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Typhoid fever is a potentially fatal disease and endemic tomost parts of theworld.

It is a serious worldwide health issue, especially in developing countries, and is

typically spread via contaminated food, water, or drink. This work introduced

an SIVR-B model to explore and predict the dynamics of typhoid disease in a

community. The e�ective reproduction number (RE� ) of the model is calculated

by manipulating the next-generation method. Then, after we computed the

Typhoid fever-free equilibrium and the typhoid fever persistence equilibrium

points, we demonstrated the global asymptotic stability of the equilibria. The

bifurcation analysis demonstrated that the formulated typhoid model exhibits

a forward bifurcation at RE� = 1. Further, the sensitivity of parameters is

performed using normalized forward sensitivity analysis and demonstrated using

numerical simulation. The work demonstrated that higher typhoid vaccination

rates have a pronounced e�ect on lowering disease transmission. From the

results, we recommended policymakers and government stakeholders should

enhance immunization e�orts to e�ectively address the dynamics of typhoid

fever transmission. In addition to improving vaccination e�cacy, the research

work recommends reducing poor drainage systems and improving water quality

to reduce the infection number.

KEYWORDS

typhoid fever, compartmental model, e�ective reproduction number, equilibrium

points, stability analysis, numerical simulation

1 Introduction

The bacteria Salmonella (S. typhi) is the main cause of typhoid fever, a potentially

devastating infection that is endemic to most parts of the world and only transmitted

in humans [1]. Approximately 10–20 million new cases of typhoid fever are reported

worldwide each year, with over a quarter of a million fatalities, primarily in Africa [2, 3],

and this shows that the disease is still a serious challenge to global public health [4].

In areas with inadequate sanitation, typhoid fever can spread rapidly and result in a

mass infection when individuals drink or eat food contaminated by an infected person’s

excrement [5, 6]. Inadequate sanitation systems and poor water quality, which facilitate

the spread of infectious agents, are major contributors to the significant rise in illness rates,
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especially in developing nations [3, 7, 8]. The hallmarks of

Salmonella gastroenteritis include cramping in the abdomen,

diarrhea (often with blood tinges), and occasionally nausea and

vomiting. Salmonella bacteria are numerous and hardy, and

they can survive for months in water and weeks in a dry

environment [4, 9].

Despite being curable, typhoid fever is becoming increasingly

difficult to eradicate due to growing resistance to various

medications [4]. The lack of globally supported typhoid

immunization campaigns has also been attributed to the

effectiveness of drugs and the prior lack of a long-acting

infant vaccine [10]. Although there are typhoid fever

vaccines, their effectiveness is only partially guaranteed

[4, 10].

Infectious disease mathematical modeling can be used as a tool

to help public health policymakers understand the transmission

dynamics of communicable diseases. The transmission of typhoid

disease was studied by several researchers using various models.

Among these researchers, Chamuchi et al. [11] aimed to simulate

the transmission of typhoid disease by developing and examining

the effects of carrier effects, diagnostics, and health education

on the control of typhoid carriers in Kenya considering the

SIIcR Model. From their numerical result, they concluded

that reducing typhoid carriers by 9.5% could assist the Kisii

county government in Kenya achieve a typhoid-free status

by 2030.

Protection, Susceptible, Infected, and Treated (PSIT) is the

type of mathematical model proposed and examined by Akinyi

et al. [12]. The researchers Edward and Nyerere [13] developed

a mathematical model for typhoid fever to assess the effects of

education campaigns, vaccination, and treatment on controlling

the transmission dynamics of typhoid fever in a Tanzanian

community. They investigated the impact of screening and

treatment on the dynamics of each subpopulation through

numerical simulations. The research undertaken by Peter et al.

[5], presented an SIcIR type model with perfect vaccination

to study the transmission dynamics of typhoid fever diseases

in a population. The results revealed that the transmission

of typhoid fever largely depends on the contact rate with

infected individuals within a population. They recommended

that timely detection and early treatment could reduce the

infection rate.

A deterministic mathematical model of typhoid fever

incorporating unprotected humans was formulated by Karunditu

et al. [14]. They concluded that the disease’s spread depends

on the number of unprotected individuals and other factors.

Wameko et al. [15] investigated the dynamics of typhoid disease

in a community using a deterministic model. Their numerical

simulation results revealed that applying preventive measures

has a significant impact on minimizing the incidence of the

disease. If all intervention strategies are implemented, the disease

will be eradicated in a short period of time. Nyaber et al. [16]

proposed a mathematical model for typhoid transmission that

analyzes the impact of treating infected individuals on the

dynamics of the disease. They considered a model that consists

of a human population and pathogen population. The findings

of their work indicated that effective treatment is sufficient to

eradicate typhoid fever. The research work done by Jan, Rashid

et al. [17], formulated an epidemic mathematical model for

typhoid fever that incorporateed vaccination and carriers using

the Caputo-Fabrizio operator. They demonstrated the impact

of fractional order and other parameters on the dynamics of

typhoid fever.

Although the studies mentioned above have provided

significant insights into the dynamics of typhoid fever, none

have specifically examined its transmission dynamics while

incorporating the impact of vaccination interventions alongside

bacterial concentrations in the environment. Therefore, this study

aims to fill this gap by investigating an issue that has received

limited attention in previous research. Hence, the objective of

this research is to analyze the interactions among vaccination

efforts, environmental bacterial presence, and the transmission of

typhoid fever, with the aim of providing a more comprehensive

understanding of how these factors influence the spread of

the disease.

2 Baseline model assumptions and
formulation

In this section, the human and bacteria population are

considered in the model construction. At time t the human

population is grouped into four disjoint subclasses: Susceptible (S),

Infected (I), Vaccinated (V), and Recovered (R).

2.1 Model assumptions

I The population is uniform and mixes homogeneously,

II Recruited newborns who received the vaccine join the

Vaccinated class, but recruited newborns who have not

received vaccine join the Susceptible class,

III Susceptible individuals decrease due to consuming food or

water contaminated with S. typhi that is able to transmit

the disease,

IV The vaccination given is not a perfect vaccine.

Individuals are recruited into the population at a rate

π , with a fraction p vaccinated and the remaining (1 − p)

remaining susceptible. These susceptible individuals are vaccinated

at a rate δ.

When susceptible people consume food or water contaminated

with Salmonella bacterium, they contract the bacteria that causes

typhoid fever λ =
βB
K+B , where B(t) is the bacteria in the

environment, K is the Salmonella bacteria concentration in food

or water, and β is the ingestion rate of Salmonella. The infected

subclass increases S.typhi bacteria in the environment by human

waste contamination rate η. After receiving treatment, members

of the infected subclass can join the recovered subclass at a rate

of ε. Individuals from the vaccinated class also contribute to

the recovered subclass at a rate of φ. The human population

assumed µ as the natural death rate, and the infective class

die at an induced death rate ω, and µb is the decay rate

of S.typhi bacteria from the environment. We consider that

vaccinated individuals can become infected at a rate of θλ

due to vaccine inefficacy, providing only partial protection. The
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TABLE 1 Description of parameters in the Model (1) and their values.

Parameter Description Values Units Source

β Ingestion rate of Salmonella 0.36 Month−1 Tillahun G. T. et al., 2017

θ Probability of vaccinated joining infected 0.12 Month−1 Assumed

ε Recovery rate of infectious individuals 0.032 Month−1 Assumed

η Rate of infected population increasing the

concentration bacteria environment

0.32 Cells Ml−1 Human−1Month−1 Assumed

µb Decay rate of Salmonella bacteria 0.138 Month−1 Assumed

ω Typhoid-induced death rate 0.0264 Month−1 Assumed

µ Natural mortality rate of human population 0.0098 Month−1 Tillahun G. T. et al., 2017

σ The rate at which vaccinated become susceptible 0.132 Month−1 Choe, K., Whittington, D., and Lauria, D. T.

(2019).

δ The rate at which susceptible become vaccinated 0.3 Month−1 Nyerere, N., Mpeshe, S. C., and Edward, S.

(2018).

ϕ Recovery rate of vaccinated by natural immunity 0.08 Month−1 Nyerere, N., Mpeshe, S. C., and Edward, S.

(2018).

p Proportion of births with successful vaccination 0.2 HumansMonth−1 Mushayabasa, S. (2013).

π Recruitment rate of susceptible individuals 40 HumanMonth−1 Tillahun G. T et al.,2017

K Concentration of bacteria in food or water 200 CellsMl−1 Month−1 Gordon, M. A., et al. (2008).

broken line drawn from B to S indicates the contact between

susceptible people and food or water contaminated with Salmonella

bacterium. The descriptions of the model parameters are listed

in Table 1.

The model comprises the following system of differential

equations based on the presumptions and the compartmental

diagram in Figure 1 with initial conditions S (0) > 0,V (0) ≥

0, I (0) ≥ 0,R (0) ≥ 0,B (0) ≥ 0.

dS
dt

=
(

1− p
)

π + σV − λS− (δ + µ)S
dV
dt

= pπ + δS− θλV − (σ + ϕ + µ)V
dI
dt

= λS+ θλV − (ε + ω + µ) I
dR
dt

= ϕV + εI − µR
dB
dt

= ηI − µbB



























(1)

3 Model analysis

3.1 Invariant region and positivity of the
solutions

Theorem 3.1: The model’s possible solutions are all uniformly

bounded within the proper subset Ω = �H × �B where

�H =
{

(S,V , I,R) ∈ R4+ :N (t) ≤ π
u

}

is a subset for human

population and �B =
{

B ∈ R+ :B ≤ nπ
u

}

is a subset associated

with environmental bacterial infections.

Proof:N = S+V+I+R yields the entire human population N

(t) under the initial conditions N(0)= N0 = S0 +V0 + I0 +R0 and

B (0) = B0 for S.typhi bacteria in the environment. Establishing a

differentiation of N and with respect to time (t), we obtain

dN

dt
=

dS

dt
+

dV

dt
+

dI

dt
+

dR

dt
(2)

FIGURE 1

Schematic representation of typhoid fever transmission dynamics

through compartments.

Substituting Equation 1 in place of Equation 2 and assuming no

disease-induced death rate (i.e making= ω = 0 ), we have

dN

dt
≤ π − u N (t ) (3)

Rearranging and integrating both sides of Equation 3, we get

N (t) ≤
π

u
+
(

NO −
π

u

)

e−ut (4)

When time moves to ∞ in Equation 4, N (t) converges to

π/u; this indicates that there are feasible model solutions for the

local population.

�H=

{

(S,V , I,R) ∈ R4+ :N(t) ≤
π

u

}

(5)
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For bacteria environment since N(t) ≤ π/u, it means that

I ≤ π/u. We have from the last Equation 1 that

dB

dt
= ηI − µbB ≤ ηN − µbB ≤ η

π

µ
− µbB (6)

Evaluating Equation 6 with B (0) = B0 as a stating

condition yields

B (t) ≤
ηπ

µµb
+

(

B0 −
ηπ

µµb

)

e−µbt (7)

As t tends to infinity, Equation 7 becomes B(t) ≤ nπ
µ

.

Therefore, the feasible solution of the bacteria population enters

the region

�B =

{

B ∈ R+ :B ≤
nπ

µ

}

(8)

Therefore, from Equations 5, 8 the feasible region of the model

is given by

� = �H × �B =

{

(S,V , I,R) ∈ R4+ :N (t) ≤
π

µ
, B ∈ R+

:B ≤
πn

µ

}

Theorem3.2: Let� =
{

(S,V , I,R,B) ∈ R5+ S (0) > 0,V (0) ≥ 0,

I (0) ≥ 0,R (0) ≥ 0,B (0) ≥ O } then the solution { S,V , I,R,B}

are positive for all t ≥ 0.

Proof: From the fifth equation of model (1)

dB

dt
≥ −B µb (9)

By using comparison theorem, Equation 9 is solved as, we get

(t) ≥ e−µbt+ C ,

B(t) ≥ B(0).e−µbt ≥ 0,whereB (0) = eCatt = 0

From the first equation of model (1), we have

dS

dt
≥ −(

βB

K + B
+ (δ + µ))S (10)

By comparison theorem, integrating Equation 10 with initial

conditions S (0) = S0 yields

S (t) ≥ S0e
−
(

βB
K+B +(δ+µ)

)

t
≥ 0

After substituting the solution of B(t), we get

S (t) ≥ S0e
−

(

βB(0). e
−µbt

K+B(0). e
−µbt

+(δ+µ)

)

t
≥ 0

Similarly, we can prove the positivity of the other variables as

V (t) ≥ V0 e
−

(

θβB(0). e
−µbt

K+B(0). e
−µbt

+(σ+ϕ+µ)

)

t
≥ 0, I(t)

≥ I(0)e− (ε+η+ω+µ) ≥ 0

and (t) ≥ R(0) e−µt ≥ 0. Thus S (t) , V (t) , I (t) , R (t, ) and B (t)

are positive for all t ≥0

3.2 Typhoid fever-free equilibrium

We denote the typhoid fever-free equilibrium by E0. By setting

the right-hand side of the equations in system (1) to zero and

simultaneously solving for the uninfected compartments S, V , and

R , we obtain the typhoid fever-free equilibrium as:

E0 = (S0,V0, I0,R,0B0) = (
πk3

k4
,
πk5

k6
, 0,

φπk5

µk6
, 0) (11)

where k1 = δ+µ k2 = σ +ϕ+µ , k3 = − k2
(

1− p
)

−p σ , k4 =

σ δ − k2 k1;

k5 = −k4
(

1− p
)

− k1k3andk6 = σk4

3.3 E�ective reproduction number

When an infected person enters a vaccinated community, the

average number of secondary cases produced is known as the

effective reproduction number REff . It is computed using the next-

generation matrix approach, J [18, 19]. Using the principle

F =

{

βBS
K+B +

θβBV
K+B

0

}

andV =

{

(ε + ω + µ)I

−ηI + µbB

}

(12)

Then, from Equation 12, the Jacobian matrices evaluated at the

FFEP are obtained as:

f =

[

0 β(S0+θV0)
K

0 0

]

, v =

[

ε + ω + µ 0

−η µb

]

Computing the inverse of v, we get

v−1 =
1

det (v)
Adjoint (v) =

1

µb (ε + ω + µ)

[

µb 0

η ε + ω + µ

]

=

[

1
(ε+ω+µ)

0
η

µb(ε+ω+µ)
1
µb

]

Then using the principle, the next-generationmatrix is given by

G = f v−1 =

[

0 β(S0+θV0)
K

0 0

][

1
(ε+ω+µ)

0
η

µb(ε+ω+µ)
1
µb

]

=

[

βη(S0+θV0)
Kµb(ε+ω+µ)

β(S0+θV0)
Kµb

0 0

]

The eigenvalue of a matrix G determined by det (G- λI) = 0

and the dominant eigenvalue becomes the effective reproduction

number of the model. Hence,

REff =
βηπ

(

δθ + σ + ϕ + u)
(

1− p
)

+ p(θ (δ + u) + σ
)

kµb (ε + ω + µ) [µ (µ + δ + ϕ + u) + δϕ ]

3.4 Local stability typhoid fever-free
equilibrium point

Theorem 3.3: The typhoid fever-free equilibrium E0 of the

model (1) is locally asymptotically stable (LAS) if REff < 1 ,

otherwise it is unstable.
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Proof: The Jacobian matrix of the model in Equation 1 is

given by

J =

















βB
K+B − (δ + µ) σ 0 0 −βS

K+B +
βB

(K+B)2

δ
θβB
K+B − (σ + ϕ + µ) 0 0 −

θβV
K+B +

θβBV

(K+B)2

βB
K+B

θβB
K+B −(ε + ω + µ) 0 βS

K+B −
βBS

(K+B)2
+

θβBV
K+B −

θβBV

(K+B)2

0 ϕ ε −u 0

0 0 η 0 −µb

















If we evaluated at the typhoid fever-free equilibrium point E0 ,

we get

J =















− (δ + µ) σ 0 0 −βS0

K

δ − (σ + ϕ + µ) 0 0 −
θβV0

K

0 0 −(ε + ω + µ) 0 βS0

K
+

θβV0

K

0 ϕ ε −µ 0

0 o η 0 −µb















(13)

To make the proof more clarified, the Jacobian is block-

triangular; this allows us to partition it and compute eigenvalues

separately. Let us use submatrix, as infected and healthy:

Healthy states (S,V,R):

J1 =







− (δ + µ) σ 0

δ − (σ + ϕ + µ) 0

0 0 −µ







Infected states (I,B):

J2 =

[

−(ε + ω + µ) βS0

K +
θβV0

K

η −µb

]

Since J1 is a lower triangular, the eigenvalues are its diagonal entries:

(−u− λ)

∣

∣

∣

∣

∣

− (δ + µ) − λ σ

δ (σ + ϕ + µ) − λ

∣

∣

∣

∣

∣

= 0

The first eigenvalue is −u = λ1 and the other eigenvalues are

obtained from the characteristic equation given by

(−(δ + µ)− λ)(−(σ + φ + µ)− λ)− σδ = 0.

λ2 + Aλ + B = 0

where

A = δ + µ + σ + φ + µ > 0,

B = δσ + δφ + δµ + µσ + µφ + µ2 − σδ = δφ + δµ

+ µσ + µφ + µ2 > 0

Hence the eigenvalues of the matrix J1are negative from the

Hurwitz criterion.

The eigenvalues of J2 determine the stability of the infected

states. The characteristic equation is:

∣

∣

∣

∣

∣

− (ε + ω + µ) − λ
βS0

K +
θβV0

K

η −µb − λ

∣

∣

∣

∣

∣

= 0

The corresponding characteristic equation is given by

λ2 + (ε + µ + ω + µb) λ + (ε + µ + ω) µb −
βη(S0 + θV0)

K
= 0 (14)

where
a1 = ε + µ + ω + µb > 0,

a2 = (ε + µ + ω)µb −
βη(S0 + θ V0)

K
,

= (ε + µ + ω)µb

(

1−
βη(S0 + θV0)

Kµb (ε + µ + ω)

)

= (ε + µ + ω)µb

(

1− REff
)

> 0

Therefore, the disease-free equilibrium point is LAS whenever

REff < 1.

3.5 Global stability of typhoid fever-free
equilibrium

We utilized the Castillo-Chávez et al. [20] technique to show

the globally stability of typhoid fever-free equilibrium as it used by

Alemneh and Alemu [21]. The Castillo-Chávez et al. [20] method

divides the population into two as

dx

dt
= F1 (x, z) ,

dz

dt
= F2(x, z), F2(x, 0) = 0 (15)

xǫR3 shows the number of uninfected individuals (susceptible,

vaccinated, and recovered) while zǫR2 is the number of infected

human individuals and bacteria in the environment. Let the

typhoid fever-free equilibrium be denoted by (x0 , 0). The two

basic axioms that guarantee the global stability of typhoid fever-free

equilibrium are:

H1 : For dx
dt

= F1(x, 0) , x
0, is globally asymptotically stable.

H2 : F2(x, z) = Az − F2 (x, z) where F2 (x, z) ≥ 0 for (x, z) ǫ

Ω and the

matrix A= Dz F2(x
0, 0) denotes an M-matrix.

Theorem 3.4: The typhoid fever-free equilibrium point of the

model (1) is globally asymptotically stable (GAS) if the system

in Equation 15 satisfies the axioms (H1 ) and (H2) for REff < 1

otherwise unstable.

Proof: Let x= (S(t),V(t),R(t)) and z= (I(t), B(t)) represent the

number of uninfected and infected individuals, respectively. Define

E0 = (x0, 0), x0 = (πk3
k4

, πk5
k6

, φ
π
k5µk6).

F1(x, z) =







(

1− p
)

π + σV −
βB
K+BS− (δ + µ) S

pπ + δS− θβB
K+BV − (σ + ϕ + µ)V

ϕV + εI − µR






(16)
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The reduced system according to the condition H1 : becomes

dS

dt
=
(

1− p
)

π + σV − (δ + µ ) S

dV

dt
= pπ + δS− (σ + ϕ + µ)V (17)

dR

dt
= ϕV − µ R

Solving Equation 17 one by one, we have

S (t) =

[(

1− p
)

π + σV0
]

(δ + µ)
+

c

e(δ+µ)t
(18)

From Equation 18, as t approaches∞, c
e(δ+µ)t approaches to zero.

Substitute V0 =
π(σ+µP)

σ(ϕ+µ)+µ( σ+ϕ+µ )
we get S (t) =

(

(1−p)π+σ

(

π(σ+µP)
δ(ϕ+µ)+µ( σ+ϕ+µ )

)

(δ+µ)

)





(

1− p
)

π + σ

(

π(σ+µP)
δ(ϕ+µ)+µ( σ+ϕ+µ )

)

(δ + µ)



 =

π(σ + (ϕ + µ )
(

1− p
)

)

δ (ϕ + µ) + µ( σ + ϕ + µ )
= S0

Similarly, we show for R and V

lim
t→∞

[ pπ + δ

(

π(σ + (ϕ + µ )
(

1− p
)

)

δ (ϕ + µ) + µ( σ + ϕ + µ )

)

+
C

e(σ+ϕ+µ)t

= V0and lim
t→∞

ϕπ(σ + µP)

µ
(

δ (ϕ + µ) + µ( σ + ϕ + µ
) +

c

eµt
= R0

Therefore, as→ ∞ x(t) → x0. Thus, x0 = (πk3
k4

, πk5
k6

, φπk5
µk6

) is

globally asymptotically stable. Now to prove the second condition,

we have

F2(x, z) =

(

βB
K+BS+

θβB
K+BV − (ε + ω + µ) I

ηI − µb B

)

(19)

Using condition H2 the matrix A = Dz F2(x, 0) of Equation 19,

evaluated at typhoid fever-free equilibrium point given by

A =

[

−(ε + ω + µ) βKS0

K +
θβV0

K

η −µb

]

Hence from F2 (x, z ) = AZ − F2 (x, z), we have

F2 (x, z) =

[

βB
(

S0

K − S
K+B

)

+ βB(V
0

K − V
K+B )

0

]

Since S0 ≥ S, V0 ≥ V and 1
K ≥ 1

K+B , thus F2 (x, z) ≥ 0

(x, z)ǫ�. Thus, H1 : and H2 : are satisfied, so, the typhoid fever-

free equilibrium point E0 is GAS. This result is also supported by

the theorem 3.6 in Section 3.6.

3.6 Endemic equilibrium point

The endemic equilibrium point exists when REff > 1. Let E1

= (S∗, V∗, I∗, R∗, B∗) 6= 0 denote the endemic equilibrium of

model (1) and it is obtained by setting all the derivatives in model

(1) to zero, i.e.,

dS

dt
=

dV

dt
=

dI

dt
=

dR

dt
=

dB

dt
= 0

We obtained

V∗ =
(ε + ω + µ)

(

kµb + ηI∗
)

− βηπ

βη (σ − (ϕ + µ) + µθ)
,

S∗ =
(ε + ω + µ)

(

kµb + ηI∗
)

[σ − (ϕ + µ)]− βηπ

βη (σ − (ϕ + µ) + µθ)
,

R∗ =
ϕ (ε + ω + µ)

(

kµµb + ηµI∗
)

− ϕβηπ + βη (σ − (ϕ + µ) + µθ) I∗

µβη (σ − (ϕ + µ) + µθ)
,B∗ =

η

µb

I∗

Where I∗ is the positive root of the following quadratic function

η2 MTI∗2 + QI∗ + L = 0 (20)

with

M = (ε + ω + µ) ,T = −σδ + δϕ + δµ + µϕ + µ2

Q = η
[(

1− p
)

πr + σηβπ − rp− δkµbσMδkµbM

++ δkµbµM − 2µkµbσM + 2kµbϕM + 2µ2kµbM

− δMkµbσ + δϕMkµb + δϕMkµb + δθβηπ − µMkµbσ

+ µϕMkµb + µ2Mµb + µMη
]

L =
(

1− p
)

πrkµb + δk2µb
2Mµ

− δkµbβπη + σηMkµb − δk2µb
2Mσ + δk2µb

2Mϕ

+ δk2µb
2Mµ − δkµbθβηπ − 2µk2µb

2Mσ

+ 2µk2µb
2Mϕ + 2µ2k2µb

2M + 2µbβπηθ

Theorem 3.5: For REff > 1, there is a unique endemic equilibrium

point and no endemic equilibrium elsewhere.

Proof: For the disease to be endemic dI
dt

> 0 , dB
dt

> 0 . Hence,

βBS

K + B
+

θβB

K + B
V > (ε + ω + µ) I ⇒ (ε + ω + µ) I

<
βBS

K + B
+

θβB

K + B
V

⇒ I <
βBS+ θβBV

(K + B) (ε + ω + µ)
and ηI > µbB ⇒ µbB (21)

< ηI ⇒ B <
ηI

µb
,

⇒ 1 <
ηβS0

µb(K + B0) (ε + ω + µ)
(22)

+
ηθβV0

µb(K + B0) (ε + ω + µ)

Since B0 ≥ 0, then Equation 22 is reduced to

1 <
ηβS0 + ηθβV0

µbk (ε + ω + µ)
⇒ 1 < REff impliesREff > 1
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3.7 Local stability of EEP and bifurcation
analysis

The local stability of the endemic equilibrium is established

by demonstrating the existence of a forward bifurcation of the

system using the center manifold technique, which is employed

due to the mathematical difficulty of endemic equilibrium stability.

A forward bifurcation indicates that the endemic equilibrium is

locally asymptotically stable if REff > 1 but near unity.

Using the approach of the center manifold theory [20, 22], we

demonstrated the bifurcation analysis of the typhoid fever model

in Equation 1. Let β = β∗ be a bifurcation parameter at REff = 1,

so that

β = β∗ =
kµb (ε + ω + µ) [µ (δ + ϕ + σ + µ) + δϕ]

ηπ
(

δθ + µ + σ + ϕ)
(

1− p
)

+ p(θ (δ + µ) + σ )
) ,

and we assume that S= z1 , V= z2 , I= z3 , R= z4 , B= z5 and the

model (1) is given by



























(1− p)π + σ z2 −
βz5z1
K+z5

− (δ + µ) z1 = 0

pπ + δz1 −
θβz5z2
K+z5

− (σ + ϕ + µ) z2 = 0
βz5 z1
K+z5

+
θβz5z2
K+z5

− (ε + ω + µ) z3 = 0

ϕz2 + εz3 − µz4 = 0

ηz3 − µb z5 = 0

(23)

The Jacobian matrix of the system [9] around the typhoid-free

equilibrium point evaluated at REff = 1 is

J =















− (δ + µ) σ 0 0 −βz1
0

k

δ − (σ + ϕ + µ) 0 0 −
θβz2

0

k

0 0 −(ε + ω + µ) 0 βz1
0

k
+

θβz2
0

k

0 ϕ ε −µ 0

0 o η 0 −µb















The right eigenvector W=
(

w1,w2,w3,w4,w5,

)t
associated with

this simple zero eigenvalue can be obtained from JW = 0.

w2 =

[

δβz1
0 + θβz2

0 (δ + µ)

k (δσ − (δ + µ) (σ + ϕ + µ))

]

w5 ,

w1 =

[

σθβz2
0 + βz1

0 (σ + ϕ + µ)

k (δσ − (δ + µ) (σ + ϕ + µ))

]

w5 ,

w3 =
µb

η
w5 ,w4 =

1

µη

[

φx

y
+

εµb

η

]

w5

where x = δβz1
0 + θβz2

0 (δ + µ) and y = k(δσ −

(δ + µ) ((σ + ϕ + µ). The left eigenvector =
(

v1,v2,v3,v4,v5,
)t
,

TABLE 2 Sensitivity indices of parameter values.

Parameter Indices value Parameter indices value

π 1 µ −0.2890018160

β 1 σ 0.5053949394

θ 0.1509327077 ϕ 0.5847016899

η 1 p −0.07383019987

ε −0.4692082111 ω −0.3870967742

δ −0.7753864479 K −1

µb −1

associated with this simple zero eigenvalue, can be obtained from

VJ = 0 and given by

v1 = 0, v2 = 0v4 = 0v3 = v3 > 0andv5 =
(ε + η + ω + µ)

η
v3

We do not require the derivative of f1 , f2 , and f4 since the first,

second, and fourth components of V are all zero. Additionally, since

the expression for f5 is linear, all its second-order partial derivatives

are zero. From the derivatives the only ones that are non-zero are

derivatives from f3 and are listed below.

∂2f3(E
0)

∂z2∂z5
=

∂2f3(E
0)

∂z5∂z2
=

θβ

k

∂2f3(E
0)

∂z1∂z5
=

∂2f3(E
0)

∂z5∂z1

=
β

k
and

∂2f3(E
0)

∂z5∂zβ
=

(

z1
0

k
+

θz2
0

k

)

The signs of the derived bifurcation coefficients a and b reflect

the direction of the bifurcation at REff = 1.

a =

5
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
= −

2v3w5
2β

k2

[

δθβz1
0 + θ2βz2

0 (δ + µ) + σθβz2
0 + βz1

0 (σ + ϕ + µ)

((ϕ + µ) (δ + µ) + µσ)

]

< 0

b =

5
∑

k,i=1

vkwi
∂2fk

∂xi∂xβ

= v3w5
∂2f3(E0)

∂z5∂β

= v3w5

(

z1
0

k
+

θz2
0

k

)

> 0,

Consequently, a supercritical bifurcation takes place in the

model since the bifurcation coefficient, b, is inherently positive and

a is negative. Thus, the theorem is inferred from the outcome.

Theorem 3.6.Whenever REff > 1 but near unity, the following

are true:

i The endemic equilibrium is locally asymptotically stable.

ii The model illustrates forward bifurcation.

iii The DFE point is globally asymptotically stable.

FIGURE 2

The local elasticity indices of RE� with respect to parameters of the

model (1).
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FIGURE 3

Graphical representation of the model (1) (a) left RE� < 1 and (b) right RE� > 1.

FIGURE 4

Graphs showing the sensitivity of model (1) varying δ and ϕ; (a) Infected population; (b) Bacteria population; (c) Vaccinated population; (d) Recovered

population.
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3.8 Endemic equilibrium point global
stability

Theorem 3.7: The point E∗ is globally asymptotically stable if

REff > 1, otherwise unstable.

Proof:We construct the Lyapunov function given by

L = (S− S∗ − S∗ ln
S

S∗
)+ (V − V∗ − V∗ ln

V

V∗
)

+ (I − I∗ − I∗ ln
I

I∗
) +

βB∗S∗

ηI∗(K + B∗)
(B− B∗ − B∗ ln

B

B∗
)(24)

Taking the derivative of L in Equation 24 alongside the

solutions of equation of model (1) yields

dL

dt
=

(

1−
S∗

S

)

dS

dt
+

(

1−
V∗

V

)

dV

dt
+

(

1−
I∗

I

)

dI

dt

+
βB∗S∗

ηI∗(K + B∗)

(

1−
B∗

B

)

dB

dt
(25)

At endemic equilibrium steady state, we have

(

1− p
)

π = −σV∗ +
βB∗

K+B∗ S
∗ + (δ + µ) S∗

pπ = −δS∗ + θβB∗

K+B∗V
∗ + (σ + ϕ + µ)V∗

βB∗

K+B∗
S∗+ θβB∗

K+B∗
V∗

I∗ = (ε + ω + µ)

µb =
ηI∗

B∗























(26)

Substituting Equation 25 in Equation 26 and simplify

(

1−
S∗

S

)

dS

dt
=

(

1−
S∗

S

)[

−σV∗ +
βB∗

K + B∗
S∗ + (δ + µ) S∗ + σV −

βB

K + B
S− (δ + µ) S

]

≤
βB∗S∗

K + B∗

(

1−
S∗

S

)[

(1−
BS (K + B∗)

S∗B∗ (K + B)
)

]

(

1−
V∗

V

)

dV

dt
=

(

1−
V∗

V

)[

−δS∗ +
θβB∗

K + B∗
V∗ + (σ + ϕ + µ)V∗ + δS−

θβB

K + B
V − (σ + ϕ + µ)V

]

≤
θβB∗V∗

K + B∗

(

1−
V∗

V

)[

(1−
BV(K + B∗)

B∗V∗(K + B)
)

]

(

1−
I∗

I

)

dI

dt
=

(

1−
I∗

I

)[

βB

K + B
S+

θβB

K + B
V −

(

βB∗

K + B∗
S∗ +

θβB∗

K + B∗
V∗

)

I

I∗

]

=

(

1−
I∗

I

)[

βB∗S∗

K + B∗

(

BS (K + B∗)

B∗S∗ (K + B)
−

I

I∗

)

+
θβB∗V∗

K + B∗

(

BV (K + B∗)

B∗V∗ (K + B)
−

I

I∗

)]

βB∗S∗

ηI∗(K + B∗)

(

1−
B∗

B

)

dB

dt
=

βB∗S∗

ηI∗(K + B∗)

(

1−
B

B∗

)[

ηI −
ηI∗

B∗
B

]

=
βB∗S∗

(K + B∗)
(1+

I

I∗
−

B

B∗
−

B∗I

BI∗
)

For the function L(x) = 1 − x + ln x, we know that x > 0 leads to L(x) ≤ 0. And if x = 1, then L(x) = 0. Note that

βB∗S∗

K + B∗

(

1−
S∗

S

)[(

1−
BS (K + B∗)

S∗B∗ (K + B)

)]

+
βB∗S∗

K + B∗

(

1−
I∗

I

)[ (

BS (K + B∗)

B∗S∗ (K + B)
−

I

I∗

)]

==
βB∗S∗

K + B∗

[

2−
S∗

S
−

I

I∗
+

B (K + B∗)

B∗ (K + B)
−

BS (K + B∗)

B∗S∗ (K + B)

I∗

I

]

≤
βB∗S∗

K + B∗

[

B

B∗
− ln

(

B

B∗

)

−
I

I∗
+ ln(

I

I∗
)

]

=
θβB∗V∗

K + B∗

(

1−
V∗

V

)[(

1−
θβBV (K + B∗)

B∗V∗ (K + B)

)]

+
θβB∗V∗

K + B∗

(

BV(K + B∗)

B∗V∗(K + B)
−

I

I∗

)

=≤
θβB∗V∗

K + B∗

[

B

B∗
− ln

(

B

B∗

)

−
I

I∗
+ ln

(

I

I∗

)]

<
βB∗V∗

K + B∗

[

B

B∗
− ln

(

B

B∗

)

−
I

I∗
+ ln(

I

I∗
)

]

Since 0 < θ < 1.

Moreover,

βB∗S∗

(K + B∗

(

1−
B∗

B

)[

I

I∗
−

B

B∗

]

=
βB∗S∗

(K + B∗

(

1+
I

I∗
−

B

B∗
−

B∗I

BI∗

)

≤
βB∗S∗

(K + B∗

[

B

B∗
− ln

(

B

B∗

)

+
I

I∗
− ln(

I

I∗
)

]

Therefore, the equation is receded as follows

dL

dt
≤

βB∗S∗

K + B∗

[

B

B∗
− ln

(

B

B∗

)

−
I

I∗
+ ln(

I

I∗
)

]

+
θβB∗V∗

K + B∗

[

B

B∗
− ln

(

B

B∗

)

−
I

I∗
+ ln(

I

I∗
)

]

+
βB∗S∗

(K + B∗

[

B

B∗
− ln

(

B

B∗

)

+
I

I∗
− ln(

I

I∗
)

]

≤ 0 (27)

This implies that dL
dt

≤ 0 by arithmetic and geometric means.

In addition, L = 0 if V = V∗, S= S∗, I = I∗, R = R∗, and

B= B∗ . According to LaSalle’s [23] variance principle, the endemic

equilibrium is globally asymptotically attained whenever REff > 1.

3.9 Sensitivity analysis

We used the normalized forward sensitivity index definition

from Blower and Dowlatabadi [24]; Nyerere et al. [25]; Engida et al.

[26] to do sensitivity analysis. The sensitivity index of

REff =
βηπ

(

δθ + σ + ϕ + u)
(

1− p
)

+ p(θ (δ + u) + σ
)

kµb (ε + ω + µ) [µ (µ + δ + ϕ + u) + δϕ ]

to some of the parameters, for instance

S
REff
β

=
∂R0

∂β

β

R0
=

R0

β

β

R0
= 1 > 0

S
REff
ω

= −
ω

(ε + ω + µ)
< 0
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FIGURE 5

Graphs showing the e�ect of varying β on the population; (a) Infected population; (b) Bacteria population; (c) Vaccinated population; (d) Susceptible

population.

S
REff
p

=
βηπ

(

δ(1− p)+ p+ (δ + µ)
)

kµb (ε + ω + µ) [µ (µ + δ + ϕ + u) + δϕ]
> 0

S
REff
p

= −

(

p
(

δθ + µ + σ + ϕ)+ (δθ + µθ + σ)
)

(δθ + µ + σ + ϕ) (1− P) + p (δθ + µθ + σ)

)

< 0

Similarly, the other parameters are computed and their

sensitivity indices are in Table 2.

According to Table 2, the parameters with positive indices

(β, θ, σ, φ, η, and π) show that, as their values rise, so does

the effective reproduction number. If their values are raised, it

suggests that they influence the spread of the disease within

the population. Furthermore, as their values rise, the factors

with negative sensitivity indices (ε,ω,µ, δ,µb, K, and p) have an

impact on the effective reproduction number, which will lower

the endemicity of the bacteria in the population. Figure 2 shows

the reproduction number’s sensitivity indices in relation to the

basic parameters.

4 Numerical simulation

To show the analytical findings for the proposed model, we

conducted a numerical computation [19, 27]. This is carried out

using a set of parameter values that are listed in the table below and

that in particular come from the literature, together with certain

parameter considerations. The Runge-Kutta method of order four

was used to execute numerical simulations of the model using the

built-in MAPLE function ode45. We considered different initial

conditions for the human and bacteria population. The following

initial conditions, S (0) = 10, 000 I (0) = 100 V (0) = 0 R (0) = 0

B (0) = 10, with parameters in Table 1 are used for simulation.
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FIGURE 6

Graphs showing the e�ect of varying η on bacteria population; (a) Bacteria population; (b) Infected population; (c) Susceptible population; (d)

Vaccinated population.

4.1 Representation of the model when
RE�< 1 and RE�> 1

Figure 3a demonstrates the dynamical behavior of bacteria

in the environment and susceptible, vaccinated, infected, and

recovered subpopulations. Additionally, the period is assumed to

be between 0 and 10 months, and the initial population size for

the compartmental population susceptible, vaccinated, infected,

recovered, and bacteria in the environment is assumed to be

respectively 10,000, 100, 0, 0, and 100. The numerical solution is

convergent to the DFE point E0. It indicates that there are no

bacteria in the environment or infected individuals for a long time

and shows that there is a disease-free state that is REff < 1.

The susceptible and vaccinated populations decline while

the number of infected grows, as can be seen in Figure 3b

above. Furthermore, the infected population is entirely above the

vaccinated compartment graph and, as time passes, the vaccinated

compartment graph approaches the time axis graph. This suggests

that the vaccinated population is close to zero and demonstrates

the inefficiency of the vaccination. We observed that the disease is

endemic when REff is greater than one.

4.2 The e�ect of varying δ and ϕ on the
population

Figures 4a–d above illustrates the impact of a combined effect

of vaccination rate and vaccine efficiency. One can observe

from Figure 4a that these combined effects allow reducing the

size of infected individuals, and Figure 4b shows the S. typhi

bacteria population as the number of vaccinations increases and
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FIGURE 7

Graphs showing the e�ect of varying ε on populations; (a) Infected population; (b) Bacteria population; (c) Recovered population.

its effectiveness become perfect. On the other side, the Figure 4c

vaccine population and Figure 4d recovered population grow

in number as the number of vaccinations increases and its

effectiveness become perfect. Thus, a simultaneous increase of the

effective vaccination rate and vaccine efficiency greatly reduced

the proportion of the infected population. Therefore, boosting and

improving the immunization rate as well as increasing the vaccine

efficacy is an effective control measure against typhoid.

4.3 The e�ect of varying β infected
population

The ingestion rate of S. typhi bacterium population is

directly correlated with the disease transmission rate, as shown

in Figures 5a–d below. Figures 5a, b demonstrate that, as the

ingestion rate mechanisms increases, both the bacterial and

infected populations increase.

Although the rate of disease transmission is inversely

proportional to the number of susceptible, recovered, and

vaccinated individuals, Figures 5c, d demonstrate that when

the rate of ingestion increases, the number of susceptible and

vaccinated individuals decreases. Therefore, ingestion rates are thus

reduced when efforts are made to expand access to clean water and

proper sanitation and hygiene for food handlers.

4.5 The e�ect of varying η on bacteria
population

In this section, we illustrated the effect of varying the parameter

value of η while the other parameters are fixed. From Figure 6a, the
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FIGURE 8

The e�ect of immunization in the infected human and bacteria population; (a) Infected population; (b) Bacteria population.

number of bacteria increases as the infectious individuals increase,

contaminating the environment with S. typhi. This again leads

to an increase in the number of infected people, as is shown

in Figure 6b. Conversely, from Figure 6c, increasing the value of

η brings a decrease in the number of susceptible people due to

the increment infectious individuals and S. typhi population. The

vaccine population also moves down, as is seen in the Figure 6d.

Therefore, we recommend working on strategies to reduce the

number of infections contaminating the environment with S. typhi.

such as avoiding raw fruit and vegetables, peeling fruit yourself, and

not eating the peel.

4.6 The e�ect of varying ε on bacteria
population

As illustrated in Figures 7a–c, we demonstrated how the

recovery of infected individuals affects the populations of bacteria,

infected people, and recovered people. When we treat individuals

with infections at higher rates with antibiotics and fluids, the

number of infectious individuals decreases, as shown in Figure 7a.

This leads to an increased number of recovered individuals, as

depicted in Figure 7b. As Figure 7c also demonstrates, an increase

of treatment to infectious individuals produces a reduction in

the number of S. typhi bacteria population in the environment.

Therefore, treatment of infected individuals is a good strategy

that significantly affects bacteria concentration reduction in

the environment.

4.7 The e�ect of immunization on human
and bacteria population

Figures 8a, b illustrates the significance of immunization in the

population. As illustrated in Figure 8a, the deficiency of vaccination

in the population increases the number of infected people and

puts the susceptible population at risk of infection; the number of

infected individuals drastically drops after the vaccination is made

available to the public. We can also observe from Figure 8b that

the presence of immunization in the human population reduces

the bacteria in the environment. Therefore, people should get

vaccinated against typhoid fever before visiting a high-risk area.

However, one should still use caution when eating, drinking, and

interacting with others because the typhoid vaccine is only 50–

80% effective.

The correlation between the Reff and β , ε, δ, ϕ, and η is

depicted in Figures 9a–d. Figure 9a illustrates how the vaccination

approaches can affect the likelihood of disease transmission within

a community. Working on decreasing transmission rate below

0.2 and increasing the immunity label of susceptible individuals

above 0.2 decreases the Reff below 20%. Therefore, boosting the

vaccination susceptible individuals at a higher rate dramatically

lowers Reff , which in turn lowers the probability of an outbreak.

Figure 9b illustrates how variations in the shedding rate

of environmental bacteria by infected individuals affects the

likelihood of disease transmission within a community. If the

disease transmission rate decreased below 0.4 and the shading rate

increased above 0.5, Reff can be reduced below 10%. Therefore,

implementing interventions targeting sanitary deficiencies and

promoting hygienic practices in the community can lower Reff ,

which in turn reduces the probability of disease persistence.

Figure 9c also illustrates how the immunity rate of susceptible

individuals, and consequently the recovery rate of vaccinated

individuals, affects the probability of disease transmission within

a community.

Boosting disease vaccination rates above 0.15 and increasing

the recovery rate of vaccinated individuals above 0.15 decreases

the Reff below 50%. Finally, Figure 9d shows that increasing the

recovery rate of vaccinated individuals above 0.15 and reducing

the disease transmission rate below 0.2 reduces the Reff below 20%.

Therefore, we should work on interventions in the community to
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FIGURE 9

A contour plot illustrates the relationship between (a) Re� with β and δ, (b) Re� with β and η, (c) Re� with δ and φ, and (d) Re� with β and ε.

lesser Reff , which in turn lowers the probability of an outbreak of

the disease.

5 Results and conclusion

In this work, we studied the dynamics of typhoid fever

transmission by taking into consideration S. typhi bacteria

population in the environment and dividing the people into

four subpopulations. After exploring a few mathematical

ideas, including boundedness and equilibrium investigation,

we estimated the effective reproduction number using the

next-generation matrix. Moreover, we evaluated stability and

confirmed that the proposed model is asymptotically stable both

locally and globally for both typhoid fever-free equilibrium and

endemic equilibrium points. The sensitivity analysis and numerical

simulation were presented to show the practical significance of

the parameters in the proposed typhoid model. By modifying

the model’s parameter values, a simulation study and evaluation

are carried out. The pictorial representation shows that when

the rates of β and η increase, the diseases propagate in the

community. On the other side, as the values of the parameters ε

and δ increase, the disease’s ability to replicate diminishes. Typhoid

vaccination rates have a substantial effect on the rate of disease

transmission. Therefore, improving immunization initiatives

is vital for controlling the transmission dynamics of typhoid

fever. Additionally, proper disposal of feces and urine should be

encouraged, and drinking water from domestic sources should
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be boiled or disinfected to eliminate bacteria. Additionally, it is

strongly suggested that fruits should be washed with fresh water

before consumption. Sanitation food and periodic medical exams

should be required.
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