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Analysis of casson nanofluid
transport rates near a vertical
stretching sheet with dissipation
and slip e�ects

Tadesse Walelign*

Department of Mathematics, Debre Tabor University, Gondar, Ethiopia

Practical applications: Analysis of Casson nanofluid transport rates near a

vertical stretching sheet with dissipation and slip e�ects will provide relevant

information for practitioners to make informed decisions in handling real flow

systems. Hence, the present study will contribute in not only supplementing the

theoretical gaps for the scientific community but also improving the working

e�ciency of practical flow systems in manufacturing industries and the quality

of their products.

Purpose: This study mainly focused on examining the rates of hydromagnetic

transport phenomena of Casson nanofluid near a vertical surface in the

presence of slip, dissipation, and cross-di�usion e�ects. Based on the underlying

conservation laws in physical sciences and significant model assumptions, a

more comprehensive mathematical model is taken into account. E�orts are

made to analyze variations in the rates of heat, mass, and momentum transfer

against the continuous change of the variables.

Methodology: The solutions for the resultingmodel equations are explored with

the help of the optimal homotopy analysis method.

Findings: Among the results of the study, it is determined that the rate of heat

transfer between the solid surface and the surrounding fluid is enhanced by

increasing the e�ect of magnetic field (B > 3.5), thermal radiation (Rd > 2.5),

or concentration buoyancy force (Gc > 5). On the other hand, the mass transfer

near the solid surface can be assisted by increasing the e�ect of thermal di�usion

(Sr > 0), heat generation (Q > 2), thermal radiation (Rd > 2.5), and concentration

buoyancy force (Gc > 3). Furthermore, the rate of momentum transfer of the

fluid flow near the solid surface can be facilitated by increasing the e�ect of flow

unsteadiness (A > 2.5) or heat sink (Q < −4).

Originality: Most of the available studies on the physical quantities of practical

interest were made based on presenting their variations at only some selected

values of the parameters. Such analysis cannot give full information about the

complete behavior of the quantities in response to the governing parameters.

Thus, in this study a considerable attention is given to how the fluid transport

rates vary with the relevant factors in a continuous domain of the parameters.

Furthermore, the study considers a more comprehensive mathematical model

in the area under consideration and the resulting equations are solved by an

e�cient optimal homotopy analysis method.

KEYWORDS

hydromagnetic flow, transport rates, Casson fluid, slip e�ects, optimal homotopy

analysis method
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1 Introduction

Experimental investigations are the most realistic ways

of analyzing fluid flow phenomena. Unfortunately, such

investigations are so expensive to apply in fluid flow problems

and other related scientific investigations. Consequently, it is

common to carryout mathematical model analysis to understand

flow behaviors, instead of doing physical experiments. Still,

exact modeling of fluid flow phenomena is quite difficult,

several investigators are considering over-simplified model

assumptions. For instance, a number of studies in fluid dynamics

have been reported without considering slip effects in their flow

considerations [1, 2]. However, flows such as food processing

undergo velocity slip phenomena [3]. In addition, in some

manufacturing industries where there is high concentration

and temperature difference between the boundary surface and

the ambient fluid, heat can be transferred due to concentration

difference, called Dufour effect, and conversely, mass flux can

be produced due to temperature gradient, called Soret effect [4].

Flows such as those that start suddenly from rest or come to rest

usually depend on time. This time-dependent flow system is called

an unsteady flow. In boundary layer flows induced by stretching

of solid surfaces, the effect of flow unsteadiness is an important

tool to stabilize a flow system by adjusting the velocity of the

stretching surface. However, due to the complex nature of the

Abbreviations: A, Unsteady parameter; B, Magnetic field strength (N.m.A−1);

C, Concentration in boundary layer; Cfx , Local Skin friction coe�cient; Cp,

Specific heat capacity at constant pressure (J.Kg−1 .K−1); Cs, Concentration

susceptibility; Cw , Wall nanoparticle concentration; C∞, Concentration in

ambient flow; Dm, Molecular di�usivity coe�cient (m2 .s−1); Df , Dufour

number; DT , Thermophoretic di�usion coe�cient; f , Dimensionless stream

function; g, Gravitational acceleration;Gc, Mass Grashof number;Gr , Thermal

Grashof number; Jw , Mass flux at the surface; K0, Permeability of porous

medium; KP , Porosity parameter; KT , Thermal di�usion ratio; Kr , Rate of

chemical reaction; k∗, Thermal absorption coe�cient; M, Magnetic field

parameter; Nb, Brownian motion parameter; Nf , Momentum slip parameter;

Nt , Thermophoresis parameter; Nux , Nusselt number; Nθ , Thermal slip

parameter; Nϕ , Concentration slip parameter; Pr, Prandtl number; Q, Heat

generation/absorption parameter; Q0, Coe�cient of heat source; qm, Mass

flux of the nanofluid (Kg.m2s); qw , Surface heat flux (W.m−2); Rd, Radiation

parameter; Rex , Local Reynolds number; S, Injection/suction parameter; Shx ,

Sherwood number; Sc, Schmidt number; Sr , Soret number; T, Temperature

(K); Tm, Mean temperature (K); Tw , Wall temperature (K); T∞, Ambient

fluid temperature (K); Uw , Velocity of surface (m.s−1); Vw , Velocity of mass

through the wall (m.s−1); (u, v), Velocity components (m.s−1); αf , Thermal

di�usivity of the nanofluid (m2 .s−1); βc, Concentration expansion coe�cient;

βT , Thermal expansion coe�cient; γ , Chemical reaction parameter; η,

Similarity variable; θ , Dimensionless temperature; κ , Thermal conductivity

coe�cient (W.m−1 .K−1); µ, Dynamic viscosity (Kg/(m.s)); ρf , Density of fluid

(Kg.m−3); ρp, Density of nanoparticles (Kg.m−3); (ρc)f , Heat capacity of the

fluid; (ρc)p, Heat capacity of the nanoparticles; σ , Electric conductivity; σ ∗,

Stefan–Boltzmann constant; τ , Ratio of heat capacities; τw , Wall shear stress

(Pa); υ, Kinematic viscosity (m2/s); ϕ, Dimensionless concentration function;

φ, Homotopy approximation; ψ , Stokes stream function; ℏ, Convergence-

control parameter.

governing equations and their difficulty to solve, several studies

[5–9] are focusing on steady flow problems rather than unsteady

flow problems.

On the other hand, improving the thermal conductivity

of certain fluids becomes an important area of investigation

in processes such as effective cooling of vehicles, machinery,

transformers, electronics, and other technological appliances. In

particular, analysis of Casson nanofluid transport rates near a

vertical stretching sheet with dissipation and slip effects has

attracted significant attention in recent years due to its wide

range of applications in various fields, such as geothermal energy

extraction, nuclear reactor cooling, and electromagnetic filtration.

Ighoroje et al. [10] presented an MHD fluid flow past a moving

vertical surface in a velocity slip flow by applying modified

homotopy perturbation method. They showed that the increase in

the Schmidt number increases the fluid concentration and velocity

and the increase in the magnetic field parameter decreases the fluid

velocity. Awad et al. [11] presented a mathematical description

of a two-dimensional unsteady magneto-hydrodynamics slow flow

with thermoelectric properties on an infinite vertical partially

hot porous plate. The Laplace–Fourier transform technique was

applied to obtain exact expressions for the temperature and stream

function in the case of steady-state heat transfer. More recently,

Awad [12] utilized Couette formulation describing a pressure-

driven flow of a viscous thick liquid-metal layer bounded by

two similar metallic plates. In this study, a numerical technique

based on Fourier series approximation was employed and found

that the retarded crossover of low thermal conduction shows

“ultraslow” temperature propagation within the thick layer. As

traditional fluids such as air, water, and engine oils are naturally

poor conductors of heat [13]. Many theoretical and experimental

investigations revealed that dispersion of nanosized solid particles

into conventional fluids increases the thermal conductivity of

the hosting fluids [14, 15]. The extraordinary thermophysical

properties of nanofluids were explained by Buongiorno [16].

Currently, these innovative fluids are widely used in advanced

thermal management systems, metal cutting, drug targeting, cancer

treatment, and many other industrial and medical applications

[17]. Manjunatha et al. [18] presented a new theoretical nanofluid

model for enhancing heat transfer. They observed that the trihybrid

nanofluid has a better thermal conductivity than the hybrid

nanofluid. Adnan et al. [19] analyzed the heat transmission ability

of a nanofluid inside a squeezing channel. The results revealed

that high viscosity parameter, porous absorber walls, and strong

surface–surface interaction due to aggregation of nanoparticles

significantly control the fluid movement. In addition, Bani-Fwaz

et al. [20] studied nanofluid heat transfer applications inside a

channel formed by expanding/contracting walls. They introduced

a new heat transport model by adding the effects of walls

permeability, thermal radiations, nanoparticles, and molecular

diameters. For expanding and contracting walls, the velocity is

maximum in the channel center. Furthermore, contracting walls

and temperature ratio number reduced the temperature.

Fluids in which the shear rate is not proportional to the

applied shear stress are termed non-Newtonian fluids. Many of

the fluids processed in industries and our body system including

lubricants, paints, paper pulp, polymer solution, honey, apple

sauce, blood, and other biological fluids are non-Newtonian. Due
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to the complex nature of non-Newtonian fluids, the well-known

Navier–Stokes equations becomes inadequate to fully describe

these essential fluids and this introduces interesting challenges to

researchers. Motivated by the significance applications of non-

Newtonian nanofluids, several researchers have been interested

in introducing notable results in the area of fluid mechanics.

Ramesh et al. [21] investigated the effect of transverse magnetic

field, thermophoresis, and Brownian motion of nanoparticles on

a non-Newtonian tangent hyperbolic fluid passing via a porous

medium. In this report, it was found that the increase in radiation

parameter leads to a decrease in temperature profile and the rise

in Brownian motion effect corresponds to greater nanoparticle

volume fraction. Alqsair et al. [22] also studied the convective heat

transfer phenomena of a non-Newtonian micropolar nanofluid.

They reported that as the values of the viscoelastic parameter

increase, both the temperature of the micropolar fluid and the

wall shear stress grow. Akbar et al. [23] investigated the impact

of Deborah’s number and significance of linear and quadratic

convection on a steady boundary layer flow of Maxwell fluid past

a linearly stretched sheet. They employed the bvp4c approach to

handle the mathematical analysis. The study reported that the

linear convection model provides more heat transfer than the

quadratic convection model. Patil et al. [24] applied the quasi-

linearization and implicit finite difference methods to analyze the

impacts of periodic magnetic field and multiple diffusions effects in

a non-Newtonian Eyring–Powell fluid flow past a spinning cone.

It was reported that increasing values of bioconvective Rayleigh

number correspond to the decreasing fluid velocity and the friction

between the cone surface and the surrounding fluid. In addition,

Patil et al. [25] provided a characterization of the impacts of

activation energy, time and diffusions of liquid hydrogen, and

ammonia in a multidiffusive nanofluid flow over a sphere. They

revealed that the mass transport strength of liquid ammonia is big

enough to dwarf liquid hydrogen and the entropy generation can be

minimized by enhancing the values of temperature difference and

Brownian diffusion parameter.

In order to estimate the heat transfer rate at the fluid–solid

interfaces, an expression called the Nusselt number, which is a

quantity that depends on temperature gradient is used. In addition,

the ratio of the convective mass transfer to mass diffusion is given

by Sherwood number. It is used to quantify the rate of mass flux

based on the concentration gradient near the solid surface. The

third important quantity is the rate of momentum transfer that is

commonly measured in terms of the skin friction coefficient, which

depends on the velocity gradient, is used to analyze the surface drag

force between the solid and the fluidmolecules. Here, the coefficient

is used to predict the amount of force needed to withdrawmaterials

in extrusion processes. On the other hand, fluids with reduced skin

friction coefficient can be used as good lubricants in mechanical

and industrial activities.

It is important to note that understanding the rates at which

fluid transport takes place in a flow system will help practitioners

improve the quality of final products and their cost of production.

To this end, a number of investigators have been reporting on how

these quantities vary with the diversified nature of thermophysical

parameters. For instance, Khan et al. [26] analyzed a boundary

layer flow of a nanofluid flow with non-linear thermal radiation

past a moving needle. They reported that the rate of heat transfer

increases for greater values of the Eckert number, whereas it

slows down for magnetic field parameters. Das et al. [27] reported

a numerical investigation on micropolar nanofluid flow toward

a linearly stretching sheet. They found that near the stretching

surface, the rate of heat transfer decreases for larger values of

thermophoresis and Brownian parameters while the mass transfer

rate is facilitated with these constraints.

However, most of the available studies on the physical

quantities of practical interest were made based on presenting

their variations at only some selected values of the parameters.

Such analysis cannot give full information about the complete

behavior of the quantities in response to the governing parameters.

Thus, in this study a considerable attention is given on how

the fluid transport rates in a hydromagnetic nanofluid flow

phenomena vary with the relevant factors in a continuous

domain of the parameters. Furthermore, the study considers

a more comprehensive mathematical model in the area under

consideration and the resulting equations are solved by an efficient

optimal homotopy analysis method. Hence, the present study will

contribute in not only supplementing the theoretical gaps for the

scientific community but also improving the efficiency of practical

flow systems in manufacturing industries.

2 Model considerations and
mathematical descriptions

In fluid dynamics, the study of fluid flows over vertically

stretching surfaces plays decisive roles in the extraction of polymer

sheets and metallic plates, drawing of plastic films, paper and glass

fiber productions, food processing, material insulation, geothermal

energy extraction, and in many other industrial and biomedical

applications. In this study, the hydromagnetic nanofluid transport

phenomena over a permeable vertical solid surface are considered.

It is assumed that the vertical surface placed in a stationary fluid

is stretched suddenly along the vertical and this causes a time-

dependent boundary layer flow as outlined in Figure 1. In addition,

the constant values of velocity (u = 0), temperature (T = T∞),

and concentration (C = C∞) outside the boundary layer region

are considered. Furthermore, a uniform external magnetic field

normal to the vertical surface is applied to influence the flow system

integrated into a porous medium.

Here, for non-Newtonian fluids such as printing inks,

lubricants, liquid detergents, cosmetics, fruit juices, tomato sauce,

and so on, Casson fluid model defined as in Casson [28]

is considered.

τi,j =







(

µb + τ0√
2π

)

2ei,j,π > πc
(

µb + τ0√
2πc

)

2ei,j,π < πc
(1)

where τi,j are components of the stress tensor, τ0 is a finite value

of Casson yield stress, µb is the coefficient for plastic dynamic

viscosity, ei,j = 1
2

(

∂ui
∂xj

+ ∂uj
∂xi

)

is the rate of strain tensor with ui

denoting the components of fluid velocity, π = ei,jei,j is the self-

product of fluid deformation rate ei,j, and πc is the critical value
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FIGURE 1

Sketch of the flow problem.

of π . In addition, the kinematic viscosity υ for Casson fluid is

defined as:

υ =
µb

ρ

(

1+
1

β

)

, (2)

where ρ is the fluid density and β = µb
√
2πc

τ0
is the Casson

parameter. Furthermore, for π > πc, the shear stress can be

expressed as:

τi,j = µb

(

1+
1

β

)

(2ei,j) = µb

(

1+
1

β

)(

∂ui

∂xj
+
∂uj

∂xi

)

. (3)

With the aforementioned assumptions and constitutive equation,

the flow situation is described mathematically by using non-

linear coupled differential equations that are steamed from the

underlying principles of physical sciences along with the Maxwell

laws of electromagnetism. In addition, by using the boundary layer

approximation principle, small variations in the flow profiles are

neglected so that two-dimensional sets of differential equations

are obtained in the Cartesian coordinate system. As a non-

compressible flow is considered under the study, the continuity

equation for the conservation of mass takes the form

∂u

∂x
+
∂v

∂y
= 0 (4)

where u and v are the x and y dimensions of the fluid velocity.

As the fluid is taken to be electrically conducting due to the

addition of nanoparticles, the flow system can be managed by

implementing a uniformmagnetic force B perpendicular to the flow

direction. Considering the theory of Boussinesq’s approximation

[29], the density variation which induces the buoyancy force is

taken into account. In addition, by assuming the porosity of the

medium, the linear momentum equation is formulated as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= υ

(

1+
1

β

)

∂2u

∂y2
−

(

σB20
ρ

+
υ

K0

)

u

+ g
[

βT(T − T∞)+ βc(C − C∞)
]

, (5)

where t is the time variable for the unsteady flow; g is the

magnitude for the force of gravity; the terms σ , υ, and ρ

denote electric conductivity, kinematic viscosity, and density of

the fluid, respectively; K0 is coefficient of medium porosity; βc
and βT are coefficients of volumetric concentration and thermal

expansion quantities; the pair of expressions (T,T∞) and (C,C∞)

represent the temperature and concentration of nanoparticles in

the boundary layer and inviscid regions, respectively.

Considering the Rosseland approximation [30] for thermal

radiation and taking the impacts of Brownian and thermophrosis

effects of nanoparticles, heat transfer due to concentration gradient,

heat source, and heat lost by dissipation, the energy equation for the

problem is given as follows:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= τ

[

DB
∂T

∂y

∂C

∂y
+

DT

T∞

(

∂T

∂y

)2
]

+
υ

Cp

(

1+
1

β

) (

∂u

∂y

)2

+
σB20

(ρCp)f
u2 +

DmKT

CsCp

∂2C

∂y2

+ αf
(

1+
16σ ∗T3

∞
3kk∗

)

∂2T

∂y2
+

Q0

ρCp
(T − T∞), (6)

whereDB,Cs,Dm,DT , σ
∗, k, k∗,KT , andQ0 stands correspondingly

for Brownian diffusion, concentration susceptibility, species

diffusivity, thermophoresis diffusion coefficient, Stefan–Boltzmann

constant, thermal conductivity of the fluid, mean thermal

absorption coefficient, thermal diffusion ratio, and coefficient of

heat source, respectively. The symbols τ = (ρcp)p
(ρcp)f

represent the ratio

of heat capacities of nanoparticle to that of the base fluid where cp is

the specific heat capacity of nanoparticles at constant pressure. The

term αf = k
(ρCp)f

stands for the coefficient of thermal diffusivity of

the fluid.

Taking the impacts of chemical reaction and mass transfer due

to temperature difference, the conservation of nanoparticle volume

fraction is governed by the following equation:

∂C

∂t
+u

∂C

∂x
+v
∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
+
DmKT

Tm

∂2T

∂y2
−Kr(C−C∞),

(7)

where Tm and Kr stand for the mean temperature and coefficient of

chemical reaction.

To get a convergent unique solution for each of the unknown

quantities of interest, the following significant boundary conditions

are considered in the flow situation. Suppose the solid surface

is stretched with a velocity Uw = ax
1−ct , where a and c are

constant numbers such that 1 − ct > 0. The heat exchange

between the solid and the surface involves a convective mechanism

and the concentration of nanoparticles is assumed to be constant

at the interface between the solid surface and the fluid [31–

33].
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u = Uw(x, t)+Uslip, v = Vw,T = Tw(x, t)+Tslip,C = Cw(x, t)+Cslip,

(8)

where Vw = − V0√
1−ct

is the fluid velocity through the

permeable surface. The quantities Tw(x, t) = T∞ + T0ax
2υ(1−ct)2

and

Cw(x, t) = C∞+ C0ax
2υ(1−ct)2

denote estimates of wall temperature and

concentration. In addition, the slip terms are described as Uslip =
N1υ

∂u
∂y , Tslip = D1

∂T
∂y , and Cslip = D2

∂C
∂y ; with the coefficients

N1, D1, and D2 representing hydrolic, thermal, and concentration

slip factors.

In the ambient region, the following constant values of velocity,

temperature, and nanoparticle concentration are considered

as y → ∞.

u → 0,T → T∞,C → C∞. (9)

The efficiency of many industrial and technological activities that

involve fluid flow phenomena is determined by the rates of fluid

transport near the solid–fluid interface. These quantities include

local Nusselt numberNux, Sherwood number Shx, and wall friction

coefficient Cf given as:

Nux =
xqw

κ(Tf − T∞)
, Shx =

xqm

Dm(Cw − C∞)
and Cf =

τw

ρfU2
w

,

(10)

where

qw = −
(

κ +
16σ ∗T3

∞
3k∗

) [

∂T

∂y

]

y=0

, qm = −Dm

[

∂C

∂y

]

y=0

and

τw = −
(

1+
1

β

)[

∂u

∂y

]

y=0

(11)

are the heat flux, mass flux, and shear stress at the surface of the

solid, respectively.

Currently, in order to simplify the equations governing

the flow profiles, boundary conditions, and quantities of

interest Equations 4–11, the following transformation variable

is introduced:

η = y

√

Uw

υx
. (12)

Again defining the Stoke’s function ψ as

ψ(x, y) =
√

Uwυxf (η, (13)

where f is the dimensionless stream function and the velocity

components are satisfying the conditions

u =
∂ψ

∂y
and v = −

∂ψ

∂x
(14)

Furthermore, the temperature and concentration profiles are non-

dimensionlized by defining new dimensionless functions as follows:

θ(η) =
T − T∞

Tw − T∞
(15)

and

ϕ(η) =
C − C∞

Cw − C∞
. (16)

Currently, determining the necessary partial derivatives of the

unknown functions, substituting the results, and simplifying the

expressions, one can easily verify that the continuity equation in

Equation 4 is satisfied identically.

However, the momentum expression in Equation 5 is reduced

to the form

(

1+
1

β

)

f ′′′+ff ′′−f ′2−(Kp+M)f ′−A
(

f ′ +
η

2
f ′′

)

+Grθ+Gcϕ = 0.

(17)

Here, the symbol ’ stands for differentiation in the variable

η. The terms Kp = υx
K0Uw

, M = σB20
aρ and A = t

a

represent the parameters for medium porosity, magnetic field,

and flow unsteadiness, respectively. The expressions Gr =
gT0
2aυ βT and Gc = gC0

2aυ βc are Grashof numbers for thermal and

concentration distributions.

Again simplifying the energy equation in Equation 6, it is

possible to obtain the following expression

(

1+
4

3
Rd

)

θ ′′ + Pr

[

f θ ′ − f ′θ − A
(η

2
θ ′ + 2θ

)

+
(

1+
1

β

)

Ecf ′′2

+ MEcf
′2 + Nbθ

′ϕ′ + Ntθ
′2 + Df ϕ

′′ + Qθ
]

= 0, (18)

where the parameters Pr = υ
α
, Rd = 4σ ∗T3

∞
kk∗ , Ec = U2

w
(Cp)f (Tw−T∞

,

Nb = τDm(Cw−C∞)
υ

, Nt = τDT (Tw−T∞)
υT∞

, Df = DmKT
υCsCp

Cw−C∞
Tw−T∞

and

Q = Q0
a(ρCp)

Define, respectively, for the Prandtl number, thermal

radiation, Eckert number, Brownian motion, thermophoresis,

Dufour number, and heat source.

In addition, the conservation of nanoparticle volume fraction

stated in Equation 7 is reduced to the expression

ϕ′′ + Sc
[

fϕ′ − f ′ϕ − A
(η

2
ϕ′ + 2ϕ

)

− γ ϕ + Srθ
′′
]

+
Nt

Nb
θ ′′ = 0,

(19)

where Sc = υ
Dm

is the Schmidt number, γ = Krx
Uw

is the chemical

reaction parameter and Sr = DmKT
Tmυ

Tw−T∞
Cw−C∞

is the Soret number.

Similarly, by simplifying the boundary conditions

in Equations 8, 9, it is possible to get the following

reduced forms:

f (η) = S, f ′(η) = 1+ Nf f
′′(0), θ(η) = 1

+ Nθθ
′(η),ϕ(η) = 1+ Nϕϕ

′(0) at η = 0, (20)

and

f ′(η) → 0, θ(η) → 0,ϕ(η) → 0 as η→ ∞, (21)

where S = − V0
√

1−ct
aυ

is the permeability parameter for which the

values S > 0, S = 0, and S < 0 corresponds to fluid suction

and injection. The coefficients given by Nf = N1υRe
1/2x−1/4,

Nθ = D1Re
1/4x−1/4 and Nϕ = D2Re

1/4x−1/4 represent the slip

parameters for momentum, thermal, and concentration profiles

with Re = Uwx
υ

defining the Reynolds number.
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Furthermore, the local skin friction coefficient, Nusselt number

and Sherwood number in Equation 10 are simplified and reduced

to the form:

Re1/2x Cf = f ′′(0),Nux = −Re1/2x

(

1+
4

3
Rd

)

θ ′(0), and

Shx = −Re1/2x ϕ′(0). (22)

Hence, the boundary derivatives f ′′(0), θ ′(0), and ϕ′(0) are

proportional to the estimates for rate of change ofmomentum, heat,

and concentration diffusion near the solid surface.

3 Method of analysis

Determining exact solutions to non-linear governing equations

is not an easy task for researchers. Accordingly, various analytic

and numerical methods have been proposed each with its own

limitation. In this study, the efficient optimal homotopy analysis

method, designed by Liao, has been implemented successfully with

the help of mathematical computational software. This method

provides a more accurate analytic approximation to the unknown

functions in the non-linear models evaluated at the continuous

domain of the parameters. This method is preferred due to its

effectiveness as the method has obtained the combined advantages

of numerical and analytical methods. One can refer to the books

cited in Liao [34] and Zhao and Liao [35] for more information

about the concept and implementation procedures of the method.

In order to obtain the solutions for the unknown functions

in Equations 17–19, the following initial approximations for the

dimensionless velocity, temperature, and concentration profiles are

identified based on the boundary conditions under consideration.

f0(η) = S+
1− e−η

1+ Nf
, θ0(η) =

1

1+ Nθ
e−η ,ϕ0(η) =

1

1+ Nϕ
e−η .

(23)

The homotopy analysis method involves the construction of

continuous mappings of initial approximations to the exact

solutions. To this end, the following linear differential operators

are chosen.

Lf (f ) = f ′′′ + f ′′, Lθ (θ) = θ ′′ + θ , Lϕ(ϕ) = ϕ′′ + ϕ (24)

It is also essential to define auxiliary functions of the form

Hf (η) = Hθ (η) = Hϕ(η) = e−η . (25)

Using the so-called convergence control parameters (ℏi), it is

possible to ensure convergence of the series solution. The optimal

values of these parameters are obtained from reducing the residual

errors defined as:

εik(ℏi) ≈
1

N + 1

N
∑

j=0







ℵi





k
∑

n=0

φin(η)











2

(26)

where ℵi and φi are the non-linear operators and homotopy

approximations for the unknown functions.

Currently, all the required computations in the study are

carried out with the help of a Mathematica-based BVPh 2.0

package, which was designed by Zhao and Liao [35]. The package

is successfully implemented for the study to generate the required

tabular and graphical results. To this end, the following values of

the involved parameters are considered, unless otherwise stated:

A = Gr = Gc = Rd = 0.2,β = 10, Sr = 0.03,Df = 0.02,M =
Kp = Nt = γ = Ec = Q = 0.1, S = Pr = Sc = Nf = 1,Nθ =
Nφ = Nb = 0.3. Thus, the optimal values for the parameters are

as follows: ℏf ≈ −0.52, ℏθ ≈ −0.65 and ℏϕ ≈ −1.01. for which

the residual errors εf , εθ , and εϕ against the order of homotopy

approximations are outlined as indicated in the right columns of

Table 1.

It is shown in Table 1 that the individual errors for each profile

are decreasing rapidly with the increase in order of homotopy

approximations. Furthermore, the values of derivatives −f ′′(0),

−θ ′(0), and −ϕ′(0) for the dimensionless velocity, temperature,

and concentration profiles at the solid boundary are computed. It is

found in Table 1 that the values of each derivative converge with the

increase in the order of HAM approximations. So as to give a better

insight about the residual errors, the total average squared residual

error is determined and plotted as depicted in Figure 2. Figure 2

displays that the total residual error is declining very fast after the

first few iterations and less variation is observed for higher orders

of iteration.

These observations on the declining errors in both the residual

errors and solution errors confirm that the optimal homotopy

analysis method converges for the considered non-linear equations.

On the other hand, to ensure the accuracy of the method a

comparative analysis is made; that is, some important results of the

present study are compared against certain previous studies under

common parameters values. Here, the values of−f ′′(0) for selected

values of the unsteadiness parameter are computed and compared

as presented in Table 2.

Table 2 reveals that the values of −f ′′(0) obtained from the

present problem agree well with that of the previous reports. This

verifies the plausibility of the proposedmodel and the implemented

method of analysis. Consequently, the major findings of the study

on the influences of the emerging parameters on the rates of fluid

transport phenomena near the solid surface are presented in the

following section.

4 Results and discussions

The influences of relevant parameters on the rate of mass, heat,

and momentum transfer are analyzed in terms of the derivatives of

the dimensionless profiles near the solid surface. In order to give

a better understanding about the variations of relevant quantities

in response to the involved thermophysical variables, a graphical

method of presentation is used and a brief discussion is made on

the physical realities behind the observed outcomes.

4.1 Magnetic field e�ects

As the fluid is considered to be electrically conducting, the

effects of the magnetic field on the rates of fluid transport profiles

near the solid surface are examined and presented in Figure 3. It

can be revealed from Figure 3 that the variation of the boundary
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TABLE 1 Convergence of some solutions with the order of HAM approximations.

Order of approx −f ′′(0) −θ ′(0) −ϕ′(0) Average squared residual errors

εf εθ εϕ

2 0.52161 0.67398 0.75532 7.50× 10−7 1.55× 10−7 3.82× 10−6

6 0.52159 0.67127 0.75593 4.85× 10−8 7.27× 10−8 3.47× 10−8

10 0.52608 0.67092 0.75591 3.98× 10−8 6.44× 10−8 2.48× 10−8

14 0.52606 0.67081 0.75590 3.73× 10−8 5.66× 10−8 1.93× 10−8

18 0.52603 0.67075 0.75590 3.46× 10−8 4.96× 10−8 1.53× 10−8

22 0.52600 0.67071 0.75591 3.21× 10−8 4.33× 10−8 1.23× 10−8

26 0.52600 0.67069 0.75592 2.97× 10−8 3.79× 10−8 1.01× 10−8

30 0.52600 0.67067 0.75592 2.74× 10−8 3.32× 10−8 8.36× 10−8

FIGURE 2

Total residual errors in relation to the HAM approximations.

TABLE 2 Values of −f ′′(0) for Pr = Sc = 1, Nb → 0, β → ∞,

M = Kp = Nt = Nf = Nθ = Nφ = S = Gr = Gc = Sr = Df = γ = Q = 0

against some values of A.

A Chamkha et al.
[36]

Mabood and
Shateyi [3]

Present study

0.8 1.261512 1.261042 1.260987

1.2 1.378052 1.377724 1.377575

derivatives is insignificant until the value of M is approximately

2, and then as the values of the parameter increase, the rate of

momentum transfer and concentration diffusion decline while the

rate of heat transfer is upgraded near the solid surface.

This is due to the induced electromagnetic force produced by

the interaction between the motion of electrically conducting fluid

and the external magnetic field. In particular, as the magnetic field

is applied normally to the direction of flow, the induced force

acts opposite to the direction of the flow, which tends to retard

the velocity of the fluid and the rate of momentum transfer. On

the other hand, the work done by the fluid molecules against the

electromagnetic force allows the transfer of more heat energy in the

flow system. This role of magnetic field can be used to manage flow

systems inmaterial processing and various biomedical applications.

4.2 Unsteadiness e�ects

As a flow system that starts from rest is considered, it is

expected that its flow profiles and related quantities may depend

on the time variable. The rates of variations of flow profiles with

time are measured by the unsteadiness parameter. The impacts of

the unsteadiness effect on the rates of relevant profiles are shown

in Figure 4. It can be revealed from the results in Figure 4 that as

the flow system becomes more unsteady, less amount of heat and

mass diffusion occurs while the momentum transfer is facilitated

with the increase in the unsteadiness parameter.
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FIGURE 3

E�ects of magnetic field (M) on the rates of velocity (f ′′),

concentration (φ′), and temperature (θ ′) profiles near the solid

surface (atη = 0).

FIGURE 4

E�ects of unsteadiness (A) on the rates of velocity (f ′′), concentration

(φ′), and temperature (θ ′) profiles near the solid surface (atη = 0).

4.3 Medium porosity e�ects

Fluid flows across media such as soil, beach sand, cement,

crushed rock, or other materials with pores are practically useful

in filtration, separation, and other similar activities. It is therefore

essential to examine the impacts of medium porosity on fluid

transport rates. The results of the present study are displayed in

Figure 5.

Figure 5 displays that the boundary derivatives are declining as

the values of Kp increase. This agrees with the fact that a medium

with large values of porosity parameter has a smaller permeability

to fluid flow. This limited permeability has a tendency to inhibit

fluid transport rates.

FIGURE 5

E�ects of medium porosity (Kp) on the rates of velocity (f ′′),

concentration (φ′), and temperature (θ ′) profiles near the solid

surface (atη = 0).

FIGURE 6

E�ects of thermal Grashof number (Gr) on the rates of velocity (f ′′),

concentration (φ′), and temperature (θ ′) profiles near the solid

surface (atη = 0).

4.4 Buoyancy e�ects

The presence of a gravitational field with variations in

concentration and temperature distributions develops body forces,

known as the concentration and thermal buoyancy forces. These

forces are quantified, respectively, as mass and thermal Grashof

numbers. The impacts of these numbers on the boundary

derivatives are depicted in Figures 6, 7, respectively.

It is possible to note from Figures 6, 7 that as the buoyancy

forces due to temperature and concentration differences increase,

the rate of mass diffusion is facilitated while the rate of

momentum transfer is restricted. On the other hand, it is

found that the rate of heat transfer is less affected by thermal

buoyancy force while it is facilitated as the mass buoyancy

force increases.

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2025.1526769
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Walelign 10.3389/fams.2025.1526769

FIGURE 7

E�ects of mass Grashof number (Gc) on the rates of velocity (f ′′),

concentration (φ′), and temperature (θ ′) profiles near the solid

surface (atη = 0).

FIGURE 8

E�ects of Soret number (Sr) on the rates of velocity (f ′′),

concentration (φ′), and temperature (θ ′) profiles near the solid

surface (atη = 0).

4.5 Cross di�usion e�ects

The cross contributions of mass and temperature gradients to

the heat and mass transfer rates are studied in terms of the Dufour

and Soret numbers, respectively. The influences of these parameters

on the boundary derivatives are depicted in Figures 8, 9.

It is shown in Figure 8 that as the Soret number increases, the

rate of mass transfer is encouraged while the rate of heat transfer is

inhibited. On the other hand, the increase in Dufour number causes

the reduction in mass transfer rate as indicated in Figure 9. These

results also follow from the facts that the Soret effect is responsible

for generating mass flux while the Dufour effect contributes to

energy flux.

FIGURE 9

E�ects of Dufour number (Df ) on the rates of velocity (f ′′),

concentration (φ′), and temperature (θ ′) profiles near the solid

surface (atη = 0).

FIGURE 10

E�ects of thermal radiation (Rd) on the rates of velocity (f ′′),

concentration (φ′), and temperature (θ ′) profiles near the solid

surface (atη = 0).

4.6 Thermal radiation e�ects

The study of thermal radiation (Rd) in fluid flow systems is

significant for high-temperature environments. The results of the

present study on the impacts of Rd is plotted in Figure 10.

One can notice from Figure 10 that the thermal radiation

parameter has the tendency to rise both the mass and heat transfer

rates while it retards the momentum transfer rate.

4.7 Heat source e�ects

Fluid flows may occur in conditions where the addition or

removal of heat energy is significant. The rates at which the mass,

heat, and momentum transfer varies in relation to the changing
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FIGURE 11

E�ects of heat sink (Q < 0) and heat source (Q > 0) on the rates of

velocity (f ′′), concentration (φ′), and temperature (θ ′) profiles near

the solid surface (atη = 0).

trends of heat sink (Q < 0) and heat source (Q > 0) are

determined as shown in Figure 11. It is revealed in Figure 11

that the rate of heat transfer can be inhibited by increasing

either the heat sink or increasing heat source effects. However,

opposite behaviors are noticed by the rates of momentum and

mass diffusion.

5 Conclusion

In this study, special attention is given to analyze the

rates of mass, heat, and momentum transfer in a magnetic

Casson nanofluid flow with dissipation and slip and cross-

diffusion effects near a solid surface. The governing principles

of fluid dynamics and heat transfer together with tangible

boundary conditions are represented mathematically by

using systems of differential equations. An efficient optimal

homotopy analysis method is implemented to obtain analytic

approximations for the momentum, heat, and mass transfer

rates of unknown functions in response to the continuous

variations of relevant parameters. Attempts are also made to

ensure the validity, accuracy, and convergence of the results.

Based on the results of the present study, it is possible to make the

following conclusions:

• The heat transfer between the solid surface and the

surrounding fluid can be enhanced by increasing the

values of thermal radiation (Rd), magnetic field (B), or

concentration buoyancy force (Gc). It can also be enhanced

by decreasing the effect of thermal diffusion (Sr), porosity

of the medium (Kp), flow unsteadiness (A), and heat

source (Q) effects.

• The mass transfer near the solid surface can be assisted by

increasing the effect of thermal diffusion (Sr), heat generation

(Q > 0), thermal radiation (Rd), and concentration buoyancy

force (Gc). It can also be assisted by decreasing the effect

of diffusion thermo (Df ), heat sink (Q < 0), medium

porosity (Kp), magnetic field (B), or flow unsteadiness

(A) parameters.

• The rate of momentum transfer of the fluid flow near the

solid surface can be facilitated by increasing the effect of flow

unsteadiness (A) or heat sink (Q < 0). This can also be

facilitated by decreasing the effect of medium porosity (Kp),

heat generation (Q > 0), magnetic field (B), thermal radiation

(Rd), and concentration buoyancy force (Gc).

Among other things, the analysis of Casson nanofluid transport

rates near a vertical stretching sheet with dissipation and slip

effects over a continuous domain of parameters will provide

relevant information for practitioners to make informed decisions

in handling real flow systems. Hence, the present study will

contribute in not only supplementing the theoretical gaps

for the scientific community but also improving the working

efficiency of practical flow systems in manufacturing industries

and the quality of industrial products. This study can be

further extended in many directions for more complicated

real applications. This may include analyzing various fluid

behaviors over different flow geometries in the presence of other

relevant flow parameters and by implementing other efficient

mathematical methods.
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