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The assumption of frictionless markets has long been debated, drawing interest

from scholars and practitioners alike. Market liquidity is a central theme in this

regard; it is traditionally assessed through transaction costs, volume, price-based,

and market-impact measures. In contrast, the Fractal Market Hypothesis (FMH)

suggests that liquidity emerges from the heterogeneity of investment time scales

among participants, with liquidity shortages arise when traders converge on

the same time horizons, particularly the short-term one which typically occurs

during volatile periods. While current methods to asses liquidity often rely on

single moments, which may provide limited insights, a novel methodology that

considers the whole distributions and compares log-returns across pairs of time

scales is discussed and implemented in this work. A Matlab-based algorithm is

built that provides as output a dynamical estimation of the pairwise self-similarity

of the scaled distributions. The lower the self-similarity parameter the higher the

potential liquidity shortage.
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1 Introduction

The assumption of frictionless markets has been a longstanding topic of debate,

attracting interest from both scholars andmarket practitioners. Broadly speaking, financial

market frictions encompass any factors that impede natural trading and may include

transaction costs, taxes, regulatory expenses, asset indivisibility, and liquidity constraints.

Notably, the concept of market liquidity is a cornerstone in financial literature, with

traditional liquidity measures generally categorized into four groups [1]: (a) transaction

cost measures, such as the bid-ask spread and its extensions [2]; (b) volume-based

measures, including transaction volume, turnover [3], and the Hui–Heubel Liquidity Ratio

[4]; (c) price-based measures, for instance, the Amihud measure (ILLIQ) [5] and the

Market Efficiency Coefficient (MEC) [6]; (d) market-impact measures, exemplified by the

Market-Adjusted Liquidity Model developed by Hui and Heubel in 1984 [4].

The introduction of electronic trading systems in recent years have increased the

attention toward another measure of liquidity: the order book. It captures the orders placed

by traders to buy and sell stocks at different price points. In this direction, a very interesting

work by Libman et al. [7] concludes that the deeper layers of the order book possess

valuable information in the context of liquidity, a finding that is supported by other studies.

A radically different approach to modeling market liquidity is proposed by the Fractal

Market Hypothesis (FMH) [8]. This posits that liquidity is driven by the heterogeneity of

investment time horizons among market participants. Under normal conditions, investors

operate on a variety of time horizons, from intraday (fractions of seconds or minutes) to

several years (pension funds, institutional investors); liquidity originates from the different
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expectations (and probability assessments) of market participants

looking at different time-scaled distributions of financial returns.

Therefore, a lack of liquidity can occur when the distributions

among time scales appear similar or when trading activity ceases

on some relevant time scales and investors start trading on

common (typically short-term) horizons. In these cases, usually

occurring during periods of high volatility where rising uncertainty

results in a shift toward quick buy-and-sell operations, trading can

slow or even be freezed, simply because most of traders—who

are supposedly rational—base their trading decisions on similar

distributions which induce similar behaviors. Typically, short-term

investors rely more heavily on technical information, whereas long-

term investors focus on fundamental indicators [9]. In the event of a

significant market crash that challenges fundamental assumptions,

long-term investors may either exit the market or shift to short-

term strategies [10]. The Fractal Market Hypothesis can also be

used to assess the causes of financial (in)stability, as suggested by

Anderson and Noss [11]. In particular, the analysis reveals some

relevant implications to a number of ongoing debates regarding

the regulation of financial markets and of their major participants.

A review of the Fractal Market Hypothesis together with the

basic principles of fractal geometry is provided by Blackledge and

Lamphiere [12]. Specifically, they consider the intrinsic scaling

properties that characterize a randomwalk and the EfficientMarket

Hypotheses and exploring the Lévy index, coupled with other

metrics, such as the Lyapunov exponent and the volatility, a long-

term forecasts analysis is developed. In a study of two developed

market indices and one emerging market index, Karp and Van

Vuuren [13] find a relationship between the change in a time

series’ fractal dimension (before breaching a threshold) and both

the magnitude and direction of the subsequent change in the time

series. This relationship was found to be prevalent during times of

strong price persistence, characterized by elevatedHurst exponents,

suggesting potential investment strategies.

From a mathematical perspective, while various methods—

such as DFA, wavelet power spectra, variance scaling, and R/S

analysis—have been proposed to quantify liquidity in terms of

scale invariance (see [14] or [15] for a comprehensive discussion),

most traditional approaches primarily examine single moments

rather than full distributions, which may yield incomplete insights.

The aim of this work is to present the implementation of a

novel methodology that examines self-similarity and (il)liquidity

by comparing the entire distributions of log-returns over pairs

of time scales, rather than only specific moments. In particular,

an algorithm and a ready-to-use Matlab software are discussed

to evaluate liquidity through the analysis of a time indexed self-

similarity matrix whose entries are the pairwise self-similarity

parameters relating the log-returns distributions across different

investment time horizons (from 1 day up to 6 months). Roughly

speaking, the estimated parameters tell how diverse the paired

distributions are.

The methodology we implement provides insights into both

market liquidity and the evolution of return distributions across

time scales. Thus, it can provide insights to market makers

and regulators particularly during periods of market turbulence.

Indeed, the 2007–2009 global financial crisis, as well as the

recent pandemic and geopolitical crises, have underscored the

importance of understanding liquidity and its underlying drivers

in financial markets.

The remainder of this article is organized as follows: Section

2 outlines the theoretical framework and the self-similarity testing

procedure employed in this study. Section 3 presents the proposed

algorithm, and Section 4 concludes.

2 Theoretical background and
methodology

In subSection 2.1 the definition of self-similarity is introduced

along with the justification of its usage in financial context.

SubSection 2.2 shortly discusses how self-similarity can be

evaluated using the Kolmogorov–Smirnov distribution. Both

topics are introduced to clarify how the methodology has been

implemented in the software introduced in Section 3.

2.1 Self-similarity

Definition 2.1. [16] A stochastic process {Xt , t ≥ 0} in R
k,

continuous at t = 0, is self-similar with parameterH0 ≥ 0 (denoted

H0-ss) if, for all scaling factors a > 0, the following holds:

{Xat} d= {aH0Xt}, (1)

where
d= denotes that the finite-dimensional distributions of {Xat}

and {aH0Xt} are equal.

Remark 2.1. The process is trivial (H = 0) if and only if Xt = X0

almost surely for all t > 0. Additionally, if E(|X1|) < ∞, then

H ≤ 1 [17], meaning non-degenerate processes have H ∈ (0, 1]. A

common example is Brownian motion, which is 1
2 -self-similar.

Consider now a H0-self-similar process {X(t)} with stationary

increments, and let Y(t, a) = X(t+a)−X(t) denote the increments

over lag a. Due to stationarity, {Y(t, a)} d= {Y(T, a)} for any times

t and T. It is easy to check that Y(t, a) is also self-similar with the

same parameter H0, i.e. that

{Y(t, a)} d= {aH0Y(t, 1)}, (2)

and Xt is said H0-sssi (self-similar of parameter H0 with

stationary increments).

Remark 2.2. In financial applications, let Xt = ln Pt , where Pt is

the price of an asset at time t. If Xt is (at least locally) self-similar

and with stationary increments, the a-lagged log-price change

scales as aH0 times the one-lag change. This observation forms

the theoretical basis for the widely-used practice of annualizing

volatility in finance. Specifically, from self-similarity, we have

E[X2
t ] = t2H0E[X2

1], and assuming E[Xt] ≈ 0, it follows that

σ 2
t ≈ t2H0σ 2

1 . For volatility, this implies σt ≈ tH0σ1. Under the

assumption of Brownian motion (with H0 = 1/2), this simplifies

to the familiar relation σt ≈
√
tσ1, which is commonly used by

practitioners to scale volatility over different time horizons.

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2025.1527750
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Bianchi et al. 10.3389/fams.2025.1527750

TABLE 1 Estimates of H and Kα and summary statistics.

Ĥ K̂α

H Mean Min Max StDev Skewness Kurtosis α = 0.01 α = 0.025 α = 0.05 α = 0.1

N = 512

0.1031 0.0937 0.0860 0.0775

0.1000 0.0975 0.0250 0.1750 0.0242 0.0497 2.9471 0.0589 0.0545 0.0504 0.0464

0.2000 0.1981 0.1050 0.3000 0.0339 0.1134 2.8240 0.0686 0.0628 0.0574 0.0516

0.3000 0.2943 0.1800 0.4250 0.0380 0.0165 2.9079 0.0769 0.0702 0.0637 0.0572

0.4000 0.3945 0.2350 0.5300 0.0450 –0.0498 2.8527 0.0904 0.0817 0.0737 0.0656

0.5000 0.4883 0.3500 0.6700 0.0490 –0.0936 2.8769 0.1032 0.0931 0.0830 0.0742

0.6000 0.5852 0.4350 0.7250 0.0523 –0.0841 2.8295 0.1114 0.1005 0.0897 0.0789

0.7000 0.6718 0.4650 0.8550 0.0546 –0.1532 3.3839 0.1175 0.1071 0.0973 0.0875

0.8000 0.7525 0.5200 0.9650 0.0610 –0.2348 3.2544 0.1304 0.1168 0.1036 0.0924

0.9000 0.8268 0.6350 0.9700 0.0582 –0.2180 2.9001 0.1311 0.1122 0.1063 0.0942

N = 4, 096

0.0360 0.0328 0.0301 0.0271

0.1000 0.0998 0.0700 0.1300 0.0089 0.0342 2.9869 0.0223 0.0199 0.0186 0.0169

0.2000 0.1998 0.1650 0.2350 0.0116 –0.0365 2.9448 0.0249 0.0229 0.0209 0.0184

0.3000 0.2989 0.2500 0.3450 0.0141 –0.1273 3.1095 0.0280 0.0250 0.0230 0.0209

0.4000 0.3992 0.3500 0.4650 0.0158 0.0198 3.5140 0.0326 0.0290 0.0269 0.0239

0.5000 0.4992 0.4450 0.5550 0.0171 –0.0440 3.0551 0.0342 0.0323 0.0294 0.0258

0.6000 0.5978 0.5350 0.6550 0.0182 –0.1257 3.0960 0.0418 0.0378 0.0330 0.0295

0.7000 0.6921 0.6300 0.7600 0.0211 0.0093 3.2052 0.0426 0.0396 0.0344 0.0305

0.8000 0.7837 0.7100 0.8650 0.0232 0.1619 2.9807 0.0463 0.0433 0.0398 0.0353

0.9000 0.8622 0.7850 0.9450 0.0248 0.1242 3.0289 0.0532 0.0467 0.0420 0.0376

N = 16, 384

0.0180 0.0164 0.0150 0.0135

0.1000 0.1001 0.0850 0.1150 0.0042 0.0031 3.0950 0.0108 0.0101 0.0094 0.0085

0.2000 0.2002 0.1850 0.2200 0.0059 0.0987 2.8413 0.0125 0.0115 0.0102 0.0094

0.3000 0.3000 0.2750 0.3200 0.0068 –0.0697 3.0795 0.0148 0.0132 0.0119 0.0106

0.4000 0.4002 0.3750 0.4350 0.0079 0.0553 3.0387 0.0167 0.0149 0.0134 0.0118

0.5000 0.4996 0.4750 0.5250 0.0087 –0.0489 2.6184 0.0188 0.0162 0.0147 0.0129

0.6000 0.5993 0.5700 0.6300 0.0097 0.0793 3.0243 0.0211 0.0188 0.0168 0.0151

0.7000 0.6971 0.6600 0.7250 0.0105 –0.0290 3.0093 0.0218 0.0204 0.0184 0.0163

0.8000 0.7916 0.7550 0.8300 0.0126 –0.0375 2.9096 0.0245 0.0217 0.0199 0.0178

0.9000 0.8743 0.8350 0.9500 0.0143 0.1586 3.7706 0.0288 0.0238 0.0220 0.0198

In this regard, the methodology is particularly well-suited to

classes of financial instruments that are continuously traded in

financial markets and exhibit a certain degree of risk (including

commodities or cryptocurrencies), while it proves less applicable

to instruments with a low level of risk, such as, for example, the

fixed income.

2.2 Testing for Self-Similarity

To estimate the self-similarity parameter H0, one needs to test

the equality in Equations 1, or 2. To this aim, the tool which will

be described in next sections follows the methodology proposed in

[18–20] focusing on the increment process {Y(t, a)} for simplicity.

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2025.1527750
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Bianchi et al. 10.3389/fams.2025.1527750

Let A be a compact set of time scales, and define a = min(A)

and a = max(A), with a < a. For each a ∈ A, let FY(a)(x)

denote the cumulative distribution function (CDF) of Y(t, a). For

any a, b ∈ A, the self-similarity condition from Equation 2 can be

rewritten as:

Fa−H0Y(a)(x) = Fb−H0Y(b)(x). (3)

Let H be a candidate parameter. From Equation 3, it follows that:

F
(a/b)

−H
Y(a)

(x) = FY(b)

(

(

a/b
)H−H0 x

)

. (4)

We now define the set 9H : = {Fa−HY(a)(x)} and introduce a

distance function ρ based on the sup-norm || · ||∞ over the set A.

The metric space (9H , ρ) has a diameter given by:

δ(9H) = sup
x∈R

sup
a,b∈A

∣

∣Fa−HY(a)(x)− Fb−HY(b)(x)
∣

∣

= sup
x∈R

∣

∣

∣
FaH−H0Y(1)(x)− FaH−H0Y(1)(x)

∣

∣

∣
. (5)

The diameter δ(9H) is minimized whenH = H0, as it decreases for

H ≤ H0 and increases for H ≥ H0 (see [18] for the proofs). Thus,

we can estimate the self-similarity parameter as:

Ĥ0 = arg min
H∈(0,1]

δ̂(9H), (6)

where δ̂(9H) is the empirical counterpart of δ(9H), computed

using the empirical cumulative distribution function F̂.

Remark 2.3. Notice that the last line of Equation 5 is the two-

sample Kolmogorov–Smirnov (KS) statistic, which provides the

distribution of the maximum of the absolute differences between

two empirical CDF, under the null hypothesis that both are drawn

from the same population distribution. In particular, the goodness-

of-fit of the empirical distribution can be evaluated with respect

to a theoretical distribution F (Kolmogorov, Dn) or between two

empirical distributions (Smirnov, (Dn,m)) of n andm observations:

Dn,m = sup
x

|F1,n(x)− F2,m(x)|, (7)

where F1,n and F2,m are the empirical cumulative distribution

functions of two independent samples. The statistics is non

parametric and for large samples, the null hypothesis is rejected at

level α if

Dn,m > Kα =

√

− log(α/2)
1+ m

n

2m
(8)

When applied to the estimation of the self-similarity parameter H0

of a sample of size n, Equation 7 becomes

δ̂(9H) = sup
x∈R

∣

∣

∣

∣

∣

1

n− a

n−a
∑

i=1

1X1,i≤aHx −
1

n− a

n−a
∑

i=1

1X1,i≤aHx

∣

∣

∣

∣

∣

(9)

The distribution (Equation 8) of the KS statistic is well-known

when the samples are independent, i.e. when H0 = 1/2. For

values of H0 > 1/2, the process exhibits positive autocorrelation

increasing with the distance from 1/2 and decreasing with the

lag at such a slow rate that the autocorrelation function becomes

non-summable (the so-called long-term memory). For H < 1/2,

the process displays short-term memory characterized by negative

autocorrelation. These positive and negative autocorrelations result

in a Type I error for H > 1/2 and a Type II error for H < 1/2,

i.e. the KS critical value tends to be too restrictive for moderate to

high levels of positive autocorrelation and too lenient for moderate

to high levels of negative autocorrelation. Since in these cases the

distribution of the test statistic is not explicitly known and it is

also difficult to be derived analytically, we have implementedMonte

Carlo simulations to deduce the p-values for different values of H0.

The results are summarized in Table 1.

Given the daily distribution of returns of the all stocks forming

a stock index, the value Ĥ0 of Equation 11 can be calculated at any

time t and any pair of time scales a, b in the set A = {1, 2, . . . ,N}.
Thus, a symmetric self-similarity matrix can be built as

Ĥ(t) =
[

Ĥ(a, b, t)
]

(10)

with

Ĥ(a, b, t) = arg min
H∈(0,1]

(

max
x∈R






F̂Y(t,a)(x)− F̂Y(t,b)

(

(

b/a
)H

x
)







)

.

(11)

Of course, since Ĥ0(a, b, t) = Ĥ0(b, a, t) the resulting estimation

will consist in a time-indexed sequence of lower (upper)

triangular matrices.

3 Algorithm for testing self-similarity

The pseudocode Algorithm 1 provides a structured overview

of the function SelfSimilarity, detailing the nested loop structure,

the determination of rescaled sequences, and the two-sample

Kolmogorov–Smirnov (KS) test implementation.

In detail, the algorithm iteratively estimates self-similarity on

different time scales and intervals, aiming to find the parameter

H that minimizes the KS statistic, thereby quantifying the self-

similarity index between two paired lagged sequences. The function

receives four input values: the time sequence X(t,m) (log-price

for financial applications), which stores m paths of length t; the

maximum number of time scalesN and the indices of the startpoint

and endpoint of the analysis. Within nested loops that iterate

over time indices, time scales and a range of potential H values,

the algorithm generates lagged sequences for each pair of scales

and performs the KS test to assess distributional similarity. The

KS statistic and its associated p-value are stored, enabling the

identification of the optimal H for each pair of scales. Finally, the

function outputs matrices containing the estimated self-similarity

parameter, the KS statistic, and the p-value across all analyzed time

scales and indices, providing a robust measure of self-similarity in

the time series data.

Regarding the two-sample Kolmogorov–Smirnov test used

by the algorithm, it should be noted that this test is readily

available in the standard function libraries of most major

programming languages. Implementations in languages such as

Python, MATLAB, and R provide accessible and optimized

functions that allow users to efficiently perform the KS test to
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function SelfSimilarity(X, N, t_start, t_end)

⊲ SelfSimilarity estimates the self-similarity parameter using the two-sample Kolmogorov–Smirnov test. ⊳
⊲ ⊳
⊲ Arguments: ⊳
⊲ X: Input time series (matrix) ⊳
⊲ N: Maximum number of time scales (cardinality of set A) ⊳
⊲ t_start: Start index for analysis, must be greater than N ⊳
⊲ t_end: End index for analysis, must be greater than t_start ⊳
⊲ ⊳
⊲ Returns: ⊳
⊲ H_est: Matrix containing estimated self-similarity parameter values ⊳
⊲ KS_stat: Matrix containing the Kolmogorov–Smirnov test statistic ⊳
⊲ KS_prob: Matrix containing the asymptotic p-value from the Kolmogorov–Smirnov test ⊳

Initialize i to 0

for all time index t from t_start to t_end do

Increment i by 1

for all time scale a from 1 to N do

⊲ Calculate a-lagged sequence and mean normalization ⊳
Set X1 to (X(t, :)− X(t− a, :))− mean(X(t, :)− X(t− a, :))

for all time scale b from a+ 1 to N do

⊲ Calculate b-lagged sequence and mean normalization ⊳
Set X2 to (X(t, :)− X(t− b, :))− mean(X(t, :)− X(t− b, :))

Initialize j to 0

for all H ranging from 0 to 1 with step size 0.01 do

Increment j by 1

⊲ Rescale sequences based on current H value ⊳
Set Y1 to X1 · a−H

Set Y2 to X2 · b−H

Perform Kolmogorov–Smirnov test on Y1 and Y2, obtaining:

- P as the p-value

- KSSTAT as the test statistic

Store H, KSSTAT, and P in matrix d at row j

⊲ Find the minimum KSSTAT value in d and the corresponding H ⊳
Retrieve index j of minimum KSSTAT in d

Set H_est(a,b,i) to H at row j in d

Set KS_stat(a,b,i) to KSSTAT at row j in d

Set KS_prob(a,b,i) to P at row j in d

Algorithm 1. Estimation of the self-similarity parameter.

assess whether two samples come from the same distribution.

These library functions typically offer flexibility in terms of input

parameters, enabling control over test options such as significance

levels and alternative hypotheses.

To demonstrate the effectiveness of the proposed algorithm

with real data, it was implemented in the MATLAB R2024a

environment and tested on a computer with a 64-bit Windows

operating system, an Intel Core i7-10510U CPU (1.80 GHz–2.30

GHz), and 16 GB of RAM. The input matrix X was constructed

using the logarithmic prices of 183 assets continuously listed in

the S&P500 index (Standard and Poor’s, USA) from January 2000

to December 2023, totaling 6,037 observations. Even if 183 out of

500 individual stocks were consider as representative of the index,

constructing the distribution from the all stocks that make up the

market index makes it possible to eliminate the inertial effect that

would be observed if—instead of the individual stocks—only the

time-marginal distribution of the index were considered.

The average execution time for each iteration was∼30 s.

Figure 1 illustrates three contrasting market conditions in

terms of liquidity: the top row represents a period of near-total

liquidity shortage, revealed by the self-similarity surface (left-

hand plot) and the rescaled log-return densities, reported for the

pair a = 58 and b = 72 (right-hand plot) on March 16,

2020. The self-similarity surface, dominated by a uniform blue
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FIGURE 1

Self-similarity matrices Ĥ(t) sampled at days March 16, 2020 (top-left), June 08, 2022 (middle-left) and August 29, 2008 (bottom-left) and

corresponding rescaled densities of log-returns for the pair a = 58, b = 72 (top-right), a = 83, b = 100 (middle-right) and a = 3, b = 91

(bottom-right). The colormap indicates the value H0 ∈ (0, 1]. Being the matrices symmetric, to ease visualization only the associated triangular

matrices are displayed in the plots.

color across all investment pairs, indicates very low values of

the self-similarity parameter, signifying an extremely low liquidity

level in the market due to the fact that the distributions almost

overlap as they are, the scaling exponent being close to zero.

This outcome aligns with expectations, as this date was chosen

during the U.S. quarantine or lockdown period, where markets
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FIGURE 2

Interquartile range (Q3–Q1) (gray area) and median value (red line) of Ĥ(t) (top panel) and δ̂(9
Ĥ(t)

) (bottom panel). The plots describe the temporal

evolution of two summary values of the self-similarity matrices. To ease the readability of the graphs, the dataset was downsampled with a 20-day

step, corresponding to the average trading month.

were affected by heightened concerns regarding the COVID-19

pandemic’s progression. Additional evidence appears in the right

panel, where both rescaled densities exhibit a pronounced left-

skewed tail.

In contrast, the plots in the mid row illustrate market liquidity

conditions on June 8, 2022, when the S&P index rose by 1% or

39.25 points, with positive performance across most sectors. The

self-similarity surface (left-hand plot) displays high values (yellow

shading) for nearly all the considered investment pairs, indicating

a high-liquidity market. In the corresponding right-hand plot, the

rescaled log-return densities for the pair a = 83 and b = 100 are

shown, featuring right-skewed tails. Finally, the plots in the bottom

row illustrate a scenario in which self-similarity is rejected at a 95%

significance level on August 29, 2008. In this case, “holes" appear in

the similarity surface (blank areas), as the two densities (right-hand

plot) are significantly different. At H = 0.4, the distance between

the distributions is minimized but remains statistically significant;

therefore, self-similarity is rejected (i.e., no value of the parameter

H satisfies the distributional equality for the pair a = 3 and b = 91).

Figure 2 illustrates two summary measures for the daily

distributions of Ĥ(t) and the estimated diameters δ̂(9Ĥ(t)).

To improve the readability of the graphs, the entire dataset

was downsampled using a 20-day step, corresponding to an

average trading month. The median value and the InterQuartile

Range (IQR = P75(·) − P25(·)) were then computed for

the distributions of both Ĥ(t) and δ̂(9Ĥ(t)). The data are

particularly interesting because the dynamics of P50Ĥ(t) are fully

consistent with the known estimates of the Hurst parameter

reported in the literature (see, e.g. [21–24]). Furthermore, the

fact that the values oscillate around 1/2 is of particular financial

significance, as this is the only value consistent with the

absence of arbitrage opportunities in the market—a sort of

benchmark to which the market always returns after deviations

that can be more or less prolonged depending on the shocks

it experiences.

4 Conclusions

In this paper, we have implemented a new methodology

for assessing market liquidity. Starting from the Fractal Market

Hypothesis’s (FMH) assumption that liquidity emerges from the

heterogeneity of investment time scales, the scale invariance or

self-similarity between pairs of investment horizons is examined

with regard to the whole distribution rather than, as usual, its

individual moments. Specifically, the self-similarity exponent is

obtained as the unknown argument that minimizes the diameter

of the space of rescaled distributions, which is observed to reduce

to the Kolmogorov–Smirnov statistic. A numerical procedure is

built to determine this value with respect to a number of time

scales flowing through time and an algorithm provides as output

a dynamical estimation of the pairwise self-similarity parameter of

the considered scaled distributions. Implemented in MatLab, the

algorithm uses nested cycles that, for each trading day, iterates

over both time scales and a range of potential values of H, and

performs the KS test to assess distributional similarity. The KS

statistic and its associated value are stored, allowing the optimal

H for each pair of scales to be identified. Low values of the self-

similarity parameter, typically occurring during volatile periods

where long-term investors may either exit the market or shift to

short-term scales, indicate potential liquidity shortage. In contrast,

high values of the self-similarity parameter describe liquid market

phases in which each time horizon is populated by a sufficient share

of market participants to match trades. Empirical evidence that

proves the effectiveness of the proposed algorithm with real data

is offered by analyzing 183 assets continuously listed in the in the
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S&P500 index (Standard and Poor’s, USA) from January 2000 to

December 2023.
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