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A novel exponentially fitted
finite-di�erence method for
time-fractional singularly
perturbed convection–di�usion
problems with variable
coe�cients

Worku Tilahun Aniley* and Gemechis File Duressa

Department of Mathematics, Jimma University, Jimma, Ethiopia

This study presents an exponentially fitted finite-di�erence scheme for

addressing singularly perturbed convection–di�usion problems involving the

time-fractional derivative. The Caputo fractional derivative defines the time-

fractional derivative. Then, the implicit finite-di�erence method is used to

discretize the temporal variable in a uniform mesh discretization. To manage the

e�ect of the perturbation parameter on the solution profile, an exponentially

fitted factor is introduced into the resulting system of ordinary di�erential

equations. Finally, on a uniform spatial domain discretization, an exponentially

fitted scheme is developed using theNumerov finite-di�erence approach. The ε-

uniform of the proposed scheme is rigorously demonstrated, confirming that it is

uniformly convergent with a convergence order ofO((1t)2−α+M−1). The validity

of the proposed method is illustrated through model examples. The numerical

results match the theoretical predictions and demonstrate that the proposed

method is more accurate than some recent existing methods.
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Numerov method, time-fractional, convection–di�usion, Caputo fractional derivative,

finite-di�erence, exponentially fitting factor, uniformly convergent

1 Introduction

In numerous physical and biological systems, differential equations with parameters

are commonly used to model specific behaviors or phenomena. These parameters

frequently represent physical quantities such as reaction rates, diffusion coefficients, and

other factors influencing solution evolution. A singularly perturbed differential equation is

a differential equation in which the highest-order derivative is scaled by a small positive

parameter ε. This small positive parameter, satisfying 0 ≤ ε ≪ 1, is known as the

perturbation parameter. The behavior of the solution of such differential equations can

vary significantly based on the values of these parameters, often resulting in intriguing and

complex dynamics [1, 2]. In other words, certain thin layers, or regions within the domain

experience rapid or sudden changes in the solution, forming boundary layers, whereas in

regions farther from these layers, the solution remains smooth or changes more gradually.

Due to this multifarious nature of the solution, basic numerical methods like the finite-

difference method, finite element method, and collocation methods often fail to effectively

solve these problems, particularly as ε approaches zero [1]. To overcome these challenges,
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researchers were driven to develop numerical methods whose

accuracy and convergence were unaffected by the influence of ε. For

example, a few recent advancements in numerical methods include

the higher-order uniformly convergent scheme in Anilay et al. [1],

a novel numerical approach based on the exponentially adjusted

operator finite-differencemethod inWoldaregay et al. [2], the fitted

computational method in Tesfaye et al. [3], the fitted numerical

scheme in Woldaregay et al. [4], and the uniformly convergent

computational method in Wondimu et al. [5].

In recent decades, the theory and numerical methods of

fractional calculus have attracted significant interest because

differential equations of arbitrary order are often more applicable

than their integer-order counterparts [6, 7]. The desire to explore

the implications of extending the concept of integer order

calculus to non-integer or fractional order led to the development

of fractional calculus. This seemingly straightforward question

gave rise to a profound and significant area of mathematical

theory, finding applications across diverse fields such as physics,

mathematical biology, fractal media, electromagnetics, statistical

mechanics, viscoelasticity, rheology, fluid dynamics, electro-

analytical chemistry, control theory, and modeling of neurons

neurons, among others [8–10]. Although fractional calculus is as

long as its classical calculus, it was not widely used in life problems

for a long time, and it remains rarely included in modern curricula

[11]. It was Oldham and Spanier [12] who published the first book

dedicated exclusively to fractional calculus in 1974. Subsequently,

other authors, like Podlubny [13], Miller and Roos [11], and Kilbas

et al. [14], published various books on this area.

The generalization of an integer-order partial differential

equation by replacing the classical-order time derivative with a

fractional-order time derivative is called a time-fractional partial

differential equation [8]. The analytical solutions to many of these

equations are not readily available due to the challenges involved

in solving these equations exactly. Even when an analytical solution

exists, its construction often involves special functions, making the

computations quite complex. For this reason, numerical techniques

have attracted significant attention for solving such equations

computationally. For instance, a second-order numerical scheme

combining Crank-Nicholson and spline functions with a tension

factor in Choudhary et al. [15], cubic B−spline collocation method

in Choudhary et al. [16], the finite-difference scheme tailored on

the Crank-Nicholson technique in Karatay et al. [17], a numerical

technique using B−splines in Roul et al. [18], a cubic trigonometric

spline collocation method in Yaseen et al. [19], an extended cubic

B−splines in Mohyud-Din et al. [20], a computational method

in Rihan [21], a higher-order collocation method in Roul and

Goura [22], and a finite-difference approach based on non-uniform

discretization in Fazio et al. [23] are among the recently developed

numerical approaches.

A time-fractional partial-differential equation in which the

highest derivative term is multiplied by a small positive parameter

ε is referred to as a time-fractional singularly perturbed partial-

differential equation. The small parameter ε, which multiplies

the highest-order derivative term, is known as the perturbation

parameter and satisfies 0 < ε≪1. These equations form the central

focus of this paper. Specifically, we considered the following time-

fractional, singularly perturbed, partial-differential equation of the

form:































(

Dαt + Lε

)

u(s, t) = g(s, t),

∀(s, t) ∈ D = �s ×�t = (0, 1)× (0,T],

u(0, t) = ψl(t), u(1, t) = ψr(t), t ∈ [0,T],

u(s, 0) = ψb(s), s ∈ (0, 1),

(1)

where, Lεu(s, t) =
(

−εuss + a(s, t)us + b(s, t)u
)

(s, t), 0 <

α < 1, Dαt represents the Caputo fractional derivative with

respect to time and ε, the perturbation parameter, satisfies 0 <

ε ≪ 1. The coefficient functions a(s, t), b(s, t), and the source

function g(s, t) are assumed to be sufficiently smooth and bounded

on D. Additionally, assume that a(s, t) ≥ a > 0, b(s, t) ≥

b > 0, and that the initial data and boundary conditions

are smooth and compatible at each vertex of the rectangular

domain D. Consequently, as the perturbation parameter tends to

zero, the solution to the model problem (Equation 1) develops

a boundary layer of width O(ε) at the right boundary of the

spatial domain. For α = 1, Equation 1 simplifies to the classical

order singularly perturbed differential equation. The numerical

analysis of such integer-order problems has been extensively

investigated by numerous researchers (see [1–5, 24–30] and

references therein).

In contrast to classical or integer-order singularly perturbed

partial differential equations, those involving time-fractional

derivatives have not been studied as extensively and warrant

further investigation. In such problems, the presence of ε causes

the usual numerical methods for solving time-fractional PDEs to

either fail or suffer a significant loss of accuracy. In addition,

the inclusion of fractional order in the differential equation

presents another significant challenge in solving these problems.

Recently, a non-standard finite-difference method was proposed

in Aniley and Duressa [6] for solving this type of problem.

In developing the method, the authors employed the Caputo

definition for the fractional derivative and discretized the temporal

variable using an implicit finite-difference technique. For the

spatial direction, the authors designed a non-standard finite-

difference scheme using uniform discretization. However, the

proposed method was validated on examples with a convective

coefficient involving only the function of the temporal variable

s only. An exponentially fitted operator finite-difference method

was also introduced in Tiruneh et al. [31] to address the

problem at hand. The proposed method integrates the Crank-

Nicholson approach with an exponentially fitted operator on

a uniform mesh. However, the proposed method was also

validated using only examples that involve convective coefficients

involving the function of the temporal variable s. A robust,

uniformly convergent finite-difference scheme was proposed in

Sahoo and Gupta [7]. A robust, uniformly convergent finite-

difference scheme was proposed in Sahoo and Gupta [7]. The

authors used a classical L1 technique to discretize the temporal

variable on a graded mesh, followed by an upwind finite

difference method for the spatial variable on a piecewise mesh.

Although the method was validated with variable convective

coefficients, its accuracy was low, indicating the need for

further improvement.
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2 Preliminaries and properties of the
continuous solution

The following are the key definitions of fractional derivatives

employed in this work.

Definition 2.1. The function defined by:

Ŵ(s) =

∫ ∞

0
e−τ τ s−1dτ ,

where s is a complex number with (Re(s)) > 0 is called a gamma

function.

Definition 2.2. [32] The fractional derivative:

C
0D

α
t =















1
Ŵ(m−α)

∫ t
0
∂mu(s,τ )
∂τm

(t − τ )m−α−1dτ , if α ∈ (m− 1,m),

∂mu(s,t)
∂tm if α = m,

is known as the Caputo fractional derivative.

The continuous maximum principle for the differential

operator Lε in Equation 1 is given as follows.

Lemma 2.1. Let υ(ζ , ς) ∈ C2(D) ∩ C0(D) satisfy υ(ζ , ς) ≥ 0

for all (ζ , ς) ∈ Ŵ = {0} × [0,T] ∪ [0, 1] × {0} ∪ {1} × [0,T]

and Lευ(ζ , ς) ≥ 0 for all (ζ , ς) ∈ D. Then, υ(ζ , ς) ≥ 0 for all

(ζ , ς) ∈ D.

Proof. Assume there exists a point (ζ ∗, ς∗) ∈ D such that

υ(ζ ∗, ς∗) = min(ζ ,ς)∈D υ(ζ , ς) and υ(ζ ∗, ς∗) < 0. Then,

(ζ ∗, ς∗) 6= Ŵ, which implies that (ζ ∗, ς∗) ∈ D. Based on

these assumptions, we have υx(ζ
∗, ς∗) = 0, υxx(ζ

∗, ς∗) and

Dαt υ(ζ
∗, ς∗) ≤ 0. Consequently,

Lευ(ζ
∗, ς∗) ≡ Dαt υ(ζ

∗, ς∗)− ευxx(ζ
∗, ς∗)+ a(ζ ∗, ς)υx(ζ

∗, ς∗)

+b(ζ ∗, ς∗)υ(ζ ∗, ς∗) ≤ 0,

which contradict the assumption Lευ(ζ , ς) ≥ 0 in D. Therefore,

υ(ζ , ς) ≥ 0, for all (ζ , ς) ∈ D.

Lemma 2.2. The bound of the continuous solution of the problem

in Equation 1 is given by:

‖u‖ ≤ ‖u‖Ŵ +
||Lεu||

b
,

where Ŵ = {0}× [0,T]∪ [0, 1]×{0}∪{1}× [0,T] is the rectangular

boundary of the domain D.

Proof. Define the functions:

υ(s, t) = ‖u‖Ŵ +
||Lεu||

b
± u(s, t), ∀(s, t) ∈ D.

Then,

υ(0, t) = ‖u‖Ŵ +
||Lεu||

b
± u(0, t) ≥ ‖u‖Ŵ ± u(0, t) ≥ 0,

υ(1, t) = ‖u‖Ŵ +
||Lεu||

b
± u(1, t) ≥ ‖u‖Ŵ ± u(1, t) ≥ 0,

Again, for (s, t) ∈ [0, 1]× {0},

υ(s, t) = ‖u‖Ŵ +
||Lεu||

b
± u(s, t) ≥ ‖u‖Ŵ ± u(s, t) ≥ 0.

Furthermore, ∀(s, t) ∈ D,

Lευ(s, t) = b(s, t)

(

‖u‖Ŵ +
||Lεu||

b

)

± Lεu(s, t),

≥ b‖u‖Ŵ + ||Lεu|| ± Lεu(s, t),

≥ ||Lεu|| ± Lεu(s, t),

≥ 0.

Therefore, the application of Lemma 2.1 provides the required

bound.

3 The numerical method

The proposed numerical scheme is described in this section.

First, the time-fractional derivative is defined in the Caputo sense

to coincide with the initial conditions. Next, the temporal direction

is discretized uniformly with an implicit finite-difference approach,

followed by uniform discretization of the spatial variable using the

Numerov finite-difference method.

3.1 Discretization in the temporal domain

The nodal points along the temporal domain are then given

by �N
t = {tj = j1t, j = 0(1)N}, where N is the number

of subinterval in the temporal direction and 1t = T
N . Then, the

Caputo derivative Dαt u(s, t) at t = tj+1 is given by the quadrature:

Dαt u
j+1(s) =

1

Ŵ(1− α)
∫ tj+1

0

∂u(s, τ )

∂τ
(tj+1 − τ )

−αdτ .

Applying implicit finite-difference approximation gives:

Dαt u
j+1(s) =

1

Ŵ(1− α)

j
∑

k=0

(

uk+1(s)− uk(s)

1t

)

∫ tk+1

tk

(

tj+1 − τ

)−α

dτ + e
j+1
1t .

Simplification gives:

Dαt u
j+1(s) = β

j
∑

k=0

wk

(

uj−k+1(s)− uj−k(s)

)

+ e
j+1
1t ,

where β =
(1t)−α

Ŵ(2−α)
, wk = (k + 1)1−α − k1−α and e

j+1
1t =

O(1t)
Ŵ(2−α)

∑j

k=0

∫ tk+1
tk

(tj+1− τ )dτ . Therefore, the fractional derivative

Dαt u(s, t) at (s, tj+1) is approximated by:

Dαt U
j+1(s) = β

j
∑

k=0

wk

(

U j−k+1(s)− U j−k(s)

)

, (2)
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where, U j+1(s) is the approximation to u(s, t) at (s, tj+1).

Now, by substituting Equation 2 in Equation 1, we get:











(

β + L 1t
ε

)

U j+1(s) = Rj+1(s),

U j+1(0) = φl(tj+1), U j+1(1) = φr(tj+1), tj+1 ∈ �
N
t .

(3)

where,

L
1t
ε U j+1(s) = −εU

j+1
xx (s)+ aj+1(s)U

j+1
x (s)+ bj+1(s)U j+1(s),

Rj+1(s) = gj+1(s)+ βU j(s)− β

j
∑

k=1

wk

(

U j−k+1(s)− U j−k(s)

)

Lemma 3.1. The truncation error e
j+1
1t in Equation 2 is bounded as

follows.
∣

∣

∣

∣

e
j+1
1t

∣

∣

∣

∣

≤ C(1t)2−α .

where C is a positive constant independent of ε.

Proof.

e
j+1
1t =

O(1t)

Ŵ(1− α)

j
∑

k=0

∫ tk+1

tk

(tj+1 − τ )
−αdτ ,

=
O(1t)

Ŵ(1− α)

j
∑

k=0

(

(j− k+ 1)(1−α) − (j− k)1−α

1− α

)

(1t)1−α ,

=
O(1t(2−α))

Ŵ(2− α)

j
∑

k=0

(

(j− k+ 1)(1−α) − (j− k)1−α
)

.

Therefore,
∣

∣

∣

∣

ej+1

∣

∣

∣

∣

≤ C(1t)2−α ,

Lemma 3.2. [26] The semi-discrete solution U j+1(s) of Equation 3

and its derivatives satisfy the following bound.

drU j+1(s)

dsr
≤ C

(

1+ ε−r exp(
−aj+1(s)(1− s)

ε
)

)

,

s ∈ [0, 1], r = 0, 1, 2, 3, 4.

3.2 Discretization in the spatial domain

We can rewrite Equation 3 as:

− εU
j+1
ss (s) = dj+1(s), (4)

where dj+1(s) = Rj+1(s) − aj+1(s)U j+1(s) − Qj+1(s)U j+1(s) and

Qj+1(s) = bj+1(s) + β . The domain along the spatial direction

[0, 1] is also divided into M equal subintervals of step size h = 1
M .

Consequently, the nodal points along the spatial domain are given

by: �M
s = {si : si = s0 + ih, i = 1(1)M}. Using the Numerov

approach described in Jain et al. [33] at s = si, Equation 4 can be

approximated by:

−ε

h2

(

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

)

=
1

12

(

d
j+1
i−1 + 10d

j+1
i + d

j+1
i+1

)

(5)

Using the expression for d(si) into Equation 5 and rearranging

gives:

−12ε

h2

(

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

)

+

(

a
j+1
i−1U

j+1
s (si−1)+ 10a

j+1
i U

j+1
s (si)+ a

j+1
i+1U

j+1
s (si+1)

)

+

(

Q
j+1
i−1U

j+1(si−1)+ 10Q
j+1
i U j(si)+ Q

j+1
i+1U

j+1(si+1)

)

= R
j+1
i−1 + 10R

j+1
i + R

j+1
i+1

(6)

Applying the finite-difference approximations for U j+1(si) at

si−1, si, and si+1 from [34],

U
j+1
s (si−1) =

−U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

2h
,

U
j+1
s (si) =

U
j+1
i+1 − U

j+1
i−1

2h
,

U
j+1
s (si+1) =

3U
j+1
i+1 − 4U

j+1
i + U

j+1
i−1

2h
,

we get the finite-difference scheme:

L
1t,h
ε U

j+1
i =

−12ε

h2

(

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

)

+
a
j+1
i−1

2h

(

− U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

)

+

5a
j+1
i

h

(

U
j+1
i+1 − U

j+1
i−1

)

+
a
j+1
i+1

2h

(

3U
j+1
i+1 − 4U

j+1
i + U

j+1
i−1

)

+ Q
j+1
i−1U

j+1
i−1+

10Q
j+1
i U

j+1
i + Q

j+1
i+1U

j+1
i+1 = R

j+1
i−1 + 10R

j
i + R

j+1
i+1,

for i = 1, 2, ...,M − 1.

(7)

To manage the effect ε on the solution profile, an exponentially

fitting factor σ (xi, ε) is induced to the term containing ε in

Equation 7 to get:

L
1t,h
ε U

j+1
i =

−12σiε

h2

(

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

)

+
a
j+1
i−1

2h

(

− U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

)

+

5a
j+1
i

h

(

U
j+1
i+1 − U

j+1
i−1

)

+
a
j+1
i+1

2h

(

3U
j+1
i+1 − 4U

j+1
i + U

j+1
i−1

)

+ Q
j+1
i−1U

j+1
i−1+

10Q
j+1
i U

j+1
i + Q

j+1
i+1U

j+1
i+1 = R

j+1
i−1 + 10R

j
i + R

j+1
i+1,

for i = 1, 2, ...,M − 1.

(8)
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3.2.1 Determination of the exponentially fitting
factor

Multiplying Equation 8 by h and then taking h → 0 gives:

−12σi

ρ
lim
h→0

(

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

)

+
aj+1(0)

2
lim
h→0

(

− U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

)

+

5aj+1(0) lim
h→0

(

U
j+1
i+1 − U

j+1
i−1

)

+
aj+1(0)

2
lim
h→0

(

3U
j+1
i+1 − 4U

j+1
i + U

j+1
i−1

)

= 0,

(9)

where ρ = h
ε
. Using the approach [29], the zero-order asymptotic

solution U j+1(s) of Equation 3 can be expanded using a Taylor

series about s = 0, yielding:

U j+1(s) = U
j+1
0 (s)+

(

ψr(tj+1)− U
j+1
0 (1)

)

exp

(

−a(1)(1− s)

ε

)

+O(ε),

where U0(s) is the reduced solution. Therefore, at s = si, we have:















































































































limh→0

(

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

)

= ϒ

(

exp(aj+1(1)ρ)− 2+ exp(−aj+1(1)ρ)

)

,

limh→0

(

− U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

)

= ϒ

(

− exp(aj+1(1)ρ)+ 4− 3 exp(−aj+1(1)ρ)

)

,

limh→0

(

3U
j+1
i−1 − 4U

j+1
i + U

j+1
i+1

)

= ϒ

(

3 exp(aj+1(1)ρ)− 4+ exp(−aj+1(1)ρ)

)

,

limh→0

(

U
j+1
i+1 − U

j+1
i−1

)

= ϒ

(

exp(aj+1(1)ρ)− exp(−aj+1(1)ρ)

)

,

(10)

where ϒ =

(

ψr(tj+1) − U
j+1
0 (1)

)

exp(−aj+1(1)( 1
ε
− iρ)). Using

Equation 10 in Equation 9, rearranging, and adopting the result to

a variable coefficient gives:

σi =
ρa

j+1
i

2
coth

(

ρa
j+1
i

2

)

(11)

Using the approach in Woldaregay et al. [2], we can rewrite

(Equation 11) as:

ε

(

ρa
j+1
i

2
coth

(

ρa
j+1
i

2

)

− 1

)

≤
h2

h+ ε
. (12)

3.2.2 The full discrete scheme
After inducing the exponential fitting factor obtained in

Equation 11 into Equation 8, the full discrete scheme is given by:

L
1t,h
ε U

j+1
i = H

j+1
i , for i = 1, 2, ...,M − 1, (13)

where,

L
1t,h
ε U

j+1
i =

−12εσi

h2

(

U
j+1
i−1 − 2U

j+1
i + U

j+1
i+1

)

+
a
j+1
i−1

2h

(

− U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

)

+

5a
j+1
i

h

(

U
j+1
i+1 − U

j+1
i−1

)

+
a
j+1
i+1

2h

(

3U
j+1
i+1 − 4U

j+1
i + U

j+1
i−1

)

+ Q
j+1
i−1U

j+1
i−1+

10Q
j+1
i U

j+1
i + Q

j+1
i+1U

j+1
i+1 ,

R
j+1
i = g

j+1
i + βU

j
i − β

j
∑

k=1

wk

(

U
j−k+1
i − U

j−k
i

)

,

H
j+1
i = R

j+1
i−1 + 10R

j+1
i + R

j+1
i+1.

The full discrete scheme in Equation 13 can be rewritten in a

three-term recurrence relation:

̥
−
i U

j+1
i−1 +̥

0
i U

j+1
i +̥

+
i U

j+1
i+1 = H

j+1
i , ∀i = 1, 2, 3, ...,M− 1,

(14)

where,

̥
−
i =

−12εσi

h2
−

3a
j+1
i−1

2h
−

5a
j+1
i

h
+

a
j+1
i+1

2h
+ Q

j+1
i−1,

̥
0
i =

24εσi

h2
+

2a
j+1
i−1

h
−

2a
j+1
i+1

h
+ 10Q

j+1
i ,

̥
j+1
i =

−12εσi

h2
−

a
j+1
i−1

2h
+

5a
j+1
i

h
+

3a
j+1
i+1

2h
+ Q

j+1
i+1,

H
j+1
i = λ1R

j+1
i−1 + 2λ2R

j+1
i + λ1R

j+1
i+1.

4 Stability and uniform convergence
analysis

Lemma 4.1. Tesfaye et al. [29](Discrete comparison principle) Let

L 1t,h
ε U

j+1
i ≤ L 1t,h

ε V
j+1
i , for 1 ≤ i ≤ M − 1, such that U

j+1
0 ≤

V
j+1
0 and U

j+1
M ≤ V

j+1
M . Then, U

j+1
i ≤ V

j+1
i , for i = 1(1)M.

Lemma 4.2. The full discrete solution of Equation 13 satisfies the

bound:

|U
j+1
i | ≤

||L h,1t
ε U

j+1
i ||

2
+max{|ψl(tj+1)|, |ψr(tj+1)|}

where, Q
j+1
i ≥ 2 > 0.

Proof. Let (ϑ
j+1
i )± = 5± U

j+1
i , where

5 =
||L 1t,h

ε U
j+1
i ||

2
+max{|ψl(tj+1)|, |ψr(tj+1)|}. Then (ϑ

j+1
0 )± =

5± U
j+1
0 ≥ 0, and (ϑ

j+1
M )± = 5± U

j+1
M ≥ 0.
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Furthermore, for 1 ≤ i ≤ M − 1:

L
1t,h
ε (ϑ

j+1
i )± =

−12εσi

h2

(

(ϑ
j+1
i−1 )

± − 2(ϑ
j+1
i )± + (ϑ

j+1
i+1 )

±

)

+
a
j+1
i−1

2h

(

− (ϑ
j+1
i+1 )

± + 4(ϑ
j+1
i )± − 3(ϑ

j+1
i−1 )

±

)

+

5a
j+1
i

h

(

(ϑ
j+1
i+1 )

± − (ϑ
j+1
i−1 )

±

)

+
a
j+1
i+1

2h

(

3(ϑ
j+1
i+1 )

± − 4(ϑ
j+1
i )± + (ϑ

j+1
i−1 )

±

)

+

Q
j+1
i−1(ϑ

j+1
i−1 )

± + 10Q
j+1
i (ϑ

j+1
i )± + Q

j+1
i+1(ϑ

j+1
i+1 )

±,

=

(

Q
j+1
i−1 + 10Q

j+1
i + Q

j+1
i+1

)

5± L
1t,h
ε U

j+1
i ,

≥1225± L
1t,h
ε U

j+1
i , since Q

j+1
i ≥ 2 > 0,

for i = 1(1)M − 1,

≥2

(

||L h,1t
ε U

j+1
i ||

2
+max{|φl(tj+1)|, |φr(tj+1)|}

)

± L
1t,h
ε U

j+1
i ,≥ 0.

Then, 0 ≤ (ϑ
j+1
i )±, for all i = 0, 1, 2, ...,M using Lemma 4.1.

Therefore, the result of the given lemma is immediate.

Lemma 4.3. [28] For a fixed numberM,

lim
ε→0

max
1≤i≤M−1

ε−r exp(
−a(1− si)

ε
) = 0, r = 1, 2, 3, ...,

as ε → 0, where si = ih, h = 1
M , for all i = 1, 2, 3, ...,M − 1.

The following bounds, derived using a Taylor series expansion

around s = si, serve as input for the proof of the next theorem.

∣

∣

∣

∣

−

(

d2

ds2
− δ2s

)

U j+1(si)

∣

∣

∣

∣

≤ Ch2
∣

∣

∣

∣

d4U j+1(si)

ds4

∣

∣

∣

∣

,

∣

∣

∣

∣

dU j+1(si−1)

ds
−

(

−U
j+1
i+1 + 4U

j+1
i − 3U

j+1
i−1

2h

)
∣

∣

∣

∣

≤ Ch2
∣

∣

∣

∣

d3U j+1(si)

ds3

∣

∣

∣

∣

,

∣

∣

∣

∣

dU j+1(si+1)

ds
−

(

3U
j+1
i+1 − 4U

j+1
i + U

j+1
i−1

2h

)
∣

∣

∣

∣

≤ Ch2
∣

∣

∣

∣

d3U j+1(si)

ds3

∣

∣

∣

∣

,

∣

∣

∣

∣

(

d

ds
− δ0s

)

U j+1(si)

∣

∣

∣

∣

≤ Ch2
∣

∣

∣

∣

d3U j+1(si)

ds3

∣

∣

∣

∣

,

(15)

Lemma 4.4. Let U j+1(s) denote the solution of the semi-discrete

problem in Equation 3, and let U
j+1
i be the discrete solution of the

fully discrete scheme in Equation 13. Then,

∣

∣

∣

∣

L
h,1t
ε

(

U j+1(si)− U
j+1
i

)
∣

∣

∣

∣

≤
Ch2

ε + h
.

B

C

A

FIGURE 1

E�ect of the ε on solution profile: (A) Example 5.1, (B) Example 5.2, and (C) Example 5.3 for α = 0.5, M = 64, and N = 64, respectively.
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A B

FIGURE 2

Surface plot of Example 5.1 with M = N = 64, α = 0.5 and (A) for ε = 1 and (B) for ε = 10−4.

A B

FIGURE 3

Surface plot of Example 5.2 with M = N = 64, α = 0.5, and (A) for ε = 1 and (B) for ε = 10−4.

A B

FIGURE 4

Surface plot of Example 5.3 with M = N = 64, α = 0.5, and (A) for ε = 10−2 and (B) for ε = 10−4.

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2025.1541766
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Aniley and Duressa 10.3389/fams.2025.1541766

Proof. Consider the truncation error:

∣

∣

∣

∣

L
h,1t
ε

(

U j+1(si)− U
j+1
i

)
∣

∣

∣

∣

=

∣

∣

∣

∣

12ε

(

d2

ds2
− σiδ

2
s

)

U j+1(si)+ aj+1(si−1)

(

d

ds
U j+1(si−1)−

(

−3U
j+1
i−1 + 4U

j+1
i − U

j+1
i+1

2h

))

+

5aj+1(si)

(

d

ds
− δ0s

)

U j+1(si)+ aj+1(si+1)

(

d

ds
U j+1(si+1)−

(

3U
j+1
i−1 − 4U

j+1
i + U

j+1
i+1

2h

))
∣

∣

∣

∣

,

≤

∣

∣

∣

∣

12ε

(

σi − 1

)

δ2sU
j+1(si)

∣

∣

∣

∣

+

∣

∣

∣

∣

12ε

(

d2

ds2
− δ2s

)

U j+1(si)

∣

∣

∣

∣

+

∣

∣

∣

∣

aj+1(si−1)

(

d

ds
U j+1(si− 1) −

(

−3U
j+1
i−1 + 4U

j+1
i − U

j+1
i+1

2h

))
∣

∣

∣

∣

+

∣

∣

∣

∣

aj+1(si)

(

d

ds
− δ0s

)

U j+1(si)

∣

∣

∣

∣

+

∣

∣

∣

∣

aj+1(si+1)

(

d

ds
U j+1(si+1)−

(

3U
j+1
i−1 − 4U

j+1
i + U

j+1
i+1

2h

))
∣

∣

∣

∣

.

Using Equations 12, 15 gives:

∣

∣

∣

∣

L
h,1t
ε

(

U j+1(si)− U
j+1
i

)
∣

∣

∣

∣

≤
Ch2

ε + h

∣

∣

∣

∣

∣

∣

∣

∣

d2U j+1(si)

ds2

∣

∣

∣

∣

∣

∣

∣

∣

+ Cεh2
∣

∣

∣

∣

∣

∣

∣

∣

d4U j+1(si)

ds4

∣

∣

∣

∣

∣

∣

∣

∣

+ Ch2
∣

∣

∣

∣

∣

∣

∣

∣

d3U j+1(si)

ds3

∣

∣

∣

∣

∣

∣

∣

∣

.

The application of Lemma 3.2 gives:

∣

∣

∣

∣

L
h,1t
ε

(

U j+1(si)− U
j+1
i

)
∣

∣

∣

∣

≤
Ch2

ε + h

(

1+ ε−2 exp

(

−aj+1(si)(1− si)

ε

))

+

Cεh2
(

1+ ε−4 exp

(

−aj+1(si)(1− si)

ε

))

+

Ch2
(

1+ ε−3 exp

(

−aj+1(si)(1− si)

ε

))

,

≤
Ch2

ε + h

(

1+ ε−3 exp

(

−a(1− si)

ε

))

, because ε−2 ≤ ε−3

Now, Lemma 4.3 ends the proof.

Theorem 4.1. Let U
j+1
i be the full discrete solution of Equation 13,

then

sup
0<ε≤1

max
xi∈[0,1]

∣

∣

∣

∣

U j+1(si)− U
j+1
i

∣

∣

∣

∣

≤ CM−1,

where C is a positive constant independent of ε.

Proof. From Lemma 4.4, as ε → 0, h2

h+ε
→ CM−1. Then, applying

Lemma 4.1 in Lemma 4.4 ends the proof.

Theorem 4.2. If U
j+1
i is the discrete solution of the full discrete

scheme (Equation 13) and u(si, tj) is the solution of problem

(Equation 1), then

sup
0<ε≤1

∣

∣

∣

∣

∣

∣

∣

∣

u(si, tj+1)− U
j+1
i

∣

∣

∣

∣

∣

∣

∣

∣

D

≤ C

(

(1t)2−α +M−1

)

.

TABLE 1 E
M,N
ε

and R
M,N
ε

for Example 5.1 with a fixed value of ε = 10−4 and

di�erent values of α.

α ↓ M = 32 M = 64 M = 128 M = 256

N = 32 N = 64 N = 128 N = 256

Proposed method

0.4 2.4108E-03 1.2910E-03 6.6621E-04 3.3814E-04

0.90102 0.95444 0.97836 -

0.6 2.4274E-03 1.2966E-03 6.6793E-04 3.3856E-04

0.90468 0.95696 0.98029 -

0.8 2.5110E-03 1.3391E-03 6.8870E-04 3.4856E-04

0.90700 0.95932 0.98247 -

Result in Sahoo and Gupta [7]

0.4 7.0667E-03 3.9905e-03 2.1627E-03 1.1502E-03

0.824446 0.88375 0.91095 -

0.6 6.2563E-03 3.5614E-03 1.9421E-03 1.0373E-03

0.81287 0.87482 0.90483 -

0.8 5.7729E-03 3.3076E-03 1.8102E-03 9.6874E-04

0.80352 0.86962 0.90197 -

TABLE 2 E
M,N and R

M,N for Example 5.1 with ε = 10−10 and α = 0.4.

EM,N and
RM,N

M = 32 M = 64 M = 128 M = 256

N = 32 N = 64 N = 128 N = 256

Proposed method

EM,N 2.4108E-03 1.2910E-03 6.6621E-04 3.3814E-04

RM,N 0.90102 0.95444 0.97836 -

Result in Sahoo and Gupta [7]

EM,N 7.0689E-03 3.9922E-03 2.1627E-03 1.1502E-03

RM,N 0.82429 0.88435 0.91095 -

Proof. The error bounds in Lemma 3.1 and Theorem 4.1 provides

the required bound.

5 Numerical illustration and
discussion

To validate the proposed method, we examined three model

problems. The primary outcome is expressed in terms of the

maximum absolute point-wise error, which is then compared with

the results of the existing literature. Hence, the maximum absolute

error of the proposed scheme is determined by:

EM,N
ε = max

0≤i,j≤M,N

∣

∣

∣

∣

UM,N
i,j − U2M,2N

2i,2j

∣

∣

∣

∣

,

where, UM,N
i,j is the approximate solution obtained using the

proposed scheme by takingM and N mesh points along the spatial

and temporal directions, and U2M,2N
2i,2j is the approximate solution

found by the proposed scheme by further dividing the spatial and
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TABLE 3 E
M,N
ε

and R
M,N
ε

for Example 5.2 for a fixed ε = 10−4 and di�erent

values of α.

α ↓ M = 32 M = 64 M = 128 M = 256

N = 32 N = 64 N = 128 N = 256

Proposed method

0.4 2.5879E-02 1.3668E-02 7.0197E-03 3.5558E-03

0.92098 0.96132 0.98124 -

0.6 2.3759E-02 1.2458E-02 6.3652E-03 3.2122E-03

0.9314 0.96879 0.98664 -

0.8 2.2018E-02 1.1451E-02 5.8112E-03 2.9158E-03

0.94321 0.97857 0.99494 -

Result in Sahoo and Gupta [7]

0.4 4.6471E-02 2.4571E-02 1.2571E-02 6.4288E-03

0.91937 0.96682 0.96752 -

0.6 4.8162E-02 2.5650E-02 1.3094E-02 6.7033E-03

0.90897 0.97002 0.96596 -

0.8 4.4201E-02 2.3385E-02 1.1887E-02 6.0732E-03

0.91850 0.97620 0.96887 -

TABLE 4 E
M,N and R

M,N for Example 5.2 with ε = 10−10 and α = 0.8.

EM,N and
RM,N

M = 32 M = 64 M = 128 M = 256

N = 32 N = 64 N = 128 N = 256

Proposed method

EM,N 2.2018E-02 1.1451E-02 5.8112E-03 2.9158E-03

RM,N 0.94321 0.97857 0.99494 -

Result in Sahoo and Gupta [7]

EM,N
ε 4.4436E-02 2.3651E-02 1.2169E-02 6.1567E-03

RM,N
ε 0.90986 0.95866 0.98299 -

temporal domains into 2M and 2N mesh elements. The order of

convergence of the proposed method is also obtained by:

RM,N
ε = log2

(

EM,N
ε

E2M,2N
ε

)

.

Moreover, for every ε,M and N, the ε−uniform maximum

absolute error is also given by:

EM,N = max
ε

EM,N
ε .

and its corresponding ε−uniform rate of convergence is given by:

RM,N = log2

(

EM,N

E2M,2N

)

.

TABLE 5 E
M,N
ε

and R
M,N
ε

for Example 5.3 for a fixed ε = 10−4 and di�erent

values of α.

α ↓ M = 32 M = 64 M = 128 M = 256

N = 32 N = 64 N = 128 N = 256

Proposed method

0.4 1.1981E-02 6.2923E-03 3.2341E-03 1.6453E-03

0.92909 0.96022 0.97501 -

0.6 1.1902E-02 6.1807E-03 3.2022E-03 1.6474E-03

0.94536 0.94871 0.95887 -

0.8 1.1758E-02 6.0537E-03 3.1231E-03 1.6306E-03

0.95775 0.95484 0.93758 -

Result in Sahoo and Gupta [7]

0.4 2.9451E-02 1.6018E-02 8.3394E-03 4.2682E-03

0.87860 0.94170 0.96633 -

0.6 2.6572E-02 1.3388E-02 6.9837E-03 3.6022E-03

0.98896 0.93888 0.95510 -

0.8 2.2166E-02 1.1931E-02 6.1611E-03 3.1864E-03

0.89356 0.95351 0.95126 -

TABLE 6 E
M,N and R

M,N for Example 5.3 with ε = 10−4 and α = 0.8.

EM,N and
RM,N

M = 32 M = 64 M = 128 M = 256

N = 32 N = 64 N = 128 N = 256

Proposed method

EM,N 1.1758E-02 6.0537E-03 3.1231E-03 1.6306E-03

RM,N 0.95775 0.95484 0.93758 -

Result in Sahoo and Gupta [7]

EM,N 2.2279E-02 1.2085E-02 6.3059E-03 3.6363E-03

RM,N 0.88362 0.94099 0.79423 -

Example 5.1. [7] Consider the following time-fractional singularly

perturbed convection–diffusion problem:























Dαu(s, t)− εuss(s, t)+ (2− s2)us(s, t)+ (s+ 1)(t + 1)

u(s, t) = 10t2 exp(−t)s(1− s), for, (s, t) ∈ (0, 1)× (0, 1],

u(0, t) = 0, u(1, t) = 0, for 0 ≤ t ≤ 1,

u(s, 0) = 0, for 0 ≤ s ≤ 1.

Example 5.2. [7] Consider the following time-fractional singularly

perturbed convection–diffusion problem:























Dαu(s, t)− εuss(s, t)+ (2− s2)us(s, t)+ su(s, t) = 10t2s2,

for, (s, t) ∈ (0, 1)× (0, 1],

u(0, t) = 0, u(1, t) = 0, for 0 ≤ t ≤ 1,

u(s, 0) = 0, for 0 ≤ s ≤ 1.
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TABLE 7 E
M,N
ε

for Example 5.1 with a fixed α = 0.4 and di�erent values of ε.

ε ↓ M = 16 M = 32 M = 64 M = 128 M = 256

N = 16 N = 32 N = 64 N = 128 N = 256

Proposed method

100 2.2279E-05 7.9884E-06 2.8062E-06 9.7224E-07 3.3318E-07

10−1 6.5702E-04 1.7380E-04 4.4058E-05 1.1015E-05 2.7430E-06

10−2 4.2012E-03 1.8167E-03 5.5510E-04 1.4799E-04 3.8277E-05

10−3 4.3839E-03 2.4108E-03 1.2908E-03 6.5414E-04 2.7868E-04

10−4 4.3839E-03 2.4108E-03 1.2910E-03 6.6621E-04 3.3814E-04

10−5 4.3839E-03 2.4108E-03 1.2910E-03 6.6621E-04 3.3814E-04

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−10 4.3839E-03 2.4108E-03 1.2910E-03 6.6621E-04 3.3814E-04

TABLE 8 E
M,N
ε

for Example 5.2 for a fixed α = 0.8 and di�erent values of ε.

ε ↓ M = 16 M = 32 M = 64 M = 128 M = 256

N = 16 N = 32 N = 64 N = 128 N = 256

100 2.4729E-04 7.4179E-05 3.3766E-05 1.5136E-05 6.7303E-06

10−1 5.6826E-03 1.8815E-03 6.7456E-04 2.5932E-04 1.0461E-04

10−2 3.6964E-02 1.4679E-02 4.4622E-03 1.2968E-03 3.8941E-04

10−3 4.0159E-02 2.2018E-02 1.1442E-02 5.5955E-03 2.2186E-03

10−4 4.0159E-02 2.2018E-02 1.1451E-02 5.8112E-03 2.9158E-03

10−5 4.0159E-02 2.2018E-02 1.1451E-02 5.8112E-03 2.9158E-03

10−6 4.0159E-02 2.2018E-02 1.1451E-02 5.8112E-03 2.9158E-03

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−10 4.0159E-02 2.2018E-02 1.1451E-02 5.8112E-03 2.9158E-03

TABLE 9 E
M,N
ε

for Example 5.3 for a fixed α = 0.8 and di�erent values of ε.

ε ↓ M = 16 M = 32 M = 64 M = 128 M = 256

N = 16 N = 32 N = 64 N = 128 N = 256

100 1.4232E-03 5.4493E-04 2.1376E-04 8.6353E-05 7.9173E-06

10−1 8.2328E-03 4.0321E-03 1.8267E-03 7.9695E-04 7.6114E-05

10−2 2.2444E-02 1.0747E-02 4.0277E-03 3.3228E-03 5.0963E-04

10−3 2.2538E-02 1.1758E-02 6.0537E-03 3.1208E-03 1.5853E-03

10−4 2.2538E-02 1.1758E-02 6.0537E-03 3.1231E-03 1.6306E-03

10−5 2.2538E-02 1.1758E-02 6.0537E-03 3.1231E-03 1.6306E-03

10−6 2.2538E-02 1.1758E-02 6.0537E-03 3.1231E-03 1.6306E-03

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−10 2.2538E-02 1.1758E-02 6.0537E-03 3.1231E-03 1.6306E-03
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B

C

A

FIGURE 5

Log-log plot of EM,N
ε , (A) Example 5.1, (B) Example 5.2, and (C) Example 5.3.

Example 5.3. [7] Consider the following time-fractional singularly

perturbed convection–diffusion problem:



































Dαu(s, t)− εuss(s, t)+ (2− s2)(1+ t)us(s, t)

+(4+ s+ st)u(s, t) = 2+ 4s+

7t2 exp(1−t)(1− s− s3) for, (s, t) ∈ (0, 1)× (0, 1],

u(0, t) = t2, u(1, t) = 1+ t3, for 0 ≤ t ≤ 1,

u(s, 0) = s, for 0 ≤ s ≤ 1.

The existence of the perturbation parameter ε gives the

solutions of the considered problems an intriguing property. As

ε → 0, the solutions of the model examples under consideration

manifest an exponential boundary layer near the right boundary.

The formation of this exponential right boundary layer for the

considered examples is demonstrated in Figure 1. Figures 1A–C

illustrate the formation of the right boundary layer in Examples

5.1, 5.2, and 5.3, respectively, as the perturbation parameter ε

approaches zero, with fixed values of α = 0.5 and M = N = 64.

The surface plots in Figures 2–4, reveal the solution profiles of

Examples 5.1–5.3, respectively, for α = 0.5, M = N = 64, and

different values of ε. These 3D plots illustrate the emergence of

an exponential boundary layer in the solutions of the considered

examples as the perturbation parameter ε tends to zero.

The numerical results in Tables 1–6 illustrate the comparison

of the maximum absolute error and order of convergence

between the present method and the method presented in

Sahoo and Gupta [7] for the considered model examples for

different values of α and a fixed ε. In particular, the results

in Tables 1, 3, 5 compare the maximum absolute error and

order of convergence of the present method with those of

the method in Sahoo and Gupta [7] for Examples 5.1–5.3,

respectively. The result presented in these tables demonstrate

that the present proposed is convergent and more accurate than

the method reported in the literature. Tables 7–9 also show the

maximum absolute error of the present method for Examples

5.1–5.3, respectively, for a fixed α = 0.5 and varying ε. The

numerical results in these tables show that as the perturbation

parameter ε approaches to zero, the maximum absolute error

of the proposed method stabilizes and becomes consistent after

initially increasing. This behavior indicates that the proposed

method is parameter uniform, as illustrated in the log-log

plots in Figures 5A–C for Tables 7–9, respectively. Finally, the

results in Tables 2, 4, 6 present a comparison of the ε-uniform

error and ε-uniform rate of convergence for Examples 5.1–

5.3, respectively, with the results presented in Sahoo and Gupta

[7]. The results presented in these tables clearly demonstrate

that the proposed method is more accurate and exhibits a
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slightly better order of convergence than the method reported in

the literature.

6 Conclusion

A novel exponentially fitted scheme is presented for solving

singularly perturbed convection–diffusion problems involving

a time-fractional derivative using a Numerov finite-difference

approach. The Caputo fraction derivative is used to define the

time-fractional derivative and then discretized uniformly using

implicit finite difference techniques. Then, an exponentially fitted

method is developed using the Numorev finite difference technique

along the spatial direction in a uniform mesh discretization. The

uniform parameter was rigorously proved, and it is shown to

converge with an order of O((1t)2−α +M−1). The method is also

validated using three model examples, and the experimental results

are in agreement with the theoretical expectations. Furthermore,

the proposed method provides more accurate solutions than some

recently existing results.
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