix equals the

total number of spanning trees. This theorem is a powerful tool for

accurately computing T N for a generalized mesh graph, denoted

by T N (Mn
m). Essentially, this method provides an efficient way to

decipher the intricate connections within the graph, greatly aiding

in the precise determination of spanning trees across different

network configurations:

T N (Mn
m) =

∏n
i=2 λi

n
=

∏m−1
i=0

∏n−1
j=0 ηi,j

n

=
2

nm

m−1
∏

i=0

n−1
∏

j=0

(

2− cos
π j

n
− cos

π i

m

)

.

Corollary 5. For a ladder graph, denoted as M2
m, the number

of spanning trees T N (M2
m) can be obtained by setting n = 2 in

the general formula for the number of spanning trees of the mesh

graph. The expression for the ladder graph is:

T N (M2
m) =

1

m

m−1
∏

i=0

1
∏

j=0

(

2− cos
π j

2
− cos

π i

m

)

.

4.3 Global mean-first passage time

In network analysis, the global mean-first passage time

(GMFT ) is a keymetric for assessing the speed of randomwalks in

complex networks, offering insights into how rapidly information

or entities travel through the network. It is calculated by averaging

individual first passage times over all node pairs. The formula for

GMFT is:

GMFT =
1

n(n− 1)

n
∑

i=1

n
∑

j6=i

Fi,j,

where Fi,j is the first passage time from node i to node j, and n is

the total number of nodes. This average is normalized to include all

unique pairs. The commuting time (Ci,j) between nodes i and j is

given by:

Ci,j = Fi,j + Fj,i = 2Ri,j,

where Ri,j is a graph-specific metric. For a generalized mesh graph

Mn
m, the global mean-first passage time is computed as:

GMFT =
2N

n(n− 1)

∑

i<j

1

λi,j
,

where n = nm andN = 2nm−n−m. Thus, GMFT becomes:

GMFT =
2(2nm− n−m)

nm(nm− 1)

m−1
∑

i=0

n−1
∑

j=0

(

2− cos
π j

n
− cos

π i

m

)−1

.

Corollary 6. By setting n = 2 in the formula for the global

mean-first passage time of a generalized mesh network, we obtain

the corresponding result for the ladder graph:

GMFT (M2
m) =

(4m− 2−m)

m(2m− 1)

m−1
∑

i=0

1
∑

j=0

(

2− cos
π j

2
− cos

π i

m

)−1

.

4.4 Spectral radius

The spectral radius is a crucial metric in numerous fields,

each leveraging it to gain insights into different systems. In

vibration theory, it helps analyze the vibrational patterns of

complex systems. Theoretical chemistry uses it to exploremolecular

structures and interactions, advancing chemical research. In

combinatorial optimization, it supports improved decision-making

and resource management. Communication networks rely on it to

assess data transmission efficiency and reliability, while robustness

analysis employs it to test system resilience. Electrical networks

utilize the spectral radius to understand component stability and

performance. Its versatility and broad application make it an

invaluable tool across scientific and engineering disciplines [50, 51].

For adjacency matrices, the spectral radius, denoted as SR(G),

represents the largest eigenvalue, reflecting the graph’s connectivity

and dynamics. This value is computed as:

SR(G) =
M

max
i=1
|λi|
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In the context of a generalized mesh graph, SR(G) can be

determined for different types of matrices as follows:

SR(G)Adj =
M

max
i=1

∣

∣

∣

∣

2 cos
π i

n+ 1
+ 2 cos

π j

m+ 1

∣

∣

∣

∣

,

SR(G)Lap =
M

max
i=1

∣

∣

∣

∣

4− 2 cos
π i

n
− 2 cos

π j

m

∣

∣

∣

∣

,

SR(G)Sign =
M

max
i=1

∣

∣

∣

∣

4+ 2 cos
2π i

n+ 1
+ 2 cos

2π j

m+ 1

∣

∣

∣

∣

.

Corollary 7. By setting n = 2 (as n represents the vertical

dimension for the ladder graph) in the spectral radius formulas for

the generalizedmesh graph, we derive the corresponding results for

the ladder graph:

SR(G)Adj-Ladder =
M

max
i=1

∣

∣

∣

∣

2 cos
π i

3
+ 2 cos

π j

m+ 1

∣

∣

∣

∣

,

SR(G)Lap-Ladder =
M

max
i=1

∣

∣

∣

∣

4− 2 cos
π i

2
− 2 cos

π j

m

∣

∣

∣

∣

,

SR(G)Sign-Ladder =
M

max
i=1

∣

∣

∣

∣

4+ 2 cos
2π i

3
+ 2 cos

2π j

m+ 1

∣

∣

∣

∣

.

4.5 Kircho� network index

The concept of resistance distance, introduced by Randic and

Klein, represents a significant innovation in network analysis. This

approach models each edge as a unit resistor, effectively capturing

the resistive properties of a network within a graph, denoted as H

[52]. In electrical network theory, resistance distance, denoted by

dij, measures the effective resistance between nodes i and j. This

measurement is derived using Ohm’s law. Another key metric is the

Kirchhoff index, which sums the resistance distances for all pairs of

vertices in the graph G. This index offers a comprehensive view of

the network’s overall resistance characteristics, providing insights

into the electrical connectivity and flow patterns between nodes:

KI(G) =
1

2

n
∑

i=1

m
∑

j=1

dij(G),

where n is the number of vertices in the graph. The Kirchhoff index

can also be expressed in terms of the non-zero eigenvalues λi of

the graph:

KI(G) = n

n
∑

i=2

1

λi
.

For a generalized mesh graph Mn
m, the Kirchhoff index is

calculated as:

KI(Mn
m) = nm

n−1
∑

i=0

m−1
∑

j=0

(

2− cos
π j

m
− cos

π i

n

)−1

.

Corollary 8. By setting n = 2 (as n represents the vertical

dimension in the ladder graph) in the Kirchhoff index formula for

the generalized mesh graph, we obtain the corresponding result for

the ladder graph:

KI(M2
m) = 2m

1
∑

i=0

m−1
∑

j=0

(

2− cos
π j

m
− cos

π i

2

)−1

.

4.6 Graph Energies

Graph energies, such as Laplacian and Randić energy, are

essential for understanding graph structures and dynamics. These

energies have significant applications in various fields. In network

science, they are used to predict robustness, as demonstrated by

Li et al. [53, 54]. In molecular graph theory, Wang et al. linked

graph energies to molecular stability and reactivity, providing

insights into chemistry and drug discovery [55, 56]. In social

networks, Chen and Zhang applied these energies to evaluate node

importance and information flow [57, 58].

Consider the adjacency matrix of a graph G, denoted by B,

and let λi represent its eigenvalues derived from the characteristic

polynomial. The Adjacency Energy (AE) is expressed as:

AE(G) =

|V|
∑

i=1

|λi|

Similarly, the Laplacian Energy (LE) and Signless Laplacian

Energy (QE) are defined as:

LE(G) =

|V|
∑

i=1

∣

∣

∣

∣

λi −
2|E|

|V|

∣

∣

∣

∣

, QE(G) =

|V|
∑

i=1

∣

∣

∣

∣

λi −
2|E|

|V|

∣

∣

∣

∣

Using these definitions, the energies for a generalized mesh

graphMn
m can be calculated as follows:

AE(Mn
m) =

n−1
∑

i=0

m−1
∑

j=0

∣

∣

∣

∣

2 cos
π i

n+ 1
+ 2 cos

π j

m+ 1

∣

∣

∣

∣

LE(Mn
m) =

n−1
∑

i=0

m−1
∑

j=0

∣

∣

∣

∣

4− 2 cos
π i

n
− 2 cos

π j

m
−

2(2nm− n−m)

nm

∣

∣

∣

∣

QE(Mn
m) =

n−1
∑

i=0

m−1
∑

j=0

∣

∣

∣

∣

4+ 2 cos
2π i

n+ 1
+ 2 cos

2π j

m+ 1

−
2(2nm− n−m)

nm

∣

∣

∣

∣

Corollary 9. By setting n = 2 (as the ladder graph M2
m has

two vertical sides) in the energy formulas for the generalized mesh

graph Mn
m, we derive the corresponding graph energies for the

ladder graph:

AE(M2
m) =

1
∑

i=0

m−1
∑

j=0

∣

∣

∣

∣

2 cos
π i

3
+ 2 cos

π j

m+ 1

∣

∣

∣

∣
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LE(M2
m) =

1
∑

i=0

m−1
∑

j=0

∣

∣

∣

∣

4− 2 cos
π i

2
− 2 cos

π j

m
−

2(4m− 2−m)

2m

∣

∣

∣

∣

QE(M2
m) =

1
∑

i=0

m−1
∑

j=0

∣

∣

∣

∣

4+ 2 cos
2π i

3
+ 2 cos

2π j

m+ 1

−
2(4m− 2−m)

2m

∣

∣

∣

∣

5 Results and discussions

In this section, we developed a MATLAB Algorithm 1 with

a total run time of 0.182 seconds to produce Tables 1, 2. These

tables provide exact values for several key metrics: Kirchhoff index

KI , Spectral radius SR, Average path length APL, Global mean

first passage time MFT , Graph energies AE , and the number of

spanning trees T N . The algorithm is designed for the generalized

mesh network graph Mn
m. In Table 1, k is set to 2, while p varies

from 2 to 15. For Table 2, k is fixed at 3. Exact values for these

metrics are calculated to provide a detailed understanding of the

network’s behavior across different dimensions. In addition to

the tables, Figure 2 visually represents the relationships between

network size and variations in KI , SR, APL, MFT , AE , and

T N , further improving the interpretation of the results.

A key observation in the graphical representations is the clear

trend indicating that as the network expands, several key metrics

increase significantly. These visuals enhance the understanding

of the network’s behavior, complementing the numerical data

and offering a more intuitive grasp of the dynamics within the

generalized mesh network. The graphical depiction of the results

provides a glimpse into the potential of our methodologies.

Researchers are encouraged to utilize our carefully developed

algorithm and analysis framework to explore the complexities

of more sophisticated real-world networks. The flexibility of our

approach offers a valuable toolset, enabling a deeper understanding

of network behavior and performance in various contexts. This

work paves the way for further studies, serving as a platform for

future exploration of complex networks with improved precision

and efficiency (Algorithm 2).

Table 1 evaluates several network-related parameters for the

Generalized Mesh Network Graph Mn
2 across values of n from 2

to 15. The parameters included are the Spectral Radius (SPR),

Average Edge Length (AER), Knot Number (KNI ), Average Path

Length (APL), and Global Mean First Passage Time (GMPT F). As

n increases, a notable trend is observed across these parameters.

The Spectral Radius (SPR) shows a slight increase from 4.013

to 5.963, reflecting a gradual growth in the network’s connectivity

as more nodes are added. The Average Edge Length (AER) also

increases consistently, indicating that as the network grows, the

average distance between connected nodes becomes larger. The

Knot Number (KNI ), which quantifies the number of key nodes

in the network, increases significantly, suggesting that more nodes

are becoming central as the network expands. The Average Path

Length (APL) increases from 0.819 to 21.634, showing that the

average distance between any two nodes grows with the size of the

network. Finally, the Global Mean First Passage Time (GMPT F)

Input: m: Number of nodes in one dimension

n: Number of nodes in the other dimension

Output: KNI: Kirchhoff index, SPR: Spectral

radius, APL: Average path length,

GMPT F: Global mean first passage time,

AER: Adjacency energy (Graph energy),

NTS: Number of spanning trees

1 Step 1: Generate adjacency matrix for generalized

mesh network graph

2 A← generateAdjacencyMatrix(m,n)

3 Step 2: Laplacian matrix of the graph

4 L← diag(sum(A,2))− A

5 Step 3: Compute the eigenvalues of the adjacency

matrix A

6 λA ← eig(A)

7 Sort λA in descending order

8 Step 4: Compute Kirchhoff index KNI using the

Laplacian matrix L

9 λL ← eig(L)

10 KNI ←
|L|
∑

i=2

1
λL(i)

11 Step 5: Compute spectral radius SPR (largest

eigenvalue of adjacency matrix)

12 SPR ← max(λA)

13 Step 6: Compute adjacency energy AER (graph

energy)

14 AER ←
∑

|λA|

15 Step 7: Compute the number of spanning trees

using Laplacian eigenvalues

16 NTS ←
∏ λL(2 :end)

m

17 Step 8: Compute the average path length using the

adjacency matrix A

18 D← graphallshortestpaths(sparse(A))

19 APL ← mean(D(D 6= ∞))

20 Step 9: Compute the global mean first passage

time GMPT F

21 GMPT F ←
∑∑

(D)
m×n

22 Step 10: Output the computed metrics:

23 KNI, SPR, AER, APL, GMPT F, NTS

Algorithm 1. Compute metrics for the generalized mesh network.

increases from 0.8356 to 4.1385, reflecting that it takes more

time on average for a random walker to reach a target node as

the network becomes larger. Table 1 provides similar parameters

for the Generalized Mesh Network Graph Mn
3 . The parameters

assessed are the Spectral Radius (SPR), Average Path Length

(APL), Average Edge Length (AER), Global Mean First Passage

Time (GMPT F), and Knot Number (KNI ). Trends in these

parameters show a clear pattern of growth and increase with respect

to the network size.

The Spectral Radius (SPR) increases from 5.025 to 6.9582,

indicating a growth in the connectivity strength as the network

size increases. The Average Edge Length (AER) increases with

network size, which is consistent with the observed trend in Table 3,
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TABLE 1 Assessment of network-related parameters for the generalized mesh network graph (Mn

m
) withm set to 2, where 2 ≤ n ≤ 15.

n(ν) SPR(Mn
2) AER(Mn

2) KNI (M
n
2) APL(M

n
2) GMPT F(M

n
2)

2 4.013 4.023 5.12 0.819 0.8356

3 5.002 8.095 14.18 1.43 1.1079

4 5.417 10.837 30.58 2.193 1.3694

5 5.627 13.712 56.09 3.102 1.6254

6 5.731 16.933 92.78 4.213 1.8791

7 5.812 19.698 142.69 5.491 2.1238

8 5.845 22.583 207.65 6.918 2.3792

9 5.874 25.643 289.79 8.533 2.6279

10 5.903 28.437 391.05 10.287 2.8742

11 5.921 31.318 513.59 12.241 3.1396

12 5.934 34.319 659.12 14.327 3.3887

13 5.944 37.108 829.93 16.573 3.6364

14 5.951 39.972 1027.6 19.042 3.8821

15 5.963 42.967 1254.6 21.634 4.1385

TABLE 2 Assessment of network-related parameters for the generalized mesh network graph (Mn

m
) withm set to 3, where 2 ≤ n ≤ 15.

n(ν) SPR(Mn
3) APL(M

n
3) AER(Mn

3) GMPT F(M
n
3) KNI (M

n
3)

2 5.025 1.45 8.023 1.1165 14.5

3 6.104 2.1657 13.341 1.2894 34.6

4 6.4231 3.0978 18.01 1.4716 68.021

5 6.634 4.2039 22.782 1.6483 117.5

6 6.742 5.4839 27.031 1.8347 186.02

7 6.8123 6.9274 32.045 2.0101 275.65

8 6.8542 8.5327 36.568 2.1926 392.11

9 6.8779 10.31 41.232 2.3782 533.24

10 6.9067 12.244 45.825 2.5614 707.55

11 6.9181 14.362 50.564 2.7442 915.12

12 6.9372 16.641 55.231 2.9334 1160.45

13 6.9481 19.082 59.719 3.1175 1447.8

14 6.9519 21.683 64.388 3.3082 1775.9

15 6.9582 24.458 68.997 3.4895 2150.9

suggesting that longer edges become more prevalent in larger

networks. The Average Path Length (APL) shows a notable increase

from 1.45 to 24.458, similar to Table 3, indicating that as the

network grows, the average distance between nodes becomes larger.

The Global Mean First Passage Time (GMPT F) also increases

from 1.1165 to 3.4895, indicating that it takes more time, on

average, for a random walker to reach a target node in a larger

network. The Knot Number (KNI ) increases significantly from

14.5 to 2150.9, suggesting a rise in the centrality and importance

of nodes within the network as its size expands. Both tables

show consistent trends with increasing network size. For Mn
2 , the

parameters reflect a gradual increase in spectral radius, average edge

length, Kirchoff Index, and average path length, leading to a higher

global mean first passage time. Similarly, for Mn
3 , there is a clear

upward trend in the spectral radius, average edge length, average

path length, and global mean first passage time, with a much more

pronounced increase in the Kirchoff Index. These trends illustrate

that as the network size increases, the network’s complexity grows,

resulting in longer paths and higher passage times. The increasing

Kirchoff Index indicates more significant central nodes or hubs,

which can be crucial for understanding the network’s connectivity

and efficiency.
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FIGURE 2

Comparative representation of numeric values evaluated in Tables 1 and 3 for Generalized mesh network graph (Mn
m) with m set to 2, where

2 ≤ n ≤ 15. (A) Average Path Length of (Mn
m). (B) Kircho� Index of (Mn

m). (C) Global passage time of (Mn
m). (D) Graph energies of (Mn

m).

Input: m,n

Output: KNI, SPR, APL, GMPTF, AER, NTS

1 begin

2 A← generateAdjacencyMatrix(m,n)

3 L← diag(
∑

A,2)− A

4 λA ← eig(A)

5 λL ← eig(L)

6 KNI ←
|L|
∑

i=2

1
λL(i)

7 SPR ← max(λA)

8 AER ←
∑

|λA|

9 NTS ←
∏ λL(2 :end)

m

10 D← graphAllShortestPaths(sparse(A))

11 APL ← mean(D(D 6= ∞))

12 GMPTF ←
∑∑

(D)
m×n

13 return KNI,SPR,AER,APL,GMPTF,NTS

14 end

Algorithm 2. Pseudocode for computing metrics of the generalized

mesh network.

6 Conclusion

In summary, this article presents a comprehensive investigation

into the spectral properties of the generalized mesh network

graph, focusing on adjacency, Laplacian, and signless Laplacian

spectra. Through advanced algebraic techniques, we have effectively

analyzed these spectral characteristics to derive critical network

TABLE 3 List of symbols and their descriptions.

Symbol Description

Mn
m Generalized mesh network with n nodes andm connections

Ad($) Adjacency matrix of the given graph/network

Lp($) Laplacian matrix of the given graph/network

QS($) Signless Laplacian matrix of the given graph/network

KI Kirchhoff index

SR Spectral radius

APL Average path length

MFT Global mean first passage time

T N Number of spanning trees

parameters, including the Kirchhoff index (KNI ), Spectral radius

(SPR), Average path length (APL), Global mean first passage

time (GMPT F), Graph energies (AER), and the number of

spanning trees (NT S). Our analysis highlights the utility of

Laplacian spectra in calculating and understanding various aspects

of network behavior. By presenting the results in graphical form,

we have provided a clear visualization of how these parameters

vary with network dimensions, enhancing our understanding of

their interplay and impact. This work not only deepens our insight

into the structural and dynamic properties of generalized mesh

networks but also offers a robust framework applicable to more

complex real-world networks. The methods demonstrated here

can be adapted and extended to address specific research needs,
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facilitating the exploration and optimization of various network

configurations. The versatility and precision of these techniques

underscore their potential in advancing the study of network

systems and their practical applications.
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28. And̄elić M, Brunetti M, Stanic Z. Laplacian controllability for graphs
obtained by some standard products. Graphs Combinat. (2020) 36:1593–602.
doi: 10.1007/s00373-020-02212-6
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