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Usually, convolution refers to Laplace convolution in the literature, but Mellin

convolutions can yield very ueful results. This aspect is illustrated in the coming

sections. This study deals with Mellin convolutions of products and ratios.

Functions belonging to the pathway family of functions are considered. Several

types of integral representations, their equivalent representations in terms of

G and H-functions, and their equivalent computable series representations are

examined in this study.
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1 Introduction

Laplace convolutions involving products of two functions are widely known in the

literature (see [1, 2]), but Mellin convolutions of products and ratios are not widely used

in the literature. Here, we examine Mellin convolutions of products and ratios involving

some functions belonging to the pathway family of functions. The pathway family of

functions was introduced byMathai [3] for real-valued scalar functions with the arguments

being rectangular matrices in the real domain. These results were extended to the complex

domain in Mathai and Provost [4]. Here, we consider the real scalar variable case first, and

then, some generalizations are also considered. Let x1 > 0 and x2 > 0 be real positive

scalar variables associated with the functions f1(x1) and f2(x2), respectively, and with the

joint function f1(x1)f2(x2) the product. Then, theMellin transforms of f1 and f2, withMellin

parameter s, and denoted byMf1 (s) andMf2 (s), are the following:

Mf1 (s) =

∫ ∞

0
xs−1
1 f1(x1)dx1 andMf2 (s) =

∫ ∞

0
xs−1
2 f2(x2)dx2 (1.1)

whenever the integrals are convergent. Let u = x1x2. Let g1(u) be the function associated

with u. Then, the Mellin transform of g1(u) is the following:

Mg1 (s) =

∫ ∞

0
us−1g1(u)du =

∫ ∞

0

∫ ∞

0
(x1x2)

s−1f1(x1)f2(x2)dx1 ∧ dx2 = Mf1 (s)Mf2 (s)

(1.2)

since the joint function of x1 and x2 is assumed to be the product f1(x1)f2(x2). Consider the

transformation

u = x1x2, v = x2 or v = x1 ⇒ dx1 ∧ dx2 =
1

v
du ∧ dv

and the joint function of u and v is 1
v f1(

u
v )f2(v) or 1

v f1(v)f2(
u
v ). Then, g1(u) is
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the following:

g1(u) =

∫

v

1

v
f1(

u

v
)f2(v)dv =

∫

v

1

v
f1(v)f2(

u

v
)dv. (1.3)

But, from Equation 1.2, g1(u) is available as the inverse Mellin

transform ofMf1 (s)Mf2 (s). That is,

g1(u) =
1

2π i

∫ c+i∞

c−i∞
Mf1 (s)Mf2 (s)u

−sds, i =
√

(−1) (1.4)

whenever the inverse Mellin transform exists. From

Equations 1.3, 1.4, we have

g1(u) =

∫

v

1

v
f1(

u

v
)f2(v)dv =

∫

v

1

v
f1(v)f2(

u

v
)dv

=
1

2π i

∫ c+i∞

c−i∞
Mf1 (s)Mf2 (s)u

−sds (1.5)

This Equation 1.5 is the Mellin convolution of a product

property.

When x1 > 0 and x2 > 0 are real scalar random variables with

the densities f1(x1) and f2(x2), respectively, and when x1 and x2 are

statistically independently distributed, then

Mf1 (s) = E[xs−1
1 ],Mf2 (s) = E[xs−1

2 ],

E[(x1x2)
s−1] = E[xs−1

1 ]E[xs−1
2 ] = Mf1 (s)Mf2 (s) (1.6)

due to statistical independence of x1 and x2, where E[·] denotes

the expected value of [·]. The density of u = x1x2, denoted

by g1(u), is available as the first part of Equation 1.5 if we use

transformation of variables and as the second part of Equation 1.5

if we use the result of arbitrary moments uniquely determining the

corresponding density. Whenever f1(x1) and f2(x2) are statistical

densities, we can also give a statistical interpretation of the Mellin

convolution of a product as the unique density of the product

of independently distributed real scalar positive random variables

x1 and x2. Thus, the results in Equations 1.1–1.5 can be given

statistical interpretations also whenever the functions f1 and f2 are

statistical densities.

For the real scalar positive variables case, the pathway family

consists of the generalized type-1 beta family given by

p1(x) =
δa

α
δ Ŵ( α

δ
+ β)

Ŵ( α
δ
)Ŵ(β)

xα−1(1− axδ)β−1, 0 ≤ x ≤ 1, a > 0,

α > 0,β > 0, 1− axδ > 0 (1.7)

and zero elsewhere, with the standard form given by

p11(x) =
Ŵ(α + β)

Ŵ(α)Ŵ(β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1,α > 0,β > 0

and zero elsewhere; the generalized type-2 beta model is given by

p2(x) =
δa

α
δ Ŵ( α

δ
+ β)

Ŵ( α
δ
)Ŵ(β)

xα−1(1+ axδ)−( α
δ
+β), 0 ≤ x < ∞ (1.8)

for a > 0,α > 0,β > 0, δ > 0 and zero elsewhere, with the

standard form given by

p21(x) =
Ŵ(α + β)

Ŵ(α)Ŵ(β)
xα−1(1+ x)−(α+β), 0 ≤ x < ∞,α > 0,β > 0

and zero elsewhere; and the generalized gamma model is given by

p3(x) =
δa

α
δ

Ŵ( α
δ
)
xα−1e−axδ

, 0 ≤ x < ∞, a > 0, δ > 0,α > 0 (1.9)

and zero elsewhere with the standard form given by

p31(x) =
aα

Ŵ(α)
xα−1e−ax, 0 ≤ x < ∞, a > 0,α > 0

and zero elsewhere. In statistical densities, the parameters

are usually real, and hence, the conditions are stated for

the real parameters but the functions are available when the

parameters are in the complex domain also. In that case, the

same conditions hold on the real parts of the parameters.

We will examine Mellin convolutions of products and

ratios involving f1(x1) and f2(x2) belonging to the models

(Equations 1.7–1.9) so that the results obtained will be

readily applicable.

The concept of Mellin convolution of a ratio is

coming from the following considerations. As before,

let x1 > 0 and x2 > 0 be real scalar positive

variables with their associated functions f1(x1) and f2(x2),

respectively, and with the joint function f1(x1)f2(x2) the

product. Let u = x2
x1

the ratio and let g2(u) be the

function corresponding to u. Then, proceeding as before

we have

E[us−1] = E[(
x2

x1
)s−1] = E[xs−1

2 ]E[x−s+1
1 ] = Mf2 (s)Mf1 (2− s).

(1.10)

Let u = x2
x1
, v = x2 ⇒ dx1∧dx2 = − v

u2
du∧dv, x2 = v, x1 =

v
u .

In addition, u = x2
x1
, v = x1 ⇒ dx1 ∧ dx2 = vdu ∧ dv, x1 =

v, x2 = uv. Then, the Mellin conovlution of a ratio property is the

following:

g2(u) =

∫

v

v

u2
f1(

v

u
)f2(v)dv =

∫

v
vf1(v)f2(uv)dv

=
1

2π i

∫ c+i∞

c−i∞
Mf1 (2− s)Mf2 (s)u

−sds. (1.11)

Again, we will examine Mellin convolution of a ratio involving

functions belonging to the pathway family (Equations 1.7–1.9) for

the real scalar variable case first.

This study is organized as follows: Section 2 deals with

Mellin convolution of a product involving functions in the

standard form in Equations 1.7–1.9. One general form is

illustrated at the end. Section 3 gives Mellin convolutions

of a ratio involving the standard forms in Equations 1.7–

1.9. Then, one illustration is given at the end for a general

case. Section 4 examines some generalizations to the real

matrix-variate case.

2 Mellin convolution of a product

Here, we consider only Mellin convolutions of products of

two real-valued scalar functions of real scalar positive variables.

The results can be extended to Mellin convolution of a product

involving three or more real-valued scalar functions.
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Problem 2.1. Type-2 beta vs. gamma

To start with, we consider

f1(x1) =
Ŵ(α + 1+ β)

Ŵ(α + 1)Ŵ(β)
xα
1 (1+ x1)

−(α+1+β)

x1 ≥ 0, f2(x2) =
aρ+1

Ŵ(ρ + 1)
x
ρ
2 e

−ax2 , x2 ≥ 0,

for α > −1, ρ > −1,β > 0, a > 0 and let f1 and f2 be zero

elsewhere. Let the joint function be f1(x1)f2(x2) and u = x1x2 with

the corresponding function g1(u). Then, for c =
Ŵ(α+1+β)
Ŵ(α+1)Ŵ(β)

aρ+1

Ŵ(ρ+1)
,

g1(u) =

∫ ∞

0

1

v
f1(

u

v
)f2(v)dv

= c

∫ ∞

0

1

v
(
u

v
)α(1+

u

v
)−(α+1+β)vρe−avdv

= c uα

∫ ∞

0
vρ+β (v+ u)−(α+1+β)e−avdv, 0 ≤ u < ∞ (2.1)

g1(u) =

∫ ∞

0

1

v
f1(v)f2(

u

v
)dv

= c uρ

∫ ∞

0
vα−ρ−1(1+ v)−(α+1+β)e−

au
v dv, 0 ≤ u < ∞.

(2.2)

Also, the Mellin transforms are the following:

Mf1 (s) =
Ŵ(α + 1+ β)

Ŵ(α + 1)Ŵ(β)

∫ ∞

0
xα+s−1
1 (1+ x1)

−(α+1+β)dx1

=
Ŵ(α + s)

Ŵ(α + 1)

Ŵ(β − s+ 1)

Ŵ(β)
,ℜ(α + s) > 0,ℜ(β − s+ 1) > 0

(2.3)

Mf2 (s) =
aρ+1

Ŵ(ρ + 1)

∫ ∞

0
x
ρ+s−1
2 e−ax2dx2

=
Ŵ(ρ + s)

Ŵ(ρ + 1)

a

as
,ℜ(ρ + s) > 0 (2.4)

where ℜ(·) denotes the real part of (·). Then,

g1(u) =
1

Ŵ(α + 1)Ŵ(β)

a

Ŵ(ρ + 1)

1

2π i

∫ c+i∞

c−i∞
Ŵ(α + s)Ŵ(ρ + s)Ŵ(β + 1− s)(au)−sds (2.5)

=
a

Ŵ(α + 1)Ŵ(β)Ŵ(ρ + 1)
G2,1
1,2

[

au|−β
α.,ρ

]

, 0 ≤ u < ∞ (2.6)

where the G(·) is the G-function. For the theory and applications

of the G-function, see for example, Mathai [5]. The inverse Mellin

transform in Equation 2.5 can be evaluated by using residue

calculus. For α−ρ 6= ±ν, ν = 0, 1, ... the poles of the integrand are

simple. Then, the function is available as the sum of the residues at

the poles of Ŵ(α + s) and Ŵ(ρ + s). These produce two confluent

hypergeometric series, and the sum of these residues is the explicit

value of the G-function for 0 ≤ u < ∞. g1(u) above gives various

representations of the density of u. Since the density is unique, we

can compare the different representations of the unique density

and obtain several results on the unique density or we can obtain

several results on the G-function. Different types of results on the

G-function are given as Theorem 2.1 below. Since the procedure is

the same, we will not give the derivations in detail for the remaining

theorems in Section 2; only the results will be listed as theorems.

The proofs are parallel to the steps given above.

Theorem 2.1. For a > 0, u ≥ 0,α > −1, ρ > 0,β > 0

G2,1
1,2

[

au|−β
α,ρ

]

= Ŵ(α + 1+ β)aρuα

∫ ∞

0
vρ+β (v+ u)−(α+1+β)e−avdv

= Ŵ(α + 1+ β)aρuρ

∫ ∞

0
vα−ρ−1(1+ v)−(α+1+β)e−a u

v dv

= (au)αŴ(ρ − α)Ŵ(1+ α + β)

1F1(β + 1+ α; 1+ α − ρ : au)

+ (au)ρŴ(1+ β + ρ)Ŵ(α − ρ)

1F1(β + 1+ ρ; 1+ ρ − α; au),

for 0 ≤ au < ∞,α − ρ 6= ±ν, n = 0, 1, ....

Note that the integral can be evaluated at specific values of a and

u such as u = 1; a = 1; a = 1, u = 1, giving rise to simpler integrals.

The condition α − ρ 6= ±ν is needed only to write the G-function

in terms of a confluent hypergeometric series. Each integral above

multiplied by 1
Ŵ(α+1)Ŵ(β)

a
Ŵ(ρ+1)

produces a statistical density g1(u)

for u also since our starting f1 and f2 are statistical densities. We

have taken non-negative integrable functions with total integral

unity for convenience. The results hold for other types of functions

provided the Mellin transforms exist and the product of the Mellin

transforms is invertible. A direct generalization of Problem 2.1 can

be achieved by replacing 1+x1 in f1 by 1+a1x
δ1
1 , a1 > 0, δ1 > 0 and

replacing the exponent ax2 in f2 by ax
δ2
2 , δ2 > 0. Then, instead of

the G-function, one will end up with a H-function and then one will

obtain results on this H-function. For the theory and applications

of the H-function, see for example, Mathai et al. [6]. Since xj ≥ 0 in

Problem 2.1, we can obtain parallel results for δj < 0 also.

Problem 2.2. Type-2 beta vs. type-2 beta

Let

fj(xj) =
Ŵ(αj + 1+ βj)

Ŵ(αj + 1)Ŵ(βj)
x
αj
j (1+ xj)

−(αj+1+βj),

for 0 ≤ xj < ∞,αj > −1,βj > 0, j = 1, 2 and let fj be zero

elsewhere for j = 1, 2. Let the joint function of x1 and x2 be

f1(x1)f2(x2) and u = x1x2 with the corresponding function g1(u).

Then, proceeding as in Problem 2.1, we have the following results:

Theorem 2.2. For αj > −1,βj > 0, j = 1, 2 and for c =
{

∏2
j=1

Ŵ(αj+1+βj)

Ŵ(αj+1)Ŵ(βj)

}

,

g1(u) = c uα1

∫ ∞

0
vβ1+α2 (u+ v)−(α1+1+β1)(1+ v)−(α2+1+β2)dv,

0 ≤ u < ∞

= c uα2

∫ ∞

0
vα1+β2 (1+ v)−(α1+1+β1)(v+ u)−(α2+1+β2)dv,

0 ≤ u < ∞

=







2
∏

j=1

1

Ŵ(αj + 1)Ŵ(βj)







G2,2
2,2

[

u|−β1 ,−β2
α1 ,α2

]

, 0 ≤ u < ∞
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G2,2
2,2

[

u|−β1 ,−β2
α1 ,α2

]

= Ŵ(α2 − α1)Ŵ(β1 + 1+ α1)Ŵ(β2 + 1+ α1)u
α1

× 2F1(β1 + 1+ α1,β2 + 1+ α1; 1+ α1 − α2; u)

+ Ŵ(α1 − α2)Ŵ(β1 + 1+ α2)Ŵ(β2 + 1+ α2)u
α2

× 2F1(β1 + 1+ α2,β2 + 1+ α2; 1+ α2 − α1; u)

for 0 ≤ u < 1,α1 − α2 6= ±ν, ν = 0, 1, ...

Ŵ(α1 + 1+ β1)Ŵ(α2 + β1 + 1)Ŵ(β2 − β1)u
−β1−1

× 2F1(α1 + β1 + 1,α2 + β1 + 1; 1+ β1 − β2;
1

u
)

+ Ŵ(α1 + β2 + 1)Ŵ(α2 + β2 + 1)Ŵ(β1 − β2)u
−β2−1

× 2F1(α1 + β2 + 1,α2 + β2 + 1; 1+ β2 − β1;
1

u
)

for β1 − β2 6= ±ν, ν = 0, 1, ..., 1 ≤ u < ∞

A direct generalization of Problem 2.2 is to replace 1 + xj in fj

by 1 + ajx
δj
j , aj > 0, δj > 0, j = 1, 2. Then, we will end up with

a H-function, instead of the G-function above, and then parallel

results will be available on this H-function. Since xj ≥ 0 in fj here,

one can allow δj to be negative also. Parallel results will be available

for j = 1, 2.

Problem 2.3. Type-1 beta vs. type-1 beta

Let

fj(xj) =
Ŵ(αj + 1+ βj)

Ŵ(αj + 1)Ŵ(βj)
x
αj
j (1− xj)

βj−1,

0 ≤ xj ≤ 1,αj > −1,βj > 0

and zero elsewhere for j = 1, 2. Let the joint function be f1(x1)f2(x2)

and let u = x1x2 with the corresponding function denoted as g1(u).

Then, proceeding as in Problem 2.1, one has the following results,

for αj > −1,βj > 0, j = 1, 2, c =
∏2

j=1
Ŵ(αj+1+βj)

Ŵ(αj+1)Ŵ(βj)
:

Theorem 2.3. For αj > −1,βj > 0, j = 1, 2 and for 0 ≤ u ≤ 1

G2,0
2,2[u|

α1+β1 ,α2+β2
α1 ,α2

]

=
1

Ŵ(β1)Ŵ(β2)
uα1

∫ 1

v=u
vα2−α1−β1 (v− u)β1−1(1− v)β2−1dv,

0 ≤ u ≤ 1

=
1

Ŵ(β1)Ŵ(β2)
uα2

∫ 1

v=u
vα1−β2−α2 (v− u)β2−1(1− v)β1−1dv,

0 ≤ u ≤ 1

=
Ŵ(α2 − α1)

Ŵ(β1)Ŵ(α2 + β2 − α1)
uα1

× 2F1(1− β1, 1+ α1 − α2 − β2; 1+ α1 − α2; u)

+
Ŵ(α1 − α2)

Ŵ(β2)Ŵ(α1 + β1 − α2)
uα2

× 2F1(1− β2, 1+ α2 − α1 − β1; 1+ α2 − α1; u), 0 ≤ u ≤ 1

for α1 − α2 6= ±ν, ν = 0, 1, ..., 0 ≤ u < 1

This G-function multiplied by
{

∏2
j=1

Ŵ(αj+1+βj)

Ŵ(αj+1)

}

gives a

statistical density g1(u) for u also. A direct generalization is available

by replacing 1 − xj in fj by 1 − ajx
δj
j for aj > 0, δj > 0, with the

condition 1 − ajx
δj
j > 0, j = 1, 2. Then, one will end up with a H-

function, instead of the G-function above, and parallel results will

be available for this H-function. It may be observed that a constant

multiple of this H-function is a statistical density for u also.

Problem 2.4. Type-1 beta vs. gamma

Let

f1(x1) =
Ŵ(α + 1+ β)

Ŵ(α + 1)Ŵ(β)
xα
1 (1− x1)

β−1, 0 ≤ x1 ≤ 1,

f2(x2) =
aγ+1

Ŵ(γ + 1)
x
γ
2 e

−ax2 , x2 ≥ 0

for α > −1,β > 0, γ > −1, a > 0 and let f1 and f2 be

zero elsewhere and let the joint function be f1(x1)f2(x2) and let

u = x1x2 with the corresponding function denoted as g1(u). Then,

proceeding as in Problem 2.1, we have the following results:

Theorem 2.4. For α > −1, γ > −1, a > 0,β > 0

G2,0
1,2

[

au|α+β
α,γ

]

=
aγ

Ŵ(β)
uα

∫ ∞

v=u
vγ−α−β (v− u)β−1e−avdv, 0 ≤ u < ∞

=
aγ

Ŵ(β)
uγ

∫ 1

0
vα−γ−1(1− v)β−1e−a u

v dv, 0 ≤ u < ∞

=
Ŵ(γ − α)

Ŵ(β)
(au)α1F1(1− β; 1+ α − γ :−au)

+
Ŵ(α − γ )

Ŵ(α + β − γ )
(au)γ 1F1(1+ γ − α − β;

1+ γ − α;−au), 0 ≤ u < ∞

for α − γ 6= ±ν, ν = 0, 1, ..., 0 ≤ u < ∞

Note that this G-function multiplied by Ŵ(α+1+β)
Ŵ(α+1)

a
Ŵ(γ+1)

produces a statistical density g1(u) for u also. A direct generalization

is available by replacing 1− x1 in f1 by 1− a1x
δ1
1 with 1− a1x

δ1
1 >

0, a1 > 0, δ1 > 0 and replacing the exponent ax2 in f2 by

axδ2
2 with δ2 > 0. Then, one can obtain parallel results on a H-

function. Here, δ2 can be negative also so that the integrals and the

corresponding H-function will exist. If δ1 is allowed to be negative,

then it will create problems with the support there and the problem

will be complicated.

Problem 2.5. Type-1 beta vs. type-2 beta

Let

f1(x1) =
Ŵ(α + 1+ β)

Ŵ(α + 1)Ŵ(β)
xα
1 (1− x1)

β−1,

f2(x2) =
Ŵ(γ + 1+ δ)

Ŵ(γ + 1)Ŵ(δ)
x
γ
2 (1+ x2)

−(γ+1+δ),

for 0 ≤ x1 ≤ 1, x2 ≥ 0,α > −1, γ > −1, δ > 0,β >

0 and let f1 and f2 be zero elsewhere. Let the joint function be

f1(x1)f2(x2) and let u = x1x2 with the corresponding function

denoted as g1(u). Then, proceeding as in Problem 2.1, we will have

the following results:
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Theorem 2.5. For α > −1, γ > −1,β > 0, δ > 0

G2,1
2,2

[

u|−δ,α+β
α,γ

]

=
Ŵ(γ + 1+ δ)

Ŵ(β)
uα

∫ ∞

v=u
vγ−α−β (v− u)β−1(1+ v)−(γ+1+δ)dv,

0 ≤ u < ∞

=
Ŵ(γ + 1+ δ)

Ŵ(β)
uγ

∫ 1

v=0
vα+δ(1− v)β−1(v+ u)−(γ+1+δ)dv,

0 ≤ u < ∞

=



































































Ŵ(γ−α)Ŵ(1+δ+α)
Ŵ(β)

uα
2F1(1+ δ + α, 1− β;

1+ α − γ ;−u)

+
Ŵ(α−γ )Ŵ(1+δ+γ )

Ŵ(α+β−γ )
uγ

2F1(1+ δ

+γ , 1+ γ − α − β; 1+ γ − α;−u)

for 0 ≤ u < 1,α − γ 6= ±ν, ν = 0, 1, ...
Ŵ(α+1+δ)Ŵ(γ+1+δ)

Ŵ(α+β+1+δ)
u−1−δ

2F1(α + 1+ δ,

γ + 1+ δ;α + β + 1+ δ;− 1
u )

for 1 ≤ u < ∞.

This G-function multiplied by Ŵ(α+1+β)
Ŵ(α+1)

1
Ŵ(γ+1)Ŵ(δ)

produces a

statistical density g1(u) for u also. A direct generalization is available

by replacing 1−x1 in f1 by 1−a1x
δ1
1 with a1 > 0, δ1 > 0, 1−a1x

δ1
1 >

0 and replacing 1 + x2 in f2 by 1 + a2x
δ2
2 with a2 > 0, δ2 > 0.

Then, one will obtain parallel results on a H-function. Also, note

that in this Problem 2.5, if the type-2 beta density is replaced

by a general density, then the first integral representation gives

Erdélyi-Kober fractional integral of the second kind of order β and

parameter α, see also Mathai and Haubold [7] and Fortin et al.

[8, 9].

Problem 2.6. Gamma vs. gamma

Let

fj(xj) =
a
αj+1

j

Ŵ(αj + 1)
x
αj
j e

−ajxj , xj ≥ 0,αj > −1, aj > 0, j = 1, 2

and let the joint function be f1(x1)f2(x2) and u = x1x2 with the

corresponding function denoted as g1(u). Then, proceeding as in

Problem 2.1, we will have the following results:

Theorem 2.6. For aj > 0,αj > −1, j = 1, 2

G2,0
0,2

[

a1a2u|α1 ,α2
]

= aα1
1 aα2

2 uα1

∫ ∞

v=0
vα2−α1−1e−a1

u
v−a2vdv, 0 ≤ u < ∞

= aα1
1 aα2

2 uα2

∫ ∞

0
vα1−α2−1e−a1v−a2

u
v dv, 0 ≤ u < ∞

= (a1a2u)
α1Ŵ(α2 − α1)

0F1( ; 1+ α1 − α2; a1a2u)

+ (a1a1u)
α2Ŵ(α1 − α2)

0F1( ; 1+ α2 − α1; a1a2u), 0 ≤ u < ∞

for α1 − α2 6= ±ν, ν = 0, 1, ...

A direct generalization is available by replacing the exponent

ajxj by ajx
δj
j , δj > 0, j = 1, 2. Then, we will obtain parallel results

on a H-function. Here, one can allow δj < 0, j = 1, 2 also,

which will then produce parallel results on a H-function. Since

we have started with statistical densities for f1 and f2, we may

observe that a constant multiple of this G-function in Theorem

2.6 is a statistical density g1(u) for u also. When δ1 = 1 we have

Krätzel integral and associated with it is the Krätzel transform,

see Mathai and Haubold [10]. When δ1 = δ2 = 1, that is

the case considered in Theorem 2.6, the integrand in the integral

representations, normalized, gives inverse Gaussian density. The

unconditional density in the Bayesian analysis when the prior

density is gamma and when the scale parameter has a prior gamma

distribution then the unconditional density has the structure in the

general as well as in the particular case where δ1 = δ2 = 1. In this

particular case, one has the Bessel integral given by the G-function

representation in the simple poles cases also.

For the sake of illustration, one direct generalization of a Mellin

convolution of a product will be derived here in detail. This will be

listed as Problem 2.7.

Problem 2.7. Generalized type-2 beta vs. generalized type-2

beta

Let

fj(xj) =
δja

αj+1

δj

j Ŵ(
αj+1

δj
+ βj)

Ŵ(
αj+1

δj
)Ŵ(βj)

x
αj
j (1+ ajx

δj
j )

−(
αj+1

δj
+βj)

,

for xj ≥ 0, aj > 0, δj > 0,αj > −1, j = 1, 2 and fj is zero otherwise

for j = 1, 2. Let the joint function be f1(x1)f2(x2) and let u = x1x2
and let the function corresponding to u be denoted as g1(u). Then,

E[us−1] = E[xs−1
1 ]E[xs−1

2 ]

E[xs−1
j ] =

δja

αj+1

δj

j Ŵ(
αj+1

δj
+ βj)

Ŵ(
αj+1

δj
)Ŵ(βj)

∫ ∞

0
x
αj+s−1

j (1+ ajx
δj
j )

−(
αj+1

δj
+βj)

dxj

=
a

1
δj

j

a

s
δj

j

Ŵ(
αj+s

δj
)

Ŵ(
αj+1

δj
)

Ŵ(βj −
s−1
δj

)

Ŵ(βj)
. (2.7)

For convenience, let us consider the case δ1 = δ2 = δ. Then, for

c1 =
∏2

j=1

a
1
δ
j

Ŵ(
αj+1

δ
)Ŵ(βj)

and from Equation 2.7 by taking the inverse

Mellin transform, we have g1(u) as the following:

g1(u) = c1
1

2π i

∫ c+i∞

c−i∞
[

2
∏

j=1

Ŵ(
αj + s

δ
)Ŵ(βj −

s− 1

δ
)][(a1a2)

1
δ u]−sds

= c1H
2,2
2,2

[

(a1a2)
1
δ u
∣

∣

(1−βj−
1
δ
, 1
δ
),j=1,2

(
αj
δ
, 1
δ
),j=1,2

]

, 0 ≤ u < ∞. (2.8)

The inverse Mellin transform in Equation 2.8 will be evaluated

by using residue calculus. Note that for α1 − α2 6= ±ν, ν = 0, 1, ...,

the poles of Ŵ( α1+s
δ

)Ŵ( α2+s
δ

) are simple. The poles of Ŵ(
αj+s

δ
) are at

αj+s

δ
= −ν, ν = 0, 1, ... ⇒ s = −αj − δν, ν = 0, 1, .... The residue
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at s = −α1 − δν coming from Ŵ( α1+s
δ

) is lims→−α1−δν(s + α1 +

δν)Ŵ( α1+s
δ

) = δ
(−1)ν

ν! . The rest of the steps are parallel to those in

the derivations in Problem 2.1. For 0 ≤ a1a2u
δ < 1, we will end up

with two Gauss’ hypergeometric series, and the continuation part

for 1 ≤ a1a1u
δ < ∞ will give another two Gauss’ hypergeometric

series. If we consider the transformation of variables, then g1(u) has

the following forms where c =
∏2

j=1

δa

αj+1

δ
j Ŵ(

αj+1

δ
+βj)

Ŵ(
αj+1

δ
)Ŵ(βj)

:

g1(u) = c

∫

v

1

v
(
u

v
)α1 [1+ a1(

u

v
)δ]−(

α1+1
δ

+β1)vα2

(1+ a2v)
−(

α2+1
δ

+β2)dv

= c uα1

∫ ∞

0
vα2−α1−1[1+

a1u
δ

vδ
]−(

α1+1
δ

+β1)

(1+ a2v)
−(

α2+1
δ

+β2)dv. (2.9)

The second form is available by interchanging (α1,β1) and

(α2,β2) in Equation 2.9. Note that

g1(u) = δ2







2
∏

j=1

a
αj
δ

j Ŵ(
αj + 1

δ
+ βj)







× (the H-function)

where the H-function has the following explicit forms:

H = H2,2
2,2

[

(a1a2)
1
δ u
∣

∣

(1−βj−
1
δ
, 1
δ
),j=1,2

(
αj
δ
, 1
δ
),j=1,2

]

=



































































































δŴ( α2−α1
δ

)Ŵ(β1 +
α1+1

δ
)Ŵ(β2 +

α1+1
δ

)[(a1a2)
1
δ u]α1

×2F1(β1 +
α1+1

δ
,β2 +

α1+1
δ

; 1+ α1−α2
δ

; a1a1u
δ)

+δŴ( α1−α2
δ

)Ŵ(β1 +
α2+1

δ
)Ŵ(β2 +

α2+1
δ

)[(a1a2)
1
δ u]α2

×2F1(β1 +
α2+1

δ
,β2 +

α2+1
δ

; 1+ α2−α1
δ

; a1a2u
δ),

for 0 ≤ a1a2u
δ < 1 and for α1 − α2 6= ±ν, ν = 0, 1, ...

δŴ(β1 +
α1+1

δ
)Ŵ(β1 +

α2+1
δ

)Ŵ(β2 − β1)[(a1a2)
1
δ u]−(β1δ+1)

×2F1(β1 +
α1+1

δ
,β1 +

α2+1
δ

; 1+ β1 − β2;
1

a1a2uδ )

+δŴ(β2 +
α1+1

δ
)Ŵ(β2 +

α2+1
δ

)Ŵ(β1 − β2)

[(a1a2)
1
δ u]−(β2δ+1)

×2F1(β2 +
α1+1

δ
,β2 +

α2+1
δ

; 1+ β2 − β1;
1

a1a2uδ )

for a1a2u
δ ≥ 1 and for β1 − β2 6= ±ν, ν = 0, 1, ...

This completes the calculations and the representations of

g1(u) in two different integral representations and in terms of a

H-function with explicit computable series form representations.

3 Mellin convolution of a ratio

Here, we examine a ratio. Let x1 > 0 and x2 > 0 be real scalar

positive variables associated with the functions f1(x1) and f2(x2),

respectively. Let the joint function be f1(x1)f2(x2). Let u = x2
x1

the

ratio. Let the Mellin transforms of f1 and f2 be Mf1 (s) and Mf2 (s),

respectively with theMellin parameter s. Let the function associated

with the ratio u be denoted by g2(u). Then, the Mellin transform

of g2(u) is available from the joint function as Mf2 (s)Mf1 (2 − s)

which can easily be seen if x1 and x2 are statistically independently

distributed random variables with the densities f1(x1) and f2(x2),

respectively. Then,

E[us−1] = E[(
x2

x1
)s−1] = E[xs−1

2 ]E[x−s+1
1 ] = Mf2 (s)Mf1 (2− s)

(3.1)

whenever the Mellin transforms exist. Then, from the inverse

Mellin transform, g2(u) is available as the following:

g2(u) =
1

2π i

∫ c+i∞

c−i∞
Mf2 (s)Mf1 (2− s)u−sds, i =

√

(−1) (3.2)

whenever the integral is convergent. We can also reach g2(u)

through transformation of variables. Let x2 = v and u = x2
x1
, then

x1 = v
u and dx1 ∧ dx2 = − v

u2
du ∧ dv. If one takes x1 = v, then

x2 = uv and dx1 ∧ dx2 = vdu ∧ dv. Then, we have two different

integral representations for g2(u), namely,

g2(u) =

∫

v

v

u2
f1(

v

u
)f2(v)dv (3.3)

=

∫

v
vf1(v)f2(uv)dv. (3.4)

Then, Equations 3.2–3.4 give three different representations

for the same function g2(u). We will consider various functions

belonging to the pathway family of functions for convenience.

Problem 3.1. Gamma vs. gamma

Let

fj(xj) =
a
αj+1

j

Ŵ(αj + 1)
x
αj
j e

−ajxj , xj ≥ 0,αj > −1, aj > 0, j = 1, 2

and let the joint function be f1(x1)f2(x2) and let c =
∏2

j=1

a
αj+1

j

Ŵ(αj+1)
.

Then, from Equation 3.3

g2(u) = c

∫

v

u2
(
v

u
)α1e−a1

v
u vα2e−a2vdv

= cŴ(α1 + α2 + 2)uα2 (a1 + a2u)
−(α1+α2+2) (3.5)

and from Equation 3.4

g2(u) = c

∫

v
vvα1e−a1v(uv)α2e−a2uvdv

= c uα2Ŵ(α1 + α2 + 2)(a1 + a2u)
−(α1+α2+2), (3.6)

for 0 ≤ u < ∞, which is the same as the one in Equation 3.5. Also,

Mf2 (s) =
aα2+1
2

Ŵ(α2 + 1)

∫ ∞

0
xα2+s−1
2 e−a2x2dx2

=
a2

as2

Ŵ(α2 + s)

Ŵ(α2 + 1)
,ℜ(α2 + s) > 0 (3.7)

and

Mf1 (2− s) =
aα1+1
1

Ŵ(α1 + 1)

∫ ∞

0
xα1−s+1
1 e−a1x1dx1

=
as1

Ŵ(α1 + 1)a1
Ŵ(2+ α1 − s),ℜ(2+ α1 − s) > 0. (3.8)
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Then,

g2(u) =
a2

a1

1

Ŵ(α1 + 1)Ŵ(α2 + 1)

1

2π i
∫ c+i∞

c−i∞
Ŵ(α2 + s)Ŵ(2+ α1 − s)(

a2u

a1
)−sds

=
a2

a1Ŵ(α1 + 1)Ŵ(α2 + 1)
G1,1
1,1

[

a2u

a1
|−1−α1
α2

]

, 0 ≤ u < ∞.

(3.9)

This G-function can be evaluated as the sum of the residues at

the poles ofŴ(α2+s) for 0 ≤ a2u
a1

< 1 and as the sum of the residues

at the poles of Ŵ(2+ α1 − s) for 1 ≤ a2u
a1

< ∞. Thus, we have

g2(u) =
Ŵ(α1 + α2 + 2)

Ŵ(α1 + 1)Ŵ(α2 + 1)

×
1

u

{

( a2ua1 )
α2+1

1F0(2+ α1 + α2; ;− a2u
a1

), 0 ≤ a2u
a1

< 1

( a1
a2u

)α1+1
1F0(2+ α1 + α2; ;− a1

a2u
), 1 ≤ a2u

a1
< ∞.

(3.10)

Then, from Equations 3.5, 3.6, 3.10, we have the following

theorem:

Theorem 3.1. For aj > 0,αj > −1, c =

{

∏2
j=1

a
αj+1

j

Ŵ(α1+1)

}

,

g2(u) = cŴ(α1 + α2 + 2)uα2 (a1 + a2u)
−(α1+α2+2), 0 ≤ u < ∞

=
Ŵ(α1 + α2 + 2)

Ŵ(α1 + 1)Ŵ(α2 + 1)

×
1

u

{

( a2ua1 )
α2+1

1F0(2+ α1 + α2; ;− a2u
a1

), 0 ≤ a2u
a1

< 1

( a1
a2u

)α1+1
1F0(2+ α1 + α2; ;− a1

a2u
), 1 ≤ a2u

a1
< ∞,

where g2(u) is a statistical density for u also.

Generalization is available by replacing ajxj in fj(xj) by

ajx
δj
j , δj > 0, j = 1, 2. In this case, one will end up with a H-function

instead of the G-function above. Then, various integral and series

representations of that H-function will be available. Here, we will

be able to consider δj < 0, j = 1, 2 also giving rise to parallel

results. Since the derivations of the results in Problem 3.1 are given

in detail, the remaining results will be stated without the detailed

derivations. The derivations will be parallel to those provided in

Problem 3.1.

Problem 3.2. Gamma vs. type-2 beta

Let

f1(x1) =
aα1+1
1

Ŵ(α1 + 1)
xα1
1 e−a1x1 ,

f2(x2) =
Ŵ(α2 + 1+ β2)

Ŵ(α2 + 1)Ŵ(β2)
xα2
2 (1+ x2)

−(α2+1+β2)

for αj > −1, 0 ≤ xj < ∞, j = 1, 2, a1 > 0,β2 > 0 and let the

joint function be f1(x1)f2(x2). Let u = x2
x1

with the corresponding

function denoted as g2(u). Then, following through the derivations

parallel to those in Problem 3.1, we have the following results:

Theorem 3.2. For αj > −1, j = 1, 2,β2 > 0, a1 > 0

G1,2
2,1

[

u

a1
|−β2 ,−1−α1
α2

]

= aα1+2
1 Ŵ(α2 + β2 + 1)u−α1−2

∫ ∞

0
vα1+α2+1(1+ v)−(1+α2+β2)e−a1

v
u dv, 0 ≤ u < ∞

= aα1+2
1 Ŵ(α2 + β2 + 1)uα2

∫ ∞

0
vα1+α2+1(1+ uv)−(1+α2+β2)e−a1vdv, 0 ≤ u < ∞

= Ŵ(α2 + β2 + 1)Ŵ(1+ α1 − β2)(
a1

u
)1+β2

1F1(1+ α2 + β2;β2 − α1;
a1

u
)

+ Ŵ(2+ α1 + α2)Ŵ(β2 − α1 − 1)(
a1

u
)2+α1

1F1(2+ α1 + α2; 2+ α1 − β2;
a1

u
), 0 ≤ u < ∞

for β2 − α1 − 1 6= ±ν, ν = 0, 1, ...

Generalizations are possible by replacing the exponent a1x1 in

f1 by a1x
δ1
1 , δ1 > 0 and replacing 1 + x2 in f2 by 1 + a2x

δ2
2 , a2 >

0, δ2 > 0. Then, one will end up with a H-function, and results will

be available for this H-function. In this case, δj < 0, j = 1, 2 will

also work and parallel results will be available.

Problem 3.3. Type-2 beta vs. gamma

Let

f1(x1) =
Ŵ(γ + 1+ δ)

Ŵ(γ + 1)Ŵ(δ)
x
γ
1 (1+ x1)

−(γ+1+δ),

f2(x2) =
aα+1

Ŵ(α + 1)
xα
2 e

−ax2

for γ > −1,α > −1, a > 0, δ > 0, 0 ≤ xj < ∞, j = 1, 2 and let the

joint function be f1(x1)f2(x2). Let u = x2
x1
. Then, proceeding as in

the derivations in Problem 3.1, we will have the following results:

Theorem 3.3. For α > −1, γ > −1, δ > 0, a > 0

G2,1
1,2

[

au|
−1−γ

α,δ−1

]

= Ŵ(γ + 1+ δ)aαuδ−1

∫ ∞

0
vα+γ+1(u+ v)−(γ+1+δ)e−avdv, 0 ≤ u < ∞

= Ŵ(γ + 1+ δ)aαuα

∫ ∞

0
vα+γ+1(1+ v)−(γ+1+δ)e−auvdv, 0 ≤ u < ∞

= Ŵ(δ − 1− α)Ŵ(2+ γ + α)(au)α

1F1(2+ γ + α; 2+ α − δ; au)

+ Ŵ(1+ γ + δ)Ŵ(1+ α − δ)(au)δ−1

1F1(1+ γ + δ; δ − α; au), 0 ≤ u < ∞

for δ − 1− α 6= ±ν, ν = 0, 1, ...

Generalizations are possible by replacing 1 + x1 in f1 by 1 +

b1x
δ1
1 , b1 > 0, δ1 > 0 and by replacing the exponent in f2 by

axδ2
2 , δ2 > 0. This will produce a H-function and several results

on this H-function. In this case, δj < 0, j = 1, 2 will also work,

resulting in parallel results.
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Problem 3.4. Gamma vs. type-1 beta

Let

f1(x1) =
aγ+1

Ŵ(γ + 1)
x
γ
1 e

−ax1 , f2(x2) =
Ŵ(α + 1+ β)

Ŵ(α + 1)Ŵ(β)
xα
2 (1− x)β−1

for a > 0,β > 0, γ > −1,α > −1, x1 ≥ 0, 0 ≤ x2 ≤ 1, and f1 and

f2 are zero otherwise. Let the joint function be f1(x1)f2(x2) and let

u = x2
x1
. Then, proceeding as in the derivations for Problem 3.1, we

have the following results:

Theorem 3.4. For a > 0,β > 0,α > −1, γ > −1

G1,1
2,1

[u

a
|−1−γ ,α+β
α

]

=
aγ+2

Ŵ(β)
u−γ−2

∫ 1

0
vα+γ+1(1− v)β−1e−a v

u dv, 0 < u < ∞

=
aγ+2

Ŵ(β)
uα

∫ 1
u

0
vα+γ+1(1− uv)β−1e−avdv, 0 ≤ u < ∞

=
Ŵ(2+ α + γ )

Ŵ(2+ α + γ + β)
(
u

a
)−γ−2

1F1(2+ α + γ ; 2+ α + γ + β;−
a

u
),

for 0 ≤ u < ∞. Generalization can be achieved by replacing the

exponent ax1 in f1 by axδ1
1 , δ1 > 0 and replacing 1 − x2 in f2 by

1−a2x
δ2
2 , a2 > 0, δ2 > 0, 1−a2x

δ2
2 > 0. Then, one will end up with

a H-function and several results on this H-function.

Problem 3.5. Type-1 beta vs. gamma

Let

f1(x1) =
Ŵ(α + 1+ β)

Ŵ(α + 1)Ŵ(β)
xα
1 (1− x1)

β−1, f2(x2) =
aγ+1

Ŵ(γ + 1)
x
γ
2 e

−ax2

for α > −1, γ > −1, a > 0,β > 0, x2 ≥ 0, 0 ≤ x1 ≤ 1, and f1 and

f2 are zero otherwise. Let the joint function be f1(x1)f2(x2) and let

u = x2
x1
. Then, proceeding as in the derivations in Problem 3.1, we

have the following results:

Theorem 3.5. For α > −1, γ > −1, a > 0,β > 0

G1,1
1,2

[

au|−1−α
γ ,−1−α−β

]

=
aγ

Ŵ(β)
u−β−α−1

∫ u

v=0
vα+γ+1(u− v)β−1e−avdv, 0 < u < ∞

=
aγ

Ŵ(β)
uγ

∫ 1

0
vα+γ+1(1− v)β−1e−auvdv,

0 < u < ∞

= aγ Ŵ(2+ α + γ )

Ŵ(2+ α + γ + β)
uγ

1F1(2+ α + γ ; 2+ α + γ + β;−au), 0 ≤ u < ∞.

A direct generalization is achieved by replacing 1 − x1 in f1 by

1 − a1x
δ1
1 , a1 > 0, δ1 > 0, 1 − a1x

δ1
1 > 0 and by replacing the

exponent ax2 in f2 by axδ2
2 , δ2 > 0. Then, one will end up with a

H-function, and several results will be available on this H-function.

It may be observed that if in f1, α is replaced by α − 1, and if f2 is a

general function, then the first integral representation in Theorem

3.5 is also Erdélyi-Kober fractional integral of the first kind of order

β and parameter α, see also Mathai and Haubold [7].

Problem 3.6. Type-1 beta vs. type-1 beta

Let

fj(xj) =
Ŵ(αj + 1+ βj)

Ŵ(αj + 1)Ŵ(βj)
x
αj
j (1− xj)

βj−1,

0 ≤ xj ≤ 1,αj > −1,βj > 0, j = 1, 2.

Let the joint function be f1(x1)f2(x2) and let u = x2
x1
. Then,

proceeding as in the derivation of Problem 3.1, we have the

following results:

Theorem 3.6. For αj > −1,βj > 0, j = 1, 2

G = G1,1
2,2

[

u|
−1−α1 ,α2+β2
α2 ,−1−α1−β1

]

=



























1
Ŵ(β1)Ŵ(β2)

uα2
∫

1
u
0 vα1+α2+1(1− v)β1−1(1− uv)β2−1dv,

0 ≤ u < 1
1

Ŵ(β1)Ŵ(β2)
u−α1−β1−1

∫ 1
0 vα1+α2+1(u− v)β1−1(1− v)β2−1dv,

1 ≤ u < ∞

G =



































Ŵ(2+α1+α2)
Ŵ(2+α1+α2+β1)Ŵ(β2)

uα2
2F1(1− β2, 2+ α1 + α2;

2+ α1 + α2 + β1; u), 0 ≤ u < 1
Ŵ(2+α1+α2)

Ŵ(2+α1+α2+β2)Ŵ(β1)
u−2−α1

2F1(1− β1, 2+ α1 + α2;

2+ α1 + α2 + β2;
1
u ),

for 1 ≤ u < ∞.

A direct generalization will be available by replacing 1 − xj by

1 − ajx
δj
j , aj > 0, δj > 0, 1 − ajx

δj
j > 0, j = 1, 2. Then, we will end

up with a H-function, and several results will be available on this H-

function. One general case of the ratio u = x2
x1

will be discussed here

for the sake of illustration. This will be listed here as Problem 3.7.

Problem 3.7. Generalized type-2 beta vs. generalized

gamma

Let

f1(x1) = δ
a

α+1
δ Ŵ( α+1

δ
+ β)

Ŵ( α+1
δ

)Ŵ(β)
xα
1 (1+ axδ

1)
−( α+1

δ
+β),

f2(x2) =
ρb

γ
ρ

Ŵ( γ+1
ρ

)
x
ρ
2 e

−bx
ρ
2

for α > −1, γ > −1, δ > 0, ρ > 0, a > 0, b > 0,β > 0, and f1 and

f2 are zero elsewhere. Let u = x2
x1

with the associated function g2(u).

The Mellin transforms of f1 and f2 are the following:

Mf2 (s) =
b

1
ρ

Ŵ( γ+1
ρ

)
Ŵ(

γ + s

ρ
)(b

1
ρ )−s,ℜ(

γ + s

ρ
) > 0

and

Mf1 (2− s) =
1

a
1
δ Ŵ( α+1

δ
)Ŵ(β)

Ŵ(
2+ α

δ
−

s

δ
)Ŵ(β −

1

δ
+

s

δ
)(a

1
δ )s
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for ℜ(2+ α − s) > 0,ℜ(βδ − 1+ s) > 0. Then

Mf1 (2− s)Mf2 (s) =
b

1
ρ

a
1
δ Ŵ( α+1

δ
)Ŵ( γ+1

ρ
)Ŵ(β)

× Ŵ(
γ

ρ
+

s

ρ
)Ŵ(β −

1

δ
+

s

δ
)Ŵ(

2+ α

δ
−

s

δ
)

(

b
1
ρ

a
1
δ

)−s

.

Let

c =
δρa

α+1
δ b

γ+1
ρ Ŵ( α+1

δ
+ β)

Ŵ( α+1
δ

)Ŵ(β)Ŵ( γ+1
ρ

)
, c1 =

b
1
ρ

a
1
δ Ŵ( α+1

δ
)Ŵ(β)Ŵ( γ+1

ρ
)
.

Then, from the inverse Mellin transform we have

g2(u) =
1

2π i

∫ c+i∞

c−i∞
Mf1 (2− s)Mf2 (s)u

−sds

= c1
1

2π i

∫ c+i∞

c−i∞
Ŵ(

γ

ρ
+

s

ρ
)Ŵ(β −

1

δ
+

s

δ
)

Ŵ(
2+ α

δ
−

s

δ
)

[

b
1
ρ u

a
1
δ

]−s

ds

= c1H
2,1
1,2

[

b
1
ρ u

a
1
δ

∣

∣

(1− 2+α
δ

, 1
δ
)

( γ
ρ
, 1
ρ
),(β− 1

δ
, 1
δ
)

]

, 0 ≤ u < ∞.

From the integral representations of g2(u), we have the

following forms and for δ = ρ and for γ + ρν 6= βδ + δλ, v =

0, 1, ..., λ = 0, 1, ... the poles of the integrand are simple, and then,

we have the following series representations for the H-function for

δ = ρ. We will state this as a theorem.

Theorem 3.7. For the conditions, c, c1 stated above, we have

g2(u) = cu−α−2

∫ ∞

0
vα+γ+1[1+ a(

v

u
)δ]−( α+1

δ
+β)e−bvρdv

= cu−γ

∫ ∞

0
vα+γ+1[1+ avδ]−( α+1

δ
+β)e−b(uv)ρdv

= c1 H-function above

where for ρ = δ,

H = H2,1
1,2

[

(
b

a
)
1
δ u
∣

∣

(1− 2+α
δ

, 1
δ
)

( γ
δ
, 1
δ
),(β− 1

δ
, 1
δ
)

]

= δ







































Ŵ(β −
γ+1

δ
)Ŵ( 2+α+γ

δ
)[( ba )

1
δ u]γ 1F1(

2+α+γ
δ

;

1+ γ+1
δ

− β; buδ

a )

+Ŵ( γ+1
δ

− β)Ŵ( α+1
δ

+ β)
[

( ba )
1
δ u
]βδ−1

1F1(
α+1

δ
+ β;

1+ β − α+1
δ

; b
au

δ),

for 0 ≤ u < ∞, γ − δβ + 1 6= ±ν, ν = 0, 1, ...

4 Generalization to matrix-variate
cases

Here, all the matrices appearing are p × p real symmetric

positive definite when in the real domain or p × p Hermitian

positive definite when in the complex domain. Let X1 > O and

X2 > O be p × p real symmetric positive definite matrices with

the associated functions f1(X1) and f2(X2), respectively, and with

the joint function f1(X1)f2(X2), capital letters representing matrices

and lower case letters denoting scalar variables where fj(Xj) is a

real-valued scalar function of Xj, j = 1, 2. When fj(Xj) ≥ 0 for

all Xj, in the domain of Xj, with
∫

Xj
fj(Xj)dXj = 1, then fj(Xj)

is a statistical density also. Since we are dealing with symmetric

matrices, we will be defining symmetric product corresponding to

the scalar case x1x2 as X
1
2
2 X1X

1
2
2 where X

1
2
2 is the symmetric positive

definite square root of X2, and symmetric ratio corresponding to x2
x1

as X
1
2
2 X

−1
1 X

1
2
2 where X−1

1 is the regular inverse of X1. We can also

define symmetric product corresponding to x1x2 as X
1
2
1 X2X

1
2
1 and

symmetric ratio corresponding to x2
x1

as X
− 1

2
1 X2X

− 1
2

1 also.

4.1 Symmetric product in the real
matrix-variate case

Let U = X
1
2
2 X1X

1
2
2 with V = X2 so that X1 = V− 1

2UV− 1
2 . We

can show that

dX1 ∧ dX2 = |V|−
p+1
2 dU ∧ dV (4.1)

see, for example, Mathai [11], where |(·)| denotes the determinant

of (·). Let Xj = (xjik) with the (i, k)-th element xjik for i =

1, ..., p, k = 1, ..., p. Since Xj = X′
j , a prime denoting the transpose,

there are only p(p+1)/2 distinct elements in Xj and only p(p+1)/2

differentials dxjik, i ≤ k or i ≥ k. Then, dXj = ∧i≤kdxjik. Note

that the wedge product in Equation 4.1 remains the same if we

take V = X1 instead of X2. For illustrative purposes, we will

discuss one problem involving M-convolution of a product. For

M-convolutions and M-transforms, see Mathai [11].

Problem 4.1. Real p×pmatrix-variate gamma vs. real p×p

matrix-variate gamma

Let

fj(Xj) =
|Bj|

αj

Ŵp(αj)
|Xj|

αj−
p+1
2 e−tr(BjXj),Xj > O,Bj > O, j = 1, 2

where Xj = X′
j > O is a real matrix of a p(p + 1)/2 distinct

(functionally independent) real scalar variables xjik as elements,

Bj = B′j > O is a p×p constant positive definite matrix, tr(·) means

the trace of (·), and Ŵp(αj) is a real matrix-variate gamma defined

as

Ŵp(α) = π
p(p−1)

4 Ŵ(α)Ŵ(α −
1

2
)...Ŵ(α −

p− 1

2
),ℜ(α) >

p− 1

2

(4.2)

=

∫

Y>O
|Y|α−

p+1
2 e−tr(Y)dY ,Y > O,ℜ(α) >

p− 1

2
(4.3)

and thus, the real matrix-variate gamma Ŵp(α) is associated with

the real matrix-variate gamma integral in Equation 4.3. Hence,

Ŵp(α) is called as the real matrix-variate gamma. Let g2(U) be

the real-valued scalar function associated with the matrix U =
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X
1
2
2 X1X

1
2
2 . Then, from the joint function f1(X1)f2(X2), we have for

c =
∏2

j=1
|Bj|

αj

Ŵp(αj)
,

g2(U) = c

∫

V>O
|V|−

p+1
2 |V− 1

2UV− 1
2 |α1−

p+1
2 |V|α2−

p+1
2

e−tr(B1V
− 1

2 UV− 1
2 )−tr(B2V)dV

= c|U|α1−
p+1
2

∫

V>O
|V|α2−α1−

p+1
2 e−tr(B1V

− 1
2 UV− 1

2 )−tr(B2V)dV

(4.4)

= c|U|α2−
p+1
2

∫

V>O
|V|α1−α2−

p+1
2 e−tr(B1V)−tr(B2V

− 1
2 UV− 1

2 )dV .

(4.5)

Note that Equations 4.4, 4.5 can be taken as real matrix-

variate generalization of Bessel integrals, Krätzel integral, Bayesian

structures, etc. The integrand, normalized can also be taken as a real

matrix-variate inverse Gaussian density when fj(Xj), j = 1, 2 are

densities. In this case, g2(U) is the unique density of the symmetric

product U also. All the pairs of functions that we considered in

Section 2 can be generalized to the corresponding matrix-variate

cases except Problem 2.7. In Problem 2.7, generalization to the

matrix-variate case is possible for some specific values of δ1 and δ2.

5 Concluding remarks

In Sections 2 and 3, elementary functions belonging to the

pathway family are considered so that the results in Sections 2

and 3 will be readily applicable to various practical problems.

Immediate generalizations of all pairs in Sections 2 and 3 are

also useful in situations in real scalar variable cases. All problems

in Sections 2 and 3, except Problems 2.7 and 3.7, can be

generalized to the corresponding matrix-variate cases in the real

and complex domains. In all those cases, when fj(Xj), j = 1, 2

are statistical densities, then g1(U) and g2(U) will be unique

densities corresponding to symmetric product and symmetric,

ratios respectively. There are not many results in the literature

on Mellin convolutions of products and ratios involving more

than two real scalar variables. Let u = x1x2...xk with the joint

function f1(x1)...fk(xk). Then, the integral representations and series

representations of g1(u) can be obtained in many different ways

which will produce various results. When it comes to the ratio, then

ratios can be defined in many different ways when more than two

real scalar variables are involved. Then, the corresponding g2(u) can

take different forms and shapes.

“Convolution” in mathematical literature often means Laplace

convolution. Mellin convolutions of products and ratios used

to appear very rarely in mathematical literature. In the area of

special functions, when the functions are defined through Mellin-

Barnes representations, Mellin transforms andMellin convolutions

appear automatically. The class of hypergeometric functions

appears in very many practical problems as models and as

series solutions of differential equations. Hypergeometric function

pFq(·) has a Mellin-Barnes representation. Mittag-Leffler function

is considered as the queen function in the area of fractional

calculus. These functions also have Mellin-Barnes representations.

Wright’s function is another prominent function in the literature

having Mellin-Barnes representation. Generalized scalar variable

special functions such as G and H-functions have Mellin-Barnes

representations. In all these cases, Mellin convolutions of products

and ratios appear. Products and ratios of random variables appear

in many real-life situations. In industrial production processes,

the money value of the output has the structure of the product

of two real scalar positive random variables, namely, quantity of

output and price per unit. In a series of papers, starting from 2009,

Mathai has shown that all types fractional integrals introduced

by various authors from time to time are nothing but Mellin

convolutions of products and ratios of real scalar variables. In

the overview paper Mathai [12], it is shown that the whole area

of fractional calculus, including fractional integrals and fractional

derivatives etc., can be studied by using Mellin convolutions of

products and ratios. It is shown that the approach through Mellin

convolutions enable us to go to the Mellin transforms thereby to

the corresponding inverseMellin transforms which provide explicit

evaluations of fractional integrals. It is also shown that when the

arbitrary functions in fractional integrals belong to some general

classes, then the inverse Mellin transform will end up in G and H-

functions. Then, one could make use of the G-function differential

equation to construct differential equations for fractional integrals.

It is also shown in Mathai [12] that the approach through statistical

distribution theory or Mellin convolutions enables us to extend

fractional integrals to functions of matrix arguments and to the

complex domains.

Explicit computable series representations for various

categories of G-functions, including the general G-function,

are given in Mathai [5] book. The same techniques work in

obtaining explicit computable series forms for the H-function

also. With the help of these computable representations,

computer packages are also produced. Programs are

available in MAPLE and MATHEMATICA for analytical

and numerical computations of G and H-functions Hence,

numerical computations and graphs are not attempted in the

present study.

In the case of Mellin convolutions of products involving two

functions, it is shown that when these two functions belong

to generalized gamma densities, then one can obtain Krätzel

integrals and Krätzel transforms, reaction-rate probability integrals

in nuclear reaction-rate theory, and inverse Gaussian density

in stochastic processes. The large contributions of Mathai and

Haubold in astrophysics area started with the evaluation of a

reaction-rate probability integral by using the density of product

of real scalar positive random variables, which is nothing but

the Mellin convolution of a product involving generalized gamma

densities. A summary of the study in this area of astrophysics

is available in the monograph Mathai and Haubold [13], and an

updated version of this book is scheduled to appear in early 2025

from Springer.

In the matrix-variate case, Mathai [11] defined M-convolutions

and M-transforms, corresponding to Mellin convolutions and

Mellin transforms in the real scalar case. Jacobians of matrix

transformations and functions of matrix arguments in the real

and complex domains are given there, along with the necessary

conditions for the existence of various items. Detailed existence
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conditions for G-functions are given in Mathai [5]. These

M-convolutions are shown to be densities of symmetric product

and symmetric ratios of matrices when the basic functions involved

are matrix-variate statistical densities in the real or complex

domain. Distributions of symmetric products and symmetric

ratios of real positive definite or Hermitian positive definite

matrix-variate random variables appear in a large number of

practical situations such as in neutrino problems [8], matrix-variate

fractional calculus [12], the analysis of multiple and multi-look

data in radar, and sonar [14]. Matrix-variate statistical distributions

including singular distributions in the real and complex domains

and their applications in various areas are given in Mathai et al.

[15]. In this book, detailed existence conditions of the various

results in the real and complex domains are also given.
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