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Optimal level and order of the 
Coiflets wavelet in the VAR time 
series denoise analysis
Intisar Ibrahim Elias  and Taha Hussein Ali *

Salahaddin University, Erbil, Iraq

In this research, there is significance on the accuracy of estimated parameters 
of time series models due to noise, which can be  addressed using wavelet 
shrinkage. Depending on the noise of the data, the wavelet with the appropriate 
level (the number of decomposition levels or scales used in the analysis) and 
order (the order 𝑁 of a Coiflets wavelet is the number of vanishing moments 
of the wavelet function, and it also implies that the scaling function has 2𝑁 
vanishing moments) that provides the best time series model is determined. In 
this research, an algorithm was proposed, and the level and order optimal of the 
Coiflets wavelet that provides the minimum Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) for the VAR time series model is determined 
with universal and minimax threshold methods with soft rule. A comparison was 
made between the efficiency of the proposed method and the traditional method, 
which relies on the level (L = 3) and order (N = 3) for the Coiflets wavelet, and it 
is the default value of the MATLAB program, through studying simulation and real 
data. Through the research results, the efficiency of the proposed method was 
reached in estimating the parameters of the VAR time series model, effectively 
treating noise, and determining the optimal Coiflets level and order.
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1 Introduction

Noise reduction is an important step in preprocessing multivariate time series data. It 
improves modeling and forecasting accuracy by optimizing for irrelevant fluctuations. 
Effective noise reduction that retains the underlying signals leads to better model performance 
in vector autoregressive (VAR) models. Vector autoregressive models are widely used in 
multivariate time series analysis, which captures interactions between different time series and 
their historical relationships. While autoregressive (AR) models applied to a single series, 
vector autoregressive models provide a more granular analysis of dynamic interdependencies, 
making them particularly useful in macroeconomics and finance to guide decision-making 
and policy evaluation (1).

Coiflets wavelet transforms are widely used to effectively remove noise in time series, 
which capture time and frequency information. Coiflets wavelet transforms, known for their 
correction and close symmetry, are particularly useful in signal processing. Therefore, the 
success of Coiflets-based noise removal largely depends on the selection of the optimal level 
and order of the Coiflets wavelet, which affects the efficiency of noise reduction and signal 
preservation (2).

Wavelets are a powerful mathematical tool widely used to analyze signals by decomposing 
them into different frequency components. They can be thought of as a “magnifying glass,” 
uncovering hidden patterns in time series at various scales. In this study, wavelet shrinkage is 
employed to improve parameter estimation in vector autoregressive (VAR) models. The 
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technique works by transforming time series data using wavelets, 
removing high-frequency noise through thresholding methods, and 
applying the VAR model to the denoised data. This approach not only 
enhances the accuracy of the model but also ensures a better 
representation of underlying patterns in noisy time series data, 
making it a valuable method for time series analysis (3).

The research problem addressed in this study concerns improving 
noise reduction in VAR models by determining the optimal level and 
order of the Coiflets wavelet, which enhances the model quality based 
on the lowest values of the AIC and BIC criteria, where lower values 
indicate optimal model performance. Achieving the lowest possible 
values of these criteria contributes to improving the accuracy of 
forecasts and providing clearer economic insights.

The study emphasizes AIC and BIC due to their widespread use 
and reliability in balancing model complexity with goodness of fit. 
Furthermore, it offers new insights into advancing noise reduction 
techniques in time series data analysis.

This research presents a new algorithm to determine the optimal 
level and order of the Coiflets wavelet to realize the lowest values of 
the AIC and BIC criteria in a VAR model for time series, utilizing 
universal and minimax thresholding methods with soft thresholding. 
The proposed algorithm was compared to the traditional method, 
which relies on a level and order of (L = 3 and N = 3) for the Coiflets 
wavelet in MATLAB program, through studying simulation using 
different sample sizes and noise levels, in addition to real data.

The research was divided into two main aspects: the theoretical 
aspect, which dealt in a simplified manner with the literature review, 
VAR model, model selection criteria, denoise time series data, 
wavelets, Coiflets, shrinkage techniques, soft threshold rule, and the 
proposed method. As for the applied aspect, an applied study (case 
study) was conducted on real-world data taken from Johansen’s 
Danish data set, which included key quarterly economic indicators 
such as log real money (M2), log real income (Y), bond rate (IB), and 
bank deposit rate (ID), during the period from 1974 to 1987, with a 
total of 55 observations (n = 55). The study was conducted using 
simulation and actual data to validate the algorithm. The statistical 
tools used in the application aspect were used, which included ready-
made programs such as Minitab V21, EViews V12, and MATLAB 
R2023a, in addition to programs specially designed in the MATLAB 
programming language. The research concludes with findings derived 
from both simulations and real-world applications.

2 Literature review

Recent studies ensure the prominence of wavelet transformations, 
especially the Coiflets wavelets, in improving time series prediction 
and noise reduction across different fields. Donoho and Johnstone (4) 
presented the importance of wavelet reduction techniques in removing 
noise from data, which contributed to improving the accuracy and 
stability of models. Özbek and Aliev (5) explored the limitations of the 
Kalman filter (KF) when applied to erroneous models, proposing the 
adaptive fading Kalman filter (AFKF) as a solution to address 
divergence issues through the dynamic adjustment of forgetting 
factors. Building on these foundations, Percival and Walden (6) 
underscored the importance of choosing the appropriate wavelet type 
and level of analysis in improving the accuracy of estimates extracted 
from time series, indicating that this directly affects the performance 

of predictive models (7). Later, Ozbek and Efe (8) introduced an 
adaptive formulation of the extended Kalman filter (EKF) to tackle 
non-linear estimation challenges in compartmental models, 
demonstrating its effectiveness in real-time parameter estimation 
through simulation studies. Collectively, these studies highlight the 
growing intersection between wavelet techniques and Kalman filters, 
setting the stage for robust, accurate, and adaptable predictive models.

Liu et al. (9) an adaptive wavelet transform model for time series 
data, focuses on improving prediction precision through adaptive 
techniques (9). This method is effective for enhancing noise reduction 
in VAR models. In addition, Peng et al. (10) integrates multiresolution 
wavelet rebuilding with deep learning in neural networks to forecast 
stock market movements. This research highlighted how wavelets help 
insulate noise, making them crucial for accurate financial predictions 
(11). Scout noise removal in financial market prediction using LSTM 
models, utilizing both the Kalman filter and wavelet transforms. Their 
returns revealed that wavelet-founded denoising significantly enhances 
prediction precision, especially in volatile financial environments. 
Additionally, Nafisi-Moghadam and Fattahi (12) showed the application 
of the Coiflets wavelets in association with ARIMA-GARCH 
transformations to predict volatility in financial markets, where several 
studies have shown the importance of wavelet transformations in 
improving the performance of time series models. This approach has 
been applied in price forecasting, where wavelet-based models 
significantly outperform traditional methods such as ARIMA (13). Ali 
et al. (14) showed the effectiveness of applying multivariate wavelet 
reduction within a VAR model to analyze expenditure and revenue data 
in the Kurdistan Region of Iraq. The results showed the superiority of 
this technique over traditional methods, which contributed to 
improving the accuracy of economic forecasts by removing noise from 
financial data and achieving accurate forecasts for the period between 
2022 and 2026 (14).

While previous studies have demonstrated the effectiveness of 
wavelet transformations in noise reduction and enhancing predictive 
models, limited attention has been given to determining the optimal 
levels and order of the Coiflets wavelets specifically tailored for VAR 
models. Furthermore, the integration of noise reduction techniques 
with model selection criteria, such as AIC and BIC, remains 
underexplored. This study addresses these gaps by determining the 
optimal level and order of the Coiflets wavelets based on minimizing 
the values of performance criteria, particularly AIC and BIC. To 
bridge these gaps, the study focuses on applying the Coiflets wavelets 
in VAR models to reduce AIC and BIC values, thereby improving 
model quality and prediction accuracy.

Compared to previous studies, this research introduces a novel 
approach by integrating the Coiflets wavelets with VAR models, 
prioritizing the minimization of AIC and BIC criteria. This optimal 
wavelet selection not only enhances noise reduction but also achieves a 
balance between model complexity and performance. This contribution 
highlights the novelty of the study and demonstrates its potential to 
improve economic and financial forecasting in multidimensional datasets.

3 Theoretical aspect

The theoretical aspect presented some basic concepts about 
research from the statistical side, as shown in the 
following paragraphs.
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3.1 VAR model

The vector autoregression (VAR) model is a widely recognized 
statistical approach in time series analysis and econometrics. It is 
primarily designed to explore the interrelationships among multiple time 
series variables. Unlike univariate models, which analyze a single variable 
in isolation, VAR models account for multiple variables simultaneously, 
allowing for the analysis of intricate dynamic interactions and feedback 
loops within the system. In this context, each variable is modeled as a 
linear function of its past values and past values of the other variables 
within the system (15). The VAR model also represents the linear 
relationships between a set of k endogenous variables observed over the 
same period (t = 1, 2, …, T). These variables are organized into a vector 
tY  with dimensions (kx1), where the elements of this vector correspond 

to the variable ity . The autoregressive vector of order (p) can 
be described by the following formula (16):

 
( )2

1 21 P
P t tB B B Y C e−∅ −∅ −…−∅ = +

 
(1)

Where,
tY is the vector of the time series variables at time t, with 

dimensions (k × 1).
C is the constant term vector of the autoregressive variables, with 

dimensions (k × 1).
i∅  are coefficient matrices to be  estimated, with dimensions 

(k × k) for each i = 1, 2, …, p.
te  is the vector with dimensions k × 1 of random error terms with 

a mean of zero ( )( )0tE e =  and a contemporaneous covariance 

matrix Ω, and dimensions n × n, while 
´

0ttE e e
  

=        for all k, 
indicating that these errors are uncorrelated across time.

B is the backshift operator.
The formulation of the VAR model allows an overall framework for 

analyzing the dynamic interactions among multiple time series variables. 
A VAR (1) model with two-time series variables (k = 2), denoted as (“yl” 
and “y2”), can be represented by the following system of equations (17):

 1, 1 11,1 1, 1 12,1 2, 1 1,t t t ty c y y e− −= +∅ +∅ +
 

(2)

 2, 2 21,1 1, 1 22,1 2, 1 2,t t t ty c y y e− −= +∅ +∅ +  (3)

Where:
1c  and 2c  are constants.

∅ ∅ ∅ ∅12,1 12,1 21,1, 22,1, , and the coefficients that show the 
relationship between the current and past values of the variables.

1 2t te and e : The error coefficient terms at time t are for 
each equation.

This system captures the linear interdependencies between the 
two time series variables, enabling the estimation of their dynamic 
behavior over time.

3.2 Model selection criteria

These criteria AIC and BIC play a crucial role in model selection 
by finding a balance between model accuracy and complexity. These 

criteria are extensively used throughout statistical and machine-
learning fields to determine the best model from a set of different 
models (18, 19):

3.3 Akaike information criterion (AIC)

The lower AIC value represents the best model, which indicates a 
good fit with fewer parameters and is calculated according to the 
following equation:

 ( )2 2AIC k Ln L= −
 

(4)

Where, k  is the number of parameters in the model for each 
k = 1, 2, and 3.

L  is the log-likelihood function of the model.
A lower AIC value indicates a better model, as it implies a good fit 

with fewer parameters.

3.4 Schwarz information criterion (SIC or 
BIC)

The Bayesian Information Criterion (BIC) or Schwarz information 
criterion called by SIC, SBC, and SBIC is another criterion used for 
model selection that also takes into account the goodness of fit and 
model complexity but supposes a stricter penalty for the number of 
parameters than AIC. It is calculated according to the 
following equation:

 ( ) ( )2BIC kLn n Ln L= −
 

(5)

Where:

 • n  is the number of observations.
 • k  is the number of parameters in the model for each k = 1, 

2, and 3.
 • L  is the log-likelihood function of the model.

Like AIC, a lower BIC value indicates a better model, but BIC 
tends to favor simpler models than AIC due to the ( )Ln n term.

3.5 Denoise time series data

Denoising time series data stands as a pivotal preprocessing step 
in modern scientific and engineering domains, essential for refining 
signal clarity and facilitating accurate data analysis and dependable 
forecasting. Various techniques are deployed for this purpose, 
spanning from fundamental methods like moving averages to 
advanced methodologies such as wavelet transforms, machine-
learning algorithms, and robust statistical techniques.

Wavelet denoising emerges as highly effective for handling 
non-stationary signals prevalent in time series data. This method 
involves decomposing the original time series into wavelet 
coefficients, applying thresholds to distinguish signal from noise, 
and reconstructing the denoised series accordingly. Optimal 
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selection of wavelet functions and decomposition levels is critical for 
achieving optimal denoising performance, where wavelet transforms 
adeptly decompose signals into distinct frequency components, 
enabling targeted noise reduction across multiple scales an 
advantageous capability for time-varying noise in non-stationary 
signals (20).

3.6 Wavelets

Wavelets are oscillatory functions characterized by an amplitude 
that initiates at zero, grows or shrinks, and then returns to zero in a 
repetitive cycle. These brief oscillations, known as wavelets, are 
integral to modern signal processing and time series analysis (2). 
According to Ali et al. (21), wavelets can be understood as small waves 
that, when grouped, can form larger or different waveforms. By 
stretching and shifting fundamental waves in various ways, a wavelet 
system can accurately model a diverse range of waveforms.

Wavelets are advanced mathematical tools in signal processing 
and time series analysis, known for effectively handling non-stationary 
signals. Unlike Fourier transformations, which decompose signals 
into sine and cosine functions, wavelets provide dual localization in 
time and frequency domains. The mother wavelet, ψ(t), serves as the 
primary function from which all other wavelets are generated through 
scaling and translation (7, 20).

 
( ),

1
a b

t bt
as

ψ ψ∗ − =  
   

(6)

Thus, (a) is the scaling parameter that controls the frequency and 
(b) is the translation parameter that controls the time localization.

The discrete wavelet transform (DWT) provides a set of 
coefficients in both time and frequency domains, summarizing the 
information of all observations with a reduced number of coefficients. 
DWT is widely used, especially when data contain contaminants or 
noise (22).

The discrete wavelet transform (DWT) denotes the 
coefficients utilized to represent the signal in terms of wavelets, 
as follows (6):

 
( ) ( ), ,, j k j kJ KY t W tψ=∑  

(7)

where ,j kW  are the wavelet coefficients and ( ),j k tψ  are the 
wavelet basis functions at scale j and translation k.

3.7 Coiflets wavelets

Coiflets wavelets, introduced by Ingrid Daubechies at the 
request of Ronald Coifman in the spring of 1989, represent a 
significant advancement in wavelet theory, particularly for signal 
processing tasks. Coifman’s idea extended the concept of vanishing 
moments to both scaling and wavelet functions, moving beyond 
the earlier focus solely on the wavelet function (Ψ). These are 
called wavelets (Coif N) where (Coif) is an abbreviation from 
(Coifman) and while the (N) represents the rank of the candidate, 

and there is a relationship between the rank of the candidate with 
the length of which (the length of the candidate = 6 N) and the 
number of moments vanishing of the function wavelet (4) is 
(L = 2 N), while the number of vanishing moments of the function 
of scale (ϕ) is (L₁ = 2 N-1). The wavelet properties can 
be integrated as follows: compact support, orthogonal, and near 
symmetry (23).

The mathematical form for the Coiflets wavelet ψ (t) that derived 
from the mother wavelet through scaling and translation, and it is 
calculated according to the following equation:

 
( ) ( )2, 2 2

j
j

j k t t kψ ψ= −
 

(8)

where (j) represents the scale parameter and (k) is the 
translation parameter.

The following equation show explains how the denoised signal 
denoisedY  is reconstructed using wavelet coefficients and wavelet basis 

functions after applying thresholding in the Coiflets wavelets 
denoising process. The equation is defined as:

 
( ), ,,

ˆdenoised j k j kJ KY W tψ=∑  
(9)

Thus, ,ˆ j kW  are the wavelet coefficients after applying thresholding 
to remove noise, and ( ),j k tψ  are the wavelet basis functions used for 
signal reconstruction.

Equation 9 represents the wavelet noise removal equation or 
wavelet reconstruction equation after thresholding, which clarifies the 
notion of wavelet denoising, in which the signal is processed to 
remove unwanted noise while preserving its major components. Thus, 
Wavelet denoising, particularly utilizing the Coiflets wavelets, is most 
applied in signal processing and time series analysis due to its 
efficiency in noise repression and keeping signal safety (20).

3.8 Universal threshold method

Universal thresholding is generally used in wavelet shrinkage to 
denoise data or images. The thresholding technique aims to select an 
optimal threshold value founded on the statistical characteristic of 
the data. The idea of universal thresholding selection is to estimate 
the noise level in the data and apply a threshold that adapts to this 
noise level. Universal thresholding is considered one common 
method for Stein’s unbiased risk estimate (SURE), which represents 
an unbiased estimate of the mean squared error (MSE) of the 
denoised signal. The threshold value was chosen to decrease and 
minimize this estimated MSE. The SURE threshold is commonly 
called the “universal threshold” as it does well across an extensive 
domain of data and noise kinds without required prior knowledge of 
the noise properties. Then, adaptively choosing the threshold based 
on the same data and universal thresholding can effectively remove 
noise while keeping important data characteristics (24, 25). The 
universal thresholding method is a powerful tool in wavelet shrinkage 
to denoise signals. It relies on the statistical characteristics of the data 
to adaptively determine an optimal threshold value. The universal 
threshold uλ  is calculated as follows:
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( )σλ = 2loˆ gu MAD n

 
(10)

Where (n) is the number of observations while ( ˆ )MADσ  is the 
standard deviation estimator derived from the wavelet coefficients’ 
median absolute deviation (MAD) at the first level. It is calculated 
as follows:

 5
ˆ

0.674MAD
MADσ =

 
(11)

The median absolute deviation (MAD) of the wavelet coefficients 
at the delicate scale is calculated as follows:

 
1,0 1,1 1, 1

2

, , , NMAD median W W W
−

 
 = …
    

(12)

Here, 1 1,0 1,1 1, 1
2

, , NW W W W
−

= … represent the discrete wavelet 

transformation coefficients at the first level for observations while the 
constant (0.6745) is the median of the standard normal distribution (26).

The universal threshold balances denoising and signal 
preservation by minimizing the mean squared error (MSE) of the 
denoised signal. This threshold adapts automatically to the noise level 
in the data, making it robust for a wide range of signals and noise types.

3.9 Practical example

Consider a signal with n = 150 observations and a calculated 
MAD = 0.25. The universal threshold can be computed as follows:

 1 Calculate the standard deviation estimator ( MADσ̂ ) using the 
median absolute deviation (MAD):

 
MAD

MAD 0.25 0.371
0.6745 0.67

ˆ
45

σ = = ≈

 2 Compute the universal threshold ( uλ ) using the formula:

 
( ) ( )MAD 2log 0.371 2log 150 1.45ˆu nλ σ= = ≈

This computed universal threshold ( 1.45uλ = ) is then applied to 
the wavelet coefficients. It effectively removes noise while retaining the 
essential features of the signal, ensuring both accuracy and reliability 
in the denoised result.

3.10 Minimax threshold method

The minimax threshold method is a powerful technique for 
denoising waves that aim to reduce the maximum risk or worst-case 

error, between the estimated and actual signals. This technique is 
particularly important in scenarios where the noise level is uncertain, 
as it results in a balanced threshold that effectively balances signal 
preservation and noise reduction (4).

Donoho and Johnstone (4) first proposed the thresholding 
method, which is an improvement on the global thresholding method. 
This approach focuses on an estimator f that achieves the minimax 
risk, formulated as:

 
( ) ( ) ( )inf ,f R FfR F SUP R f f∈=

 




 
(13)

Where ( ),R f f  is the risk function given by Equation 14:

 
( ) 2

1
1, ,

n
R f f E f f

n
 =  ∫ 

 
(14)

The equations ( )if f x=  and ( )if f x=   represent the true and 
estimated sample values, respectively. In contrast to the global threshold 
method, which often gives over-smoothing, the goal of the maximum 
threshold method is to minimize the overall mean square error (MSE) 
while being careful not to over-smooth the estimates (21, 27).

In the context of this research, the universal threshold and 
minimax threshold methods were applied to denoise the data set 
related to Johansen’s Danish dataset. This approach ensured data 
accuracy and reliability by removing unwanted noise while preserving 
critical economic patterns. The results confirmed the efficiency of the 
universal threshold method compared to the minimax threshold 
method through key statistical metrics, including AIC and BIC, 
supporting its role in enhancing prediction accuracy and 
model reliability.

3.11 Soft threshold rule

A method used in signal and image processing, especially about 
wavelet shrinkage, is called soft thresholding. Introduced by Donoho 
and Johnstone, it extends the hard thresholding method by shrinking 
wavelet coefficients toward zero to reduce the impact of noise. This 
method is mathematically defined as follows (21, 25):

 
( ) ( )+= −λ.ˆ max ,0n n nW sign W W

 
(15)

or

 
( )( )+= −λˆn n nW Sign W W

 
(16)

where

 

( )
1 0

0 0
1 0

n

n n

n

if W
Sign W if W

if W

 + >
 = = 
 − <   

(17)

and
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( ) ( ) ( )

( )+

 −λ −λ ≥ −λ =  
−λ <  

0

0 0
n n

n
n

W if W
W

if W
 

(18)

In these equations, nW  represents the wavelet coefficients and 
ë is the threshold value. Soft thresholding is particularly effective at 
noise suppression while preserving significant signal features, 
although it may introduce some signal distortion. Therefore, it is the 
focus of the application side of wave noise removal.

The soft threshold rule works by adjusting the values below the 
threshold to zero, whereas the values above the threshold are reduced 
to the threshold amount. This results in a continuous mapping 
function. It can balance noise reduction and signal preservation, so 
soft thresholding is a popular choice in wavelet-based noise removal 
applications and studies (26).

3.12 Proposed method

The proposed algorithm includes data de-noise of VAR time series 
using wavelet Coiflets with the universal and minimax thresholding 
estimation method, applying the soft rule through the following steps:

 1 Level of wavelet decomposition, specified as a positive integer 
≤ ( )2log n  where n is the number of observations in the time 
series. Set L = 1, 2, …, l, where l returns the maximum level L 
possible for a wavelet decomposition of data using the wavelet 
specified by the Coiflets wavelets (default value equal to 3).

 2 Denoises VAR time series data for all L, as defined in 
Equations (6–9).

 3 Estimating the parameters of the VAR Model for each L, 
according to Equations (1–3), and computing AIC and BIC for 
all models using Equations 4, 5.

 4 Determine the optimal level (OL) that gives the least AIC and 
BIC. The optimization algorithm applied in this study ensures 
computational efficiency by iteratively simulating the data 
1,000 times and systematically evaluating noise reduction 
using the Coiflets wavelets. The stopping criteria are defined 
based on achieving the lowest AIC and BIC values, with the 
algorithm halting after 1,000 iterations or upon determining 
the optimal level and order of the Coiflets wavelets. 
Convergence is analyzed by testing multiple levels [ 1k =  to 

( )2log n ] and evaluating the AIC values for different Coiflets 
orders ( 1coif  to 5coif ). The results demonstrate that the 
algorithm reliably identifies the optimal parameters, 
achieving robust denoising and improved VAR 
model performance.

 5 Denoises VAR time series data at OL for the Coiflets wavelets 
with order 1, 2, 3, 4, 5, and universal and minimax thresholding 
estimation methods using Equations 10–12 according to the 
universal thresholding and then use Equations 13, 14 in the 
case of minimax thresholding and applying the soft rule 
according to Equations 15–18.

 6 Determine the optimal order (OO) that gives the least AIC 
and BIC.

 7 Use OL and OO for the Coiflets wavelet with the universal and 
minimax thresholding estimation methods and apply the soft 
rule in data denoise.

 8 Use data denoise from point (7) in estimating the VAR model 
according to Equation 1.

4 Numerical results

The comparison between the proposed method and the classical 
approach without the Coiflets wave transformation will be made by 
using simulation data.

4.1 Simulation study

In this study, the focus was on evaluating the performance of 
Coiflets and thresholding techniques, such as universal and 
minimax, within a VAR model that was applied to the Danish 
Johansen dataset, which includes quarterly economic indicators such 
as log real money (M2), log real income (Y), bond rate (IB), and 
bank deposit rate (ID) from 1974 to 1987. The simulation is based 
on parameters estimated from the VAR model and aims to determine 
the optimal level and order of the Coiflets wavelets to remove noise 
using AIC and BIC criteria. This study relied on sample sizes of 55, 
150, 200, and 300 with 1,000 iterations to evaluate the performance 
of each method. The simulation experiment was conducted using 
different sample sizes (n) based on 2 jn = , where j represents the 
level and is a positive integer, with the maximum level denoted by 
(L). Three sample sizes were chosen for the simulation, as 
shown below:

 • For ( ) 55 . , 5 , 2 32j i e maxL n= = = = , which is less than the 
original sample sizes of 55n =

 • For ( ) 77 . , 7 , 2 128j i e maxL n= = = = , which is less than the 
original sample sizes of 150 200n and n= =

 • For ( ) 88 . , 8 , 2 256j i e maxL n= = = = , which is less than the 
original sample sizes of 300n =

In summary, the simulation used sample sizes based on powers of 
two, providing a robust range for analysis.

Therefore, an algorithm was proposed, and the level and 
order optimal of the Coiflets wavelet that provides the minimum 
values using AIC and BIC criteria values for the VAR time series 
model is determined with Universal and Minimax threshold 
methods with soft rule. Then, a comparison is made between the 
efficiency of the proposed method and the traditional method, 
which relies on the level (L = 3) and order (N = 3) for the Coiflets 
wavelet, and it is the default value of the MATLAB23 program 
(see Appendix 1), based on different sample sizes and noise 
levels. These values were used as a baseline for comparison. They 
represent average settings for the Coiflets wavelets, where levels 
and orders typically range from 1 to 5. The study systematically 
varied these parameters, optimizing them based on AIC and BIC 
to evaluate the improvements achieved by the proposed method 
over the default settings. This approach ensures a comprehensive 
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evaluation of Coiflets-based noise removal techniques in 
improving the performance of the VAR model, as shown:

4.1.1 VAR (2) model
This study examines the performance of various denoising 

methods applied to a four-dimensional VAR (2) model across sample 
sizes of 55, 150, 200, and 300, with 1,000 repetitions for robustness. 
The efficiency of these methods is evaluated using AIC and BIC 
criteria, where lower values represent optimal performance for the 
model. The Coiflets wavelets and different thresholding techniques are 
used to improve data fidelity, enhancing model accuracy and 
parameter estimation, as demonstrated in the following cases:

Case (1): The average Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) for a four-dimensional VAR (2) 
model were evaluated using Johansen’s Danish dataset. The data were 
denoised using the Coiflets wavelet transformation, effectively treating 
contamination based on this method. Conversely, a method without 
the Coiflets wavelet transformation retained 10% of the data as noise. 
This process allows for the study of the effect of noise on model 
performance and the testing of noise removal techniques, as shown in 
Table 1.

Case (2): Average AIC and BIC criteria for a four-dimensional 
VAR (2) model, with the remaining 30% representing noise data in the 
method without Coiflets wavelet transformation, as shown in Table 2.

Case (3): Average AIC and BIC criteria for a four-dimensional 
VAR (2) model, with the remaining 100% representing noise data in 
the method without the Coiflets wavelet transformation, as shown in 
Table 3.

5 Discussion

For all cases presented in Tables 1–3, the results demonstrate that 
for each sample size (55,150, 200, and 300), the proposed method 
using universal thresholding consistently achieved the lowest AIC and 
BIC values, denoted with an asterisk (*). This indicates that the 
method achieved optimal performance at an optimal level (L) of 4 
[where the maximum level is (5), depending on the sample size (55)]. 
Additionally, the method achieved an optimal level (L) of 5 (where the 
maximum level is (7, 7), depending on the sample size (150, 200), 
respectively, and an optimal level (L) of 6 [where the maximum level 
is (8), depending on the sample size (300)], alongside the optimal 
order (N) of 5 for each sample size (150, 200, and 300) while an 
optimal order (N) of 5 for Tables 1, 3, and an optimal order (N) of 4 
for Table 2, based on the sample size (55), highlighting its effectiveness 
in denoising VAR time series data. For Table 1, the remaining 10% 
represents noise data; for Table 2, the remaining 30% represents noise 
data; and for Table 3, the remaining 100% represents noise data in the 
method without the Coiflets wavelet transformation, in the context of 
a 4-dimensional VAR (2) model. The results are as follows Table 4:

In each scenario, the lowest AIC and BIC values correspond to the 
specified optimal levels (L) and orders (N), highlighting the best 
model configurations for each sample size.

For all Tables 1–3 above, the classical method, though effective, 
did not perform as well as the proposed method. Without data 
denoise, which did not utilize Coiflets wavelet, exhibited higher AIC 
and BIC values, indicating lower efficiency and poorer model fit than 
the other methods. Without the application of the Coiflets wavelets, 

TABLE 1 Average AIC and BIC criteria for a four-dimensional VAR (2) model (10% noise).

Sample size Method Wavelet Threshold Level Order AIC BIC

55

Classical Coiflets
Universal 3 3 −1520.8 −1449.8

Minimax 3 3 −1328.7 −1257.7

Proposed Coiflets
Universal 4* 5* −1723.3* −1652.4*

Minimax 4 5 −1416.5 −1345.6

Without Coiflets Wavelet – – – −997.1829 −926.2524

150

Classical Coiflets
Universal 3 3 −4505.5 −4397.6

Minimax 3 3 −3881.5 −3773.6

Proposed Coiflets
Universal 5* 5* −4652.2* −4544.3*

Minimax 5 5 −3981.1 −3873.2

Without Coiflets Wavelet – – – −2806.5 −2698.6

200

Classical Coiflets
Universal 3 3 −6003.5 −5885.1

Minimax 3 3 −5205.6 −5087.2

Proposed Coiflets
Universal 5* 5* −6174.6* −6056.2*

Minimax 5 5 −5327.6 −5209.2

Without Coiflets wavelet – – – −3760.0 3.641.6

300

Classical Coiflets
Universal 3 3 −9083.7 −8950.6

Minimax 3 3 −7935.4 −7802.3

Proposed Coiflets
Universal 6* 5* −9294.4* −9161.3*

Minimax 6 5 −8083.1 −7950.0

Without Coiflets wavelet – – – −5673.4 −5540.3

An asterisk (*) denotes the optimal level and order for the Coiflets wavelet corresponding to the minimum AIC and BIC values.
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TABLE 3 Average AIC and BIC criteria for a four-dimensional VAR (2) model (100% noise).

Sample size Method Wavelet Threshold Level Order AIC BIC

55

Classical Coiflets
Universal 3 3 −1812.9 −1742.0

Minimax 3 3 −1622.8 −1551.9

Proposed Coiflets
Universal 4* 5* −2015.6* −1944.7*

Minimax 4 5 −1709.4 −1638.5

Without Coiflets Wavelet – – – −1291.1 −1220.2

150

Classical Coiflets
Universal 3 3 −5322.0 −5214.1

Minimax 3 3 −4703.0 −4595.1

Proposed Coiflets
Universal 5* 5* −5462.8* −5354.9*

Minimax 5 5 −4803.1 −4695.2

Without Coiflets wavelet – – – −3627.2 −3519.3

200

Classical Coiflets
Universal 3 3 −7104.2 −6985.8

Minimax 3 3 −6307.4 −6189.0

Proposed Coiflets
Universal 5* 5* −7275.5* −7157.1*

Minimax 5 5 −6430.0 −6.31.1

Without Coiflets wavelet – – – −4859.6 −4741.2

300

Classical Coiflets
Universal 3 3 −10,733 −10,600

Minimax 3 3 −9589.0 −9455.9

Proposed Coiflets
Universal 6* 5* −10946* −10813*

Minimax 6 5 −9739.2 −9606.1

Without Coiflets wavelet – – – −7322.6 −7189.5

An asterisk (*) denotes the optimal level and order for the Coiflets wavelet corresponding to the minimum AIC and BIC values.

TABLE 2 Average AIC and BIC criteria for a four-dimensional VAR (2) model (30% noise).

Sample size Method Wavelet Threshold Level Order AIC BIC

55

Classical Coiflets
Universal 3 3 −1523.6 −1452.6

Minimax 3 3 −1326.2 −1255.3

Proposed Coiflets
Universal 4* 4* −1731.1* −1660.1*

Minimax 4 5 −1414.8 −1343.9

Without Coiflets Wavelet – – – −989.0169 −918.0864

150

Classical Coiflets
Universal 3 3 −4520.3 −4412.4

Minimax 3 3 −3878.4 −3770.5

Proposed Coiflets
Universal 5* 5* −4671.*7 −4563.8*

Minimax 5 5 −3980.4 −3872.5

Without Coiflets Wavelet – – – −2783.5 −2675.6

200

Classical Coiflets
Universal 3 3 −6025.1 −5906.7

Minimax 3 3 −5205.7 −5087.4

Proposed Coiflets
Universal 5* 5* −6201.1* −6082.7*

Minimax 5 5 −5330.4 −5212.0

Without Coiflets wavelet – – – −3729.5 −3611.1

300

Classical Coiflets
Universal 3 3 −9115.8 −8982.7

Minimax 3 3 −7937.2 −7804.1

Proposed Coiflets
Universal 6* 5* −9334.8* −9201.7*

Minimax 6 5 −8089.5 −7956.4

Without Coiflets wavelet – – – −5626.3 −5493.2

An asterisk (*) denotes the optimal level and order for the Coiflets wavelet corresponding to the minimum AIC and BIC values.
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the model fails to result in accurate parameter estimation and 
forecasting capabilities. The denoise approach serves as a baseline, 
highlighting the significance of denoising methods in enhancing 
model performance and demonstrating the efficacy of wavelet-
based denoising.

5.1 VAR (3) model

This study examines the performance of various denoising 
methods applied to a four-dimensional VAR (3) model across sample 
sizes of 55, 150, 200, and 300, with 1,000 repetitions for robustness. 
The efficiency of these methods is evaluated using AIC and BIC 
criteria. The Coiflets wavelets and different thresholding techniques 
are used to improve data fidelity, enhancing model accuracy and 
parameter estimation, as demonstrated in the following cases:

Case (1): The average Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) for a four-dimensional VAR (3) 
model were evaluated using Johansen’s Danish dataset. The data were 
denoised using the Coiflets wavelet transformation, effectively treating 
contamination based on this method. Conversely, a method without 
the Coiflets wavelet transformation retained 10% of the data as noise. 
This process allows for the study of the effect of noise on model 
performance and the testing of noise removal techniques, as shown in 
Table 5.

Case (2): Average AIC and BIC criteria for a four-dimensional VAR 
(3) model, with the remaining 30% representing noise data in the method 
without the Coiflets wavelet transformation, as shown in Table 6.

Case (3): Average AIC and BIC criteria for a four-dimensional 
VAR (3) model, with the remaining 100% representing noise data in 
the method without Coiflets wavelet transformation, as shown in 
Table 7.

6 Discussion

For all cases presented in Tables 5–7, the results demonstrate that 
for each sample size (150, 200, and 300), the proposed method using 

universal thresholding consistently achieved the lowest AIC and BIC 
values, denoted with an asterisk (*). This indicates that the method 
achieved optimal performance at an optimal level (L) of 4 [where the 
maximum level is (5), depending on the sample size] (55). 
Additionally, the method achieved an optimal level (L) of 5 [where the 
maximum level is (7, 7, and 8), depending on the sample size (150, 
200, and 300), respectively], alongside the optimal order (N) of 5 for 
each sample size (55, 150, 200, and 300), highlighting its effectiveness 
in denoising VAR time series data. For Table 5, the remaining 10% 
represents noise data; for Table 6, the remaining 30% represents noise 
data; and for Table 7, the remaining 100% represents noise data in the 
method without Coiflets wavelet transformation, in the context of a 
four-dimensional VAR (3) model. The results are as follows:

Across all tables, the lowest AIC and BIC values correspond to the 
optimal wavelet level (L = 5) and order (N = 5) for each sample size, 
indicating consistent model performance.

For all Tables 5–7 above, the classical method, though effective, 
did not perform as well as the proposed method. Without data 
denoise, which did not utilize Coiflets wavelet, exhibited higher AIC 
and BIC values, indicating lower efficiency and poorer model fit than 
the other methods. Without the application of the Coiflets wavelets, 
the model fails to result in accurate parameter estimation and 
forecasting capabilities. The denoise approach serves as a baseline, 
highlighting the significance of denoising methods in enhancing 
model performance and demonstrating the efficacy of wavelet-
based denoising.

For all Tables 1–3, 5–7 above, the efficiency of these methods is 
assessed using the Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC), which establish their minimum 
values. The results demonstrate that for each sample size (55,150, 200, 
and 300), both AIC and BIC values decrease as the percentage of noise 
or contamination in the data increases. These findings, presented in 
Table 1, through Table 8 support this observed trend. Thus, the inverse 
relationship between the level of noise and the AIC and BIC values is 
underscored across all tables.

Finally, for all cases presented in Tables 5–7, the results 
demonstrate that for each sample size (55,150, 200, and 300), the 
proposed method using universal thresholding with the soft rule to 

TABLE 4 Optimal performance (L, N) based on lowest AIC and BIC criteria for a four-dimensional VAR (2) model.

Table Sample 
size

Method Wavelet Threshold Level (L) Order (N) AIC BIC

Table 1 55 Proposed Coiflets Universal 4* 5* −1723.3* −1652.4*

150 Proposed Coiflets Universal 5* 5* −4652.2 −4544.3*

200 Proposed Coiflets Universal 5* 5* −6174.6 −6056.2*

300 Proposed Coiflets Universal 6* 5* −9294.4 −9161.3*

Table 2 55 Proposed Coiflets Universal 4* 4* −1731.1 −1660.1*

150 Proposed Coiflets Universal 5* 5* −4671.7 −4563.8*

200 Proposed Coiflets Universal 5* 5* −6201.1 −6082.7*

300 Proposed Coiflets Universal 6* 5* −9334.8 −9201.7*

Table 3 55 Proposed Coiflets Universal 4* 5* −2015.6 −1944.7*

150 Proposed Coiflets Universal 5* 5* −5462.8 −5354.9*

200 Proposed Coiflets Universal 5* 5* −7275.5 −7157.1*

300 Proposed Coiflets Universal 6* 5* −10946 −10813*

An asterisk (*) denotes the optimal level and order for the Coiflets wavelet corresponding to the minimum AIC and BIC values.
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TABLE 5 Average AIC and BIC criteria for a four-dimensional VAR (3) model (10% noise).

Sample size Method Wavelet Threshold Level Order AIC BIC

55

Classical Coiflets
Universal 3 3 −1568.4 −1466.0

Minimax 3 3 −1338.1 −1235.7

Proposed Coiflets
Universal 4* 5* −1833.3* −1730.9*

Minimax 4 5 −1444.7 −1342.3

Without Coiflets Wavelet – – – −993.0573 −890.6021

150

Classical Coiflets
Universal 3 3 −4720.7 −4564.8

Minimax 3 3 −3963.9 −3808.1

Proposed Coiflets
Universal 5* 5* −5022.3* −4866.4*

Minimax 5 5 −4103.1 −3947.3

Without Coiflets Wavelet – – – −2844.2 −2688.4

200

Classical Coiflets
Universal 3 3 −6323.1 −6152.2

Minimax 3 3 −5340.8 −5169.8

Proposed Coiflets
Universal 5* 5* −6689.4* −6518.4*

Minimax 5 5 −5508.1 −5337.1

Without Coiflets wavelet – – – −3821.5 −3650.5

300

Classical Coiflets
Universal 3 3 −9585.2 −9393.0

Minimax 3 3 −8167.7 −7975.5

Proposed Coiflets
Universal 5* 5* −10085* −9892.3*

Minimax 5 5 −8390.7 −8198.4

Without Coiflets wavelet – – – −5783.6 −5591.3

An asterisk (*) denotes the optimal level and order for the Coiflets wavelet corresponding to the minimum AIC and BIC values.

TABLE 6 Average AIC and BIC criteria for a four-dimensional VAR (3) model (30% noise).

Sample size Method Wavelet Threshold Level Order AIC BIC

55

Classical Coiflets
Universal 3 3 −1571.3 −1468.8

Minimax 3 3 −1335.6 −1233.1

Proposed Coiflets
Universal 4* 5* −1850.5* −1748.1*

Minimax 4 5 −1444.1 −1341.6

Without Coiflets Wavelet – – – −983.4381 −880.9829

150

Classical Coiflets
Universal 3 3 −4739.6 −4583.7

Minimax 3 3 −3960.0 −3804.2

Proposed Coiflets
Universal 5* 5* –5047.6* –4891.8*

Minimax 5 5 −4098.8 −3942.9

Without Coiflets Wavelet – – – −2817.4 −2661.6

200

Classical Coiflets
Universal 3 3 −6347.3 −6176.3

Minimax 3 3 −5338.4 −5167.4

Proposed Coiflets
Universal 5* 5* –6722.3* –6551.3*

Minimax 5 5 −5508.8 −5337.8

Without Coiflets wavelet – – – −3786.3 −3615.3

300

Classical Coiflets
Universal 3 3 −9619.7 −9427.4

Minimax 3 3 −8162.6 −7970.4

Proposed Coiflets
Universal 5* 5* –10127* –9934.4*

Minimax 5 5 −8385.6 −8193.4

Without Coiflets wavelet – – – −5729.2 −5537.0

An asterisk (*) denotes the optimal level and order for the Coiflets wavelet corresponding to the minimum AIC and BIC values.
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determine the optimal level and optimal order shows superior 
performance in terms of the Akaike Information Criterion (AIC) and 
the Bayesian Information Criterion (BIC). This method consistently 
achieved the lowest AIC and BIC values, denoted with an asterisk (*). 
Specifically, the four-dimensional VAR (3) time series model 
demonstrates more efficient performance, indicating an improved 
model fit, with lower AIC and BIC values than the 4-dimensional VAR 
(2) time series model, as shown in Tables 1–3.

6.1 Real data

The displayed graphs depict time series data from Johansen’s 
Danish dataset, focusing on key economic indicators: log real money 
(M2), log real income (Y), bond rate (IB), and bank deposit rate (ID) 
spanning the period from January 1974 to July 1987. A crucial first 
step in time series analysis is to plot the observations over time, 
commonly referred to as a time series plot (Figures 1, 2). This is a 
critical aspect of the analytical process, and researchers are consistently 
encouraged to generate such plots for any time series under 
investigation. By doing so, an initial insight can be gained into the 
potential characteristics of the series, particularly regarding its 
stability, by examining the patterns of fluctuations and identifying 
whether a secular trend is present. Furthermore, recognizing the 
existence or absence of seasonal variations is of equal importance. This 
preliminary evaluation provides the groundwork for conducting more 
precise stability tests. To ascertain whether these time series are 

stationary, we  will closely examine their visual properties and 
inherent trends.

7 Discussion

Visual inspection of Figures 1, 2 above suggests that all four-time 
series are non-stationary in the mean, indicating a trend despite 
being stationary in variance. Trends, level shifts, and varying 
volatility are observed over the 55 quarters. To verify this, stationarity 
tests such as the augmented Dickey––Fuller (ADF) should 
be applied. Additionally, the Perron test for structural breaks can 
be employed to identify any significant structural changes in the 
data, such as shifts in the mean or variance, which might indicate 
non-stationarity caused by external shocks or policy changes. If 
non-stationarity is confirmed, differing data, such as taking first 
differences, can remove trends and stabilize the variance. This step 
also mitigates the impact of structural breaks if detected. Subsequent 
analysis, including vector autoregression (VAR) modeling, should 
then be conducted on the differenced data to ensure accurate and 
reliable outcomes.

Specialized tests, such as the augmented Dickey–Fuller (ADF) 
tests, are employed to evaluate the stationarity of time series data. 
These tests are conducted based on the optimal lag periods, as shown 
in Table 9, to determine whether a time series is stable around a mean 
or linear trend or if it remains unstable due to the presence of a unit 
root. The hypotheses tested are as follows:

TABLE 7 Average AIC and BIC criteria for a four-dimensional VAR (3) model (100% noise).

Sample size Method Wavelet Threshold Level Order AIC BIC

55

Classical Coiflets
Universal 3 3 −1856.6 −1754.2

Minimax 3 3 −1624.7 −1522.2

Proposed Coiflets
Universal 4* 5* –2121.7* –2019.2*

Minimax 4 5 −1730.2 −1627.8

Without Coiflets Wavelet – – – −1281.6 −1179.2

150

Classical Coiflets
Universal 3 3 −5533.1 −5377.2

Minimax 3 3 −4782.9 −4627.0

Proposed Coiflets
Universal 5* 5* –5830.9* –5675.0*

Minimax 5 5 −4921.7 −4765.9

Without Coiflets wavelet – – – −3659.4 −3503.5

200

Classical Coiflets
Universal 3 3 −7412.2 −7241.2

Minimax 3 3 −6436.4 −6265.5

Proposed Coiflets
Universal 5* 5* –7781.3* –7610.3*

Minimax 5 5 −6607.1 −6436.1

Without Coiflets wavelet – – – −4915.8 −4744.9

300

Classical Coiflets
Universal 3 3 −11,231 −11,039

Minimax 3 3 −9815.3 −9623.0

Proposed Coiflets
Universal 5* 5* –11732* –11539*

Minimax 5 5 −10038 −9845.9

Without Coiflets wavelet – – – −7427.4 −7235.1

An asterisk (*) denotes the optimal level and order for the Coiflets wavelet corresponding to the minimum AIC and BIC values.
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 • Null Hypothesis H0: The data contain a unit root (it is 
non-stationary).

 • Alternative Hypothesis H1: The data do not contain a unit root 
(it is trend stationary).

Stationary I(1) *: The null hypothesis is rejected 
(  Test statistic ≥   critical value ) at a significance level = 0.05. Or 
p  ≤ 0.05.

8 Discussion

Table 9 shows the ADF stationarity test results showing that all 
variables (M2, Y, IB, and ID) are non-stationary at their levels as the 
null hypothesis of unit root cannot be rejected. However, when these 
variables differ for the first time, the null hypothesis is rejected, 

indicating that the first differences of all variables are stationary and 
integrated from the first order, I(1). The ADF stationarity test results 
are as follows:

 • First Difference for M2 (log real money): The absolute test statistic 
is 3.027991, greater than the absolute critical value of 1.947248 (the 
p-value is 0.0031 < 0.05), indicating that the null hypothesis is 
rejected. Therefore, the first difference of M2 is stationary I(1).

 • First Difference for Y (log real income): The absolute test statistic 
is 6.041139, greater than the absolute critical value of 1.947119 
(the p-value is 0.0000 < 0.05), indicating that the null hypothesis 
is rejected. Therefore, the first difference of Y is stationary [I (1)].

 • First Difference for IB (bond rate): The absolute test statistic is 
5.300421, greater than the absolute critical value of 1.947119 (the 
p-value is 0.0000 < 0.05), indicating that the null hypothesis is 
rejected. Therefore, the first difference of IB is stationary [I (1)].

TABLE 8 Optimal performance (L, N) based on lowest AIC and BIC criteria for a four-dimensional VAR (3) model.

Table Sample 
size

Method Wavelet Threshold Level (L) Order (N) AIC BIC

Table 4 55 Proposed Coiflets Universal 4* 5* −1833.3* −1730.9*

150 Proposed Coiflets Universal 5* 5* −5022.3* −4866.4*

200 Proposed Coiflets Universal 5* 5* −6689.4* −6518.4*

300 Proposed Coiflets Universal 5* 5* −10085* −9892.3*

Table 5 55 Proposed Coiflets Universal 4* 5* −1850.5* −1748.1*

150 Proposed Coiflets Universal 5* 5* −5047.6* −4891.8*

200 Proposed Coiflets Universal 5* 5* −6722.3* −6551.3*

300 Proposed Coiflets Universal 5* 5* −10127* −9934.4*

Table 6 55 Proposed Coiflets Universal 4* 5* −2121.7* −2019.2*

150 Proposed Coiflets Universal 5* 5* −5830.9* −5675.0*

200 Proposed Coiflets Universal 5* 5* −7781.3* −7610.3*

300 Proposed Coiflets Universal 5* 5* −11732* −11539*

An asterisk (*) denotes the optimal level and order for the Coiflets wavelet corresponding to the minimum AIC and BIC values.

FIGURE 1

Time series plot using Johansen’s Danish dataset.
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 • First Difference for ID (bank deposit rate): The absolute test 
statistic is 5.292583, greater than the absolute critical value of 
1.947119 (the p-value is 0.0000 < 0.05), indicating that the null 
hypothesis is rejected. Therefore, the first difference of ID is 
stationary [I (1)].

This observation strongly suggests that the series achieve 
stationarity at their first differences. This is confirmed by the results of 
the augmented Dickey–Fuller test.

8.1 Perron test for structural breaks

Purpose of the Perron test, when working with time series data, it 
is often observed that a change has occurred in the behavior of a 
variable of interest (normally at its mean). The event may occur due 
to a change in the economic environment or the data environment. 
The test uses the augmented Dickey–Fuller test to identify the specific 
time when a single shift occurs. Once the date (or dates) of a unit root 
change is revealed, the researcher can take the structural adjustment 

into account. The structural adjustment arises by considering different 
patterns of the series, adding an intercept or a trend to the model, 
carrying out a dummy regression, or applying a weighted average to 
the time series (8, 28). In this study, the Perron test was applied to 
identify potential structural breaks in the time series data. This test 
serves as a critical tool for detecting significant changes in variable 
behavior, which may indicate structural shifts that affect the stability 
and predictive accuracy of the model. According to the results, if the 
absolute value of the T-Stat exceeds 1.96, a structural break is detected. 
However, all variables in this study showed no significant structural 
breaks at the 5% significance level, as shown in Table 10.

9 Discussion

Table 10 displays the results of the Perron test, confirming the 
absence of significant structural breaks in all variables (M2, Y, IB, and 
ID). The absolute T-statistics for each variable were below the critical 
threshold of 1.96, indicating no structural break at the 5% significance 
level. The specific values are as follows:

FIGURE 2

Analysis of the general trend using Johansen’s Danish dataset.

TABLE 9 Augmented Dickey–Fuller test for Johansen’s Danish dataset.

Data Case Form Lag Test statistics Critical value P-value at 
5%

Decision I(d)

M2 level None (Constant, Linear Trend) 2 1.122973 −1.947248 0.9303 Non-Stationary I(0)

Diff (M2) First Difference None (Constant, Linear Trend) 1 −3.027991 −1.947248 0.0031* Stationary I(1)

Y level Constant, Linear Trend 0 −2.111411 −3.495295 0.5278 Non-Stationary I(0)

Diff (Y) First Difference None (Constant, Linear Trend) 0 −6.041139 −1.947119 0.0000* Stationary I(1)

IB level None (Constant, Linear Trend) 1 −0.981408 −1.947119 0.2883 Non-Stationary I(0)

Diff (IB) First Difference None (Constant, Linear Trend) 0 −5.300421 −1.947119 0.0000* Stationary I(1)

ID level Constant 1 −2.435447 −2.917650 0.1372 Non-stationary I(0)

Diff (ID) First Difference None (Constant, Linear Trend) 0 −5.292583 −1.947119 0.0000* Stationary I(1)

Stationary I(1) *: The null hypothesis is rejected (|Test statistic |≥|critical value|) at significance level = 0.05. Or p-value ≤ 0.05.
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 • M2: T-Stat values are 1.1942, −1.4442, −0.0444, and 1.0837. All 
are below 1.96, confirming no structural break.

 • Y: T-Stat values are 0.4009, −0.4675, 0.1540, and 0.2655, well 
below 1.96.

 • IB: T-Stat values are −0.1788, 0.6019, −0.5213, and − 0.1923, 
none of which exceed 1.96.

 • ID: T-Stat values are −1.1917, 1.8052, −0.3902, and − 0.8921, all 
below the threshold.

These findings suggest that the time series data for all variables 
remained stable during the analyzed period. The absence of structural 
breaks supports the assumption that the first differencing successfully 
addressed potential non-stationarity, enhancing the reliability of the 
VAR model in capturing dynamic relationships among the variables. 
This stability underscores the robustness of the model and its 
suitability for accurate time series forecasting.

10 Discussion

Figure  3 represents the structural break analysis for the four 
economic variables (M2, Y, IB, and ID) using the Perron test. The blue 
line illustrates the stability of the time series after applying the first 
difference, whereas the red dashed line indicates the hypothetical 
structural break point at observation 28 (the midpoint of the total 55 
observations). Visual inspection reveals no significant changes or 

abrupt breaks in the trends before or after this point, suggesting the 
absence of major structural breaks.

The results in Table 10 support this analysis, with the absolute 
values of the T-statistics (T-Stat) as follows:

 • M2: (1.1942, 1.4442, 0.0444, 1.0837)
 • Y: (0.4009, 0.4675, 0.1540, 0.2655)
 • IB: (0.1788, 0.6019, 0.5213, 0.1923)
 • ID: (1.1917, 1.8052, 0.3902, 0.8921)

All values are below the critical threshold of 1.96, indicating no 
significant structural breaks. This confirms the stability of the data and 
supports the reliability of the VAR model in analyzing the dynamic 
relationships between variables.

These findings are essential in constructing a vector autoregressive 
(VAR) model, as VAR models typically require stationary data to 
produce accurate and interpretable results.

This study evaluates the effectiveness of Coiflets transforms and 
thresholding strategies on a 4D vector autoregressive model for the 
Danish Johansen dataset. The aim is to identify the optimal model by 
using the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) to determine the optimal level and order 
of the Coiflets wavelets to remove noise within the VAR framework, 
ensuring stationarity for reliable and steady model estimates and 
interpretations, as demonstrated in Table 11. Sample sizes for n = 55 
were used in the actual data experiment. These sample sizes were 

TABLE 10 Perron test for structural breaks using Johansen’s Danish dataset.

Variable Coeff_1 Coeff_2 Coeff_3 Coeff_4 T-Stat_1 T-Stat_2 T-Stat_3 T-Stat_4 Structural 
break

M2 0.0157 −0.0012 −0.0015 0.0012 1.1942 −1.4442 −0.0444 1.0837 No

Y 0.0042 −0.0003 0.0042 0.0002 0.4009 −0.4675 0.1540 0.2655 No

IB −0.0007 0.0002 −0.0056 −0.0001 −0.1788 0.6019 −0.5213 −0.1923 No

ID −0.0032 0.0003 −0.0027 −0.0002 −1.1917 1.8052 −0.3902 −0.8921 No

Yes: If the absolute value of T-Stat exceeds 1.96, a structural break is detected at a 5% significance level. No: In this study, all variables showed no significant structural breaks, as the absolute 
value of T-Stat was ≤1.96 for all cases.

FIGURE 3

Perron test for structural breaks plot using Johansen’s Danish dataset.
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defined as 2 jn = , where j is a positive integer that represents the level 
and L is the maximum level. For instance, n = 32, which is a lower 
sample size than the original sample size of n = 55, is obtained when 
j = 5 (max L = 5).

11 Discussion

Table  11 shows that the proposed method using the Coiflets 
wavelet transforms with universal thresholding at the optimal level 
(L = 5) and order (N = 5) for the VAR (3) model outperforms other 
VAR models with different orders (1 and 2), as indicated by an asterisk 
(*). This method achieves the lowest AIC and BIC values of −3293.7 
and − 3191.3, respectively, underscoring its effectiveness in removing 
noise and improving model fit than both the classical approach and 
the approach without wavelet transforms. Although the classical 
method remains effective, it provides higher AIC and BIC values, and 
models without Coiflets transforms perform even worse. These results 
indicate that the proposed method is highly effective for noise removal 
and provides greater model accuracy, making it an optimal choice for 
analyzing complex time series data. Proposed AR (3) model for 
stationary time series data.

11.1 Proposed AR (3) model for stationary 
time series data

As described in the theoretical framework, the AR (3) model for 
stationary time series data, using the proposed method, demonstrates 
superior performance, particularly when applying Coiflets wavelet 
transformations and universal thresholding at the optimal level (L = 5) 
and order (N = 5). Consequently, the four-dimensional VAR (3) 
model with a constant term was selected based on achieving the lowest 
AIC and BIC values. Table 11 presents the estimation results for this 
model, and the mathematical form of the VAR (3) model is as follows:
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12 Discussion

Table 12 presents the estimation results of the VAR (3) model, 
highlighting statistically significant coefficients. For instance, the 
constant for the first variable ( 62.585 10−× ) has a T-statistic of 3.0143 
and a p-value of 0.0026, while the AR {3} (1,1) coefficient shows a 
T-statistic of 39.6224 and a p-value of 0, demonstrating strong 

TABLE 11 Average AIC and BIC criteria for a four-dimensional VAR models.

Models Method Wavelet Threshold Level Order AIC BIC

VAR(1)

Classical Coiflets
Universal 3 3 −1742.0 −1702.6

Minimax 3 3 −1594.4 −1555.0

Proposed Coiflets
Universal 5* 4* −2565.4* −2525.9*

Minimax 5 4 −1929.4 −1890.0

Without Coiflets Wavelet – – – −1217.9 −1178.5

VAR(2)

Classical Coiflets
Universal 3 3 −1983.7 −1912.7

Minimax 3 3 −1628.0 −1557.1

Proposed Coiflets
Universal 5* 4* −3168.4* −3097.5*

Minimax 5 4 −1906.7 −1835.8

Without Coiflets wavelet – – – −1185.8 −1114.9

VAR(3)*

Classical Coiflets
Universal 3 3 −1989.1 −1886.6

Minimax 3 3 −1594.5 −1492.1

Proposed Coiflets
Universal 5* 5* −3293.7* −3191.3*

Minimax 5 4 −1887.0 −1784.5

Without Coiflets wavelet – – – −1144.9 −1042.4

An asterisk (*) denotes the optimal level and order for the Coiflets wavelet corresponding to the minimum AIC and BIC values.
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significance. Additionally, AR {3} (4,4) with a T-statistic of 3.7853 and 
a p-value of 0.00015 indicates a substantial effect of the third lag on 
the fourth variable. These results underline the importance of lags in 
explaining temporal dynamics and support the reliability of the VAR 
(3) model in capturing relationships among variables.

Figure 4 compares observed data (blue lines) with predictions (red 
lines) for four time series variables (yo1, yo2, yo3, and yo4). The 
model shows strong performance for yo1 and yo2, effectively 
capturing the dynamics, while slight deviations in yo3 and yo4 suggest 
room for refinement. Overall, the VAR (3) model, incorporating the 
Coiflets wavelet transformations and universal thresholding, remains 
robust, although further optimization could improve accuracy for 
certain variables.

Figure 5 presents the diagnostic results for the residuals of the 
proposed VAR (3) model, confirming that it is well-specified and 
effectively captures the dynamics of the data. Residuals for all variables 
(M2, Y2, IB, and ID) fluctuate around the zero line, indicating no 
systematic bias in predictions. Most autocorrelation coefficients fall 
within the confidence intervals, demonstrating uncorrelated residuals 
and stable error variance. These findings validate the model’s 
suitability for forecasting and its reliability in analyzing complex time 
series data.

13 Conclusion

The research presents many important conclusions in the analysis 
of both the simulation study and the real data. The research led to the 
main conclusion from the simulation study analysis, which is that the 
proposed method with universal thresholding consistently 
outperforms the classical and without the Coiflets wavelet 
transformations methods, achieving the lowest AIC and BIC values 
for all sample sizes (55, 150, 200, and 300) in the VAR (2) and VAR (3) 
models. While the classical method is effective, it underperforms 
compared to the proposed approach. Higher AIC and BIC values in 
models without Coiflets wavelet application highlight the importance 
of wavelet-based denoising for enhancing model accuracy in 
parameter estimation and forecasting.

This study shows that Coiflets wavelet transformations effectively 
denoised the data, demonstrating robustness even in the presence of 
outliers. The universal threshold method consistently presented better 
AIC and BIC results across all sample sizes than the minimax 
threshold, especially in larger samples where it shows superior model 
fit and accuracy. In addition, optimal wavelet levels and orders were 

TABLE 12 Presents the estimation results for the AR-stationary 
4-dimensional VAR (3) model.

Parameter Value Standard 
error

t 
statistic

P-value

Constant (1) 2.585e-06 8.5757e-07 3.0143 0.0025756

Constant (2) 0.00031071 0.00025878 1.2007 0.22988

Constant (3) 0.00079328 0.00031922 2.485 0.012955

Constant (4) −0.0020792 0.0010526 −1.9753 0.048238

AR {1} (1,1) 2.9657 0.023969 123.7341 0

AR {1} (2,1) −5.1873 7.2327 −0.7172 0.47325

AR {1} (3,1) −18.8326 8.9222 −2.1108 0.034794

AR {1} (4,1) 51.8337 29.4204 1.7618 0.078098

AR {1} (1,2) −0.00069577 0.0002923 −2.3803 0.017299

AR {1} (2,2) 2.2004 0.088204 24.9465 2.3313e-137

AR {1} (3,2) 0.20346 0.10881 1.8699 0.061502

AR {1} (4,2) 0.94509 0.35879 2.6341 0.0084351

AR {1} (1,3) 0.00021428 0.00019768 1.0839 0.27839

AR {1} (2,3) −0.19171 0.059652 −3.2138 0.0013098

AR {1} (3,3) 0.91774 0.073586 12.4716 1.0666e-35

AR {1} (4,3) 0.42033 0.24264 1.7323 0.083223

AR {1} (1,4) −0.00026865 9.6995e-05 −2.7698 0.0056097

AR {1} (2,4) −0.04643 0.029269 −1.5863 0.11266

AR {1} (3,4) −0.063613 0.036106 −1.7618 0.078096

AR {1} (4,4) 1.5728 0.11906 13.2102 7.6618e-40

AR {2} (1,1) −2.9394 0.048419 −60.7072 0

AR {2} (2,1) 10.223 14.6108 0.69969 0.48412

AR {2} (3,1) 37.5012 18.0237 2.0807 0.037465

AR {2} (4,1) −103.2519 59.4319 −1.7373 0.082331

AR {2} (1,2) 0.0010047 0.00045084 2.2285 0.02585

AR {2} (2,2) −1.9284 0.13604 −14.1747 1.3135e-45

AR {2} (3,2) −0.26037 0.16782 −1.5514 0.1208

AR {2} (4,2) −1.4301 0.55338 −2.5842 0.0097596

AR {2} (1,3) −2.1837e-05 0.000101 −0.21621 0.82883

AR {2} (2,3) 0.0043209 0.030478 0.14177 0.88726

AR {2} (3,3) −0.54465 0.037597 −14.4865 1.4752e-47

AR {2} (4,3) −0.092642 0.12397 −0.74728 0.4549

AR {2} (1,4) 0.00021591 0.00013665 1.5801 0.11409

AR {2} (2,4) 0.075699 0.041234 1.8358 0.066383

AR {2} (3,4) 0.043166 0.050866 0.84863 0.39609

AR {2} (4,4) −1.3125 0.16773 −7.8252 5.0697e-15

AR {3} (1,1) 0.97356 0.024571 39.6224 0

AR {3} (2,1) −5.0591 7.4144 −0.68234 0.49503

AR {3} (3,1) −18.8473 9.1464 −2.0606 0.039339

AR {3} (4,1) 51.5995 30.1595 1.7109 0.087103

AR {3} (1,2) −0.00064083 0.00026076 −2.4576 0.013989

AR {3} (2,2) 0.64249 0.078686 8.1653 3.2077e-16

AR {3} (3,2) 0.11804 0.097066 1.216 0.22397

(Continued)

AR {3} (4,2) 0.81687 0.32007 2.5522 0.010705

AR {3} (1,3) −8.1311e-06 0.00011718 −0.06939 0.94468

AR {3} (2,3) −0.036711 0.03536 −1.0382 0.29918

AR {3} (3,3) 0.2583 0.04362 5.9217 3.1857e-09

AR {3} (4,3) 0.27551 0.14383 1.9155 0.055434

AR {3} (1,4) −0.00017037 0.00010065 −1.6927 0.090508

AR {3} (2,4) −0.072574 0.030372 −2.3895 0.01687

AR {3} (3,4) −0.086546 0.037466 −2.31 0.020888

AR {3} (4,4) 0.46764 0.12354 3.7853 0.00015353

TABLE 12 (Continued)
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identified, with the proposed method achieving the best performance 
in reducing noise across all contamination levels, as evidenced in 
Tables 1–6. As noise levels increase, AIC and BIC values decrease 
across all models and sample sizes, demonstrating an inverse 
relationship consistently supported by the data.

From real data analysis, it becomes obvious that treating instability 
by differencing is necessary to obtain reliable estimates for the VAR 
model. This supports the augmented Dickey–Fuller tests, which prove 
that the variables become stationary after the first differentiation and 
show insignificant autocorrelations. From this study, we concluded 
that higher order VAR models (p = 1, 2, 3) consistently achieve lower 
AIC and BIC values, which indicates their strong effectiveness in 
capturing the underlying time series dynamics. Based on the Coiflets 
wavelet transformations and universal thresholds, the proposed 
method consistently gives a superior approach that achieves the lowest 
AIC and BIC values. The noise removal wavelet-based is necessary to 
significantly improve the model performance, as the VAR (3) model 
shows the best fit and accurately captures the time series dynamics. 
Diagnostic tests validated the model’s robustness, confirming an 
absence of autocorrelation and substantial heterogeneity, enhancing 
the reliability of the predictions. Universal thresholding outperformed 
the minimax method, establishing itself as the most efficient technique 

for wavelet-based noise removal in complex time series data. This 
adaptability of the method suggests it can be effectively applied to 
other intricate time series datasets that require accurate noise 
reduction and precise modeling for improved predictive outcomes.

14 Recommendations

 • Utilize the proposed wavelet method even in the absence of data 
contamination to continuously improve the performance and 
accuracy of the model.

 • Explore alternative wavelet families, including Coiflets, 
Daubechies, Symlets, Biorthogonal, and Reverse Biorthogonal, 
to identify the most effective levels and orders for noise removal 
in complex time series.

 • Employ higher order VAR models for analyzing complex 
economic data to better capture dynamic patterns in time series.

 • Future studies should focus on integrating wavelet shrinkage 
techniques, which address noise in both time and frequency 
domains, with the adaptive Kalman filter. The adaptive Kalman 
filter is particularly known for its ability to handle system 
uncertainties and its iterative capabilities in real-time parameter 

FIGURE 4

Fit of the proposed VAR (3) model across four different time series variables.
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estimation. This integration aims to develop a more robust, 
precise, and efficient model for noise reduction and improved 
forecasting, particularly in dynamic and uncertain environments. 
Such an approach holds significant potential for applications in 
economic systems, where accurate time series forecasting is 
critical for policymaking, and in climate modeling, where 
reducing noise in complex datasets can significantly enhance 
prediction reliability.
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