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Change in stability direction
induced by temporal
interventions: a case study of a
tuberculosis transmission model
with relapse and reinfection
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Depok, Indonesia

This article presents a mathematical model of tuberculosis (TB) that incorporates

non-linear incidence rate, relapse, and reinfection to capture the complexity

of TB transmission dynamics. The non-linear incidence rate is introduced to

capture the significant impact of population ignorance on the dangers of TB,

which can lead to its rapid spread. In this study, the existence and stability of

equilibrium points are analyzed both analytically and numerically. Our findings

indicate that a basic reproduction number less than one is not su�cient

to ensure TB elimination within a population. The model exhibits complex

dynamics, including forward and backward bifurcation with hysteresis, as well

as the potential for multiple stable equilibria (bistability) due to the e�ects of

nonlinear incidence rates and reinfection. Bistability is a common phenomenon

in Tuberculosis transmission models, characterized by unique features such

as relapse and reinfection processes. Bistability enables both TB-free and TB-

endemic equilibria to coexist, even when a stable TB-free equilibrium exists. The

occurrence of three endemic equilibria adds complexity to themodel, illustrating

the challenges in TB control. When bistability occurs, we analyzed the potential

shifts in stability trajectories from the endemic equilibrium to the disease-

free equilibrium through specific interventions. Our global sensitivity analysis of

the infected population emphasizes that primary infection and recovery rates

are crucial parameters for reducing TB transmission. These insights highlight

the importance of controlling primary infection through the use of preventive

measures and optimizing recovery strategies to support the e�orts taken toward

TB eradication. This analysis o�ers a nuanced perspective on the challenges of

achieving TB eradication, particularly in settings with high relapse and reinfection

risks, and underscores the need for the implementation of comprehensive

intervention strategies in public health programs. A numerical simulation using

an adjustable infection rate step function was conducted to explore the optimal

combination of intervention intensity, timing, and duration required for e�ective

TB elimination. We illustrate how optimal timing and intervention intensity can

shift the solution trajectory from a TB-endemic to a TB-free equilibrium when

bistability occurs.
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1 Introduction

Tuberculosis (TB) is an infectious disease that spreads through

close contact with an infected individual when they sneeze, cough,

laugh, or even talk. TB is caused by theMycobacterium tuberculosis

bacterium [1, 2]. While this bacterium primarily affects the lungs,

it can also infect other parts of the body, such as the kidneys, spine,

or even brain [3]. Without proper treatment, active TB can severely

damage the lungs and spread to other organs, leading to potentially

fatal complications [4]. Although TB can be deadly, most cases

that are diagnosed globally are asymptomatic, meaning infected

individuals do not display any specific symptoms of TB [5].

TB is a complex disease that has multiple pathways of infection,

beyond the primary infection. One such pathway is relapse, which

refers to the recurrence of the initial TB infection following clinical

treatment and certification of cure, due to lingering bacteria [6].

Relapses are most common within the first six months after

treatment completion [7]. Another pathway of TB infection is

reinfection. Reinfection occurs when someone who has previously

been treated and cured of TB contractsMycobacterium tuberculosis

again, typically from a new source, after recovering from the initial

infection [8].

An important aspect about TB is population awareness, which

remains significantly lower than the public awareness of COVID-

19. During COVID-19, public health initiatives, widespread

information campaigns, and social distancing measures were

implemented on an unprecedented scale. However, like many non-

COVID diseases, TB has received much less funding and public

attention, particularly in high-income nations where TB infection

rates are relatively low. Consequently, community response and

public awareness of TB remain limited.

Owing to the complexity of TB transmission and its

longstanding public health challenges, many researchers,

including mathematicians, have contributed to developing

a deeper understanding of TB transmission mechanisms.

Mathematical models have been widely applied to study the spread

of many diseases, including dengue [9, 10], malaria [11, 12],

pneumonia [13], tuberculosis [14, 15], and others [16–21]. In 2021,

Simorangkir et al. [22] introduced a TB model exploring the effects

of observed treatment and vaccination, discussing the criteria

for the existence and stability of equilibrium points. They found

that TB could be eliminated if the basic reproduction number

of the bacterium is less than one. A global stability analysis of a

TB model using monitored treatment interventions [23] showed

that the TB-free equilibrium point remains globally stable if the

basic reproduction number is less than one. Recently, researchers

[24] examined the impact of treatment failure on TB control

strategies using treatment intervention. Using yearly incidence

data collected from Indonesia, they estimated model parameters

and identified the infection parameter as the most important factor

that influences the basic reproduction number.

A related research [25] found that when a TB model includes

a saturated treatment function, a backward bifurcation may

occur. When this happens, TB can persist even when the basic

reproduction number is less than one. Another study analyzed the

impact of reinfection on the effectiveness of vaccination strategies

for TB control [15], where a backward bifurcation arises due

to reinfection dynamics. A group of researchers explored the

potential implementation of a new vaccine in TB control programs

[26]. Their model revealed interesting dynamics, including the

possibility of three endemic equilibria when the basic reproduction

number exceeds one. They also found that suppressing reinfection

might not be an effective measure for controlling the basic

reproduction number. A multi-country analysis of TB was

conducted using real incidence data from several nations [14] to

evaluate the effectiveness of medical masks and case detection in

preventing TB.

As previously mentioned, TB bacteria exist in multiple strains.

Consequently, mathematical models that incorporate multiple

strains of TB transmission have garnered significant attention

from researchers. In Bhunu et al. [27], a three-strain TB model is

considered, with a focus on analyzing the stability of coexistence

equilibria between TB strains. Mixed infections between different

TB strains are examined in Sergeev et al. [28], where the authors

systematically assess the impact of unknown model parameter

values and highlight critical areas for future experimental studies.

In Omede et al. [29], the authors introduce a TB transmission

model with two TB strains, incorporating exogenous reinfection.

Their findings produce a backward bifurcation from their model

and reveal that drug-susceptible and drug-resistant strains can

coexist. Another crucial aspect of TB transmission is its co-

existence with other diseases, due to factors such as TB’s ability

to weaken the immune system and its long-term chronic nature.

Multiple studies discuss TB’s coexistence with other diseases,

including COVID-19 [30–32], HIV [33, 34], and pneumonia [35].

Additionally, other features have been explored in TBmathematical

models, such as seasonality [36], age-structure [37], and multidrug

resistance [38], among others.

Unlike previous studies, this research examines how low public

awareness of TB transmission influences its spread, modeled

through a nonlinear incidence rate that reflects easier transmission

as infections increase. We introduced the transmission rate as a

monotonic increasing function respect to the number of infected

individuals. Our model also includes relapse and reinfection.

Through this model, we conduct mathematical analysis and

numerical experiments to examine the effects of model parameters,

particularly the influence of relapse, reinfection, and nonlinear

incidence rates on the dynamics of infection, bifurcation diagrams,

and global sensitivity analysis of the endemic threshold. We found

that a basic reproduction number below one is insufficient to

eliminate TB from the population. We also identified multiple

stable TB-endemic equilibria, highlighting the challenges in

accurately predicting TB transmission.

This article is organized as follows. In the next section,

we introduce our model, incorporating relapse, reinfection, and

nonlinear incidence rates. In Section 3, we analyze the existence

and stability criteria of equilibrium points, both analytically and

numerically. Section 4 presents a global sensitivity analysis on

the dynamics of infected individuals and the endemic threshold.

Finally, Section 5 provides the conclusions of our study.
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FIGURE 1

Transmission diagram for TB model in Equation 1.

TABLE 1 Parameter description of TB model in Equation 2.

Parameter Description Unity

3 Recruitment rate due to newborn individual
year

β1 Infection rate of S 1
year×individual

β2 Reinfection rate of R 1
year×individual

γ Natural recovery rate 1
year

α Relapse rate 1
year

p Proportion of people in R getting relapse -

ν Correction parameter of infection rate 1
individual

2 Mathematical model

Let’s assume that the human population is constant at a size

of N, and is divided into three compartments: the susceptible

compartment S(t), the infected compartment I(t), and the

recovered compartment R(t). The model is constructed based

on the transmission diagram shown in Figure 1, with parameter

descriptions provided in Table 1. The model construction process

is outlined as follows.

The population size increases with constant birth rate 3 and

decreases only due to natural death rate µ. Vertical transmission

of TB to a newborn from their mother are relatively rare [39,

40]. Hence, We assume that all newborns are susceptible to TB.

Therefore, we have dS
dt

= 3 when we consider only the newborn

factor. New infections arise from close contact between susceptible

and infected individuals, with a constant infection rate, β1. As

the number of infected individuals in the population increases,

TB spreads more easily within the community. Thus, rather

than assuming a linear total contact rate represented by β1I, we

incorporate a nonlinear infection term. The infection risk for each

susceptible individual is modeled as β1(1 + νI)I, where ν is a

correction parameter that captures the increased risk of TB spread

when there is a larger infected population. A higher value of ν

implies a greater ease of TB transmission. Infected individuals are

assumed to recover at a constant rate γ .

This article also focuses on the effects of TB relapse and

reinfection. In our model, relapse refers to the recurrence of active

TB in individuals who were previously treated and considered

cured, but who have a weakened immune system that allows the

infection to return [26].We assume that the period in which relapse

is possible occurs at rate α, and that a proportion p of individuals in

the recovered compartmentmay relapse. Hence, (1−p)α represents

the rate of individuals who recover completely without relapse.

Another factor in our model is the reinfection of recovered

individuals. In TB, reinfection occurs when a previously

cured individual becomes infected again with a new strain of

Mycobacterium tuberculosis [26]. This reinfection is denoted using

the term β2. Following a similar approach as above, the reinfection

risk for recovered individuals is represented by β2(1+ νI).

Based on the above model description, the mathematical model

of TB considering nonlinear incidence rate, relapse, and reinfection

is given by:

S′ = 3 − β1(1+ νI)IS+ (1− p)αR− µS,

I′ = β1(1+ νI)IS− γ I + pαR+ β2(1+ νI)IR− µI, (1)

R′ = γ I − αR− β2(1+ νI)IR− µR,

where

S(0) ≥ 0, I(0) > 0, R(0) > 0, and N(0) = S(0)+ I(0)+R(0).

Since the total human population is constant, summing all

equations in system Equation 1 gives:

dN

dt
= 3 − µN = 0 ⇔ 3 = µN.

Next, let’s assume

x1 =
S

N
, x2 =

I

N
, x3 =

R

N
, b1 = β1N, b2 = β2N, v = νN,

and x1 = 1− x2 − x3, then the TB model in Equation 1 is reduced

into the following two-dimensional model:

x′2 = (b1(1− x2 − x3)+ b2x3)(1+ vx2)x2 + pαx3 − (γ + µ)x2,

x′3 = γ x2 − b2(1+ vx2)x3x2 − (α + µ)x3. (2)

The non-dimension model in Equation 1 is equipped with a

non-negative initial condition:

x2(0) > 0, x3(0) > 0.

Theorem 1. The non-dimension TB model in Equation 2 always

gives a positive solution as long as the initial condition is non-

negative.

Proof. In the boundary of R2
+, we have:

x′2(x2 = 0) = pαx3 ≥ 0, x′3(x3 = 0) = γ x2 ≥ 0.

Since the initial condition is non-negative, all directions that

tend to the boundary of R2
+ will be repelled back inside. Hence, As

long as the initial condition is non-negative, the solution of x2(t)

and x3(t) will always be non-negative in R
2
+.

By Theorem 1, we can ensure that the solution of

system (Equation 2) always has a biological interpretation, as

the proportion of individuals relative to the total population

remains positive. Also, since the total population is constant,

x2(t) + x3(t) ≤ 1. In the next section, we will analyze the dynamic

properties of the TB model in Equation 2.
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3 Model analysis

In this section, we analyze our non-dimensionalized model

in Equation 2 with respect to several key dynamical properties,

including the existence criteria for equilibrium points, the

calculation of the basic reproduction number, and the stability

analysis of the equilibrium points. All calculations are performed

both analytically and numerically.

3.1 TB-free equilibrium points and the
basic reproduction number

There are two types of equilibrium points of

system (Equation 2), i.e., the TB-free equilibrium point and

the TB-endemic equilibrium point.

The TB-free equilibrium point of system (Equation 1) is given

by:

E
∗ = (x∗2 , x

∗
3) = (0, 0). (3)

Using the next-generation matrix approach given in Diekmann

et al. [41], the basic reproduction number of system (Equation 2) is

given by:

R0 =
b1

µ + γ
. (4)

The basic reproduction number is a key epidemiological

threshold that represents the expected number of secondary

infections caused by a single infectious individual in a completely

susceptible population. It is a threshold parameter used to

determine the potential existence or extinction of a diseases among

population. We further discuss the role of R0 in determining

the existence and stability of equilibrium points in the following

section.

3.2 TB-endemic equilibrium point

The second type of equilibrium point is the TB-endemic

equilibrium point, which is given by:

E
† = (x†

2 , x
†
3), (5)

where x†
3 =

γ x†
2

b2x2(1+ vx2)+ α + µ
, while x†

2 is taken from the

positive roots of the following polynomial:

f (x2) = a4x
4
2 + a3x

3
2 + a2x

2
2 + a1x2 + a0 = 0, (6)

with:

a4 = b1b2v
2 > 0,

a3 = b1b2v(2− v),

a2 = αvb1 + γ vb1 + µvb1 + µvb2 − 2vb1b2 + b1b2,

a1 = −αvb1 − µvb1 + b1α + γ b1 + b1µ + µb2 − b1b2,

a0 = −pαγ + αγ + µα − b1α + γµ + µ2 − b1µ.

The polynomial of f (x2) is four degree. So, there could be

more than one possible positive roots. Therefore, we analyzed the

possible positive roots of f (x2) using the Descartes rules of sign. The

results of our analysis are given in Table 2 below.

It can be seen from Table 2 that whenever a0 < 0, f (λ) will

always have at least one positive root. SolvingR0 with respect to b1
and substituting it into a0, we will have:

a0 = (µ + γ )(µ + α)(1−R0)− pαγ .

Hence, we have

a0 < 0 ⇐⇒ R0 > min {1,R1} ,

where

R1 = 1−
pαγ

(α + µ)(α + γ )
. (7)

Since R1 < 1, then min{1,R1} = R1. Based on the above

calculation, we have the following theorem:

Theorem 2. The TB model in Equation 2 will always have at least

one TB-endemic equilibrium ifR0 > R1.

To illustrate Theorem 2, let’s assume [14, 15, 24]

b1 = 0.4, b2 = 0.1,µ = 1/73, γ = 1/2, p = 0.5,α = 1/5, v = 0.1.

Using this data, we can determine

R0 = 0.778 > min{1, 0.544} = 0.544.

Hence, a TB endemic equilibrium exists, which is given by

(x†
2 , x

†
3) = (0.105, 0.234).

Based on Theorem 2, we can conclude that R0 < 1 does not

guarantee the non-existence of a TB endemic equilibrium. TB may

still exist in the population even thoughR0 < 1.

3.3 Special case when v = 0,p = 0

For the first special case of model (Equation 2), we assume

that the infection rate is linear with respect to I, which gives us

v = 0, and no relapse occurred, which gives us p = 0. With this

assumption, the model in Equation 2 can be reduced as follows:

x′2 = (b1(1− x2 − x3)+ b2x3)x2 − (γ + µ)x2,

x′3 = γ x2 − b2x3x2 − (α + µ)x3. (8)

From the special case TBmodel in Equation 3, we can infer that

the basic reproduction number is still the same as the complete

model, which is R0 =
b1

µ + γ
. The TB-endemic equilibrium of

model Equation 3 is given by

E
+ = (x+2 , x

+
3 ),

where x+3 =
γ x+2

b2x
+
2 + α + µ

, while x+2 is taken from the positive

roots of the following two-degree polynomial:

g(x2) = b1b2x
2
2 + b2(µ −R0(µ + γ ))+ (R0(µ + γ )(µ + γ + α))x2

+ (µ + α)(µ + γ )(1−R0) = 0.
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TABLE 2 Possible positive roots of f(x2).

a4 a3 a2 a1 a0 Possible positive roots a4 a3 a2 a1 a0 Possible positive roots

+ + + + + 0 + - + + + 0 or 2

+ + + + - 1 + - + + - 1 or 3

+ + + - + 0 or 2 + - + - + 0, 2, or 4

+ + + - - 1 + - + - - 1 or 3

+ + - + + 0 or 2 + - - + + 0 or 2

+ + - + - 1 or 3 + - - + - 1 or 3

+ + - - + 0 or 2 + - - - + 0 or 2

+ + - - - 1 + - - - - 1

It can be clearly seen that if R0 > 1, then the multiplication

of the roots of g(x2) = 0 will be negative, which indicates the

appearance of a unique TB-endemic equilibrium if R0 > 1.

Furthermore, if
∂x2

∂R0
< 0 at x2 = 0,R0 = 1, then we will have

positive roots for some interval atR0 < 1. From direct calculation,

we have

∂x2

∂R0
(x2 = 0,R0 = 1) < 0 ↔ b∗2 =

(µ + γ )(µ + γ + α)

γ
> 1.

Since g(x2) is a two-degree polynomial, we will have two TB-

endemic equilibria at R0 < 1 if R1 > 1 and R0 ∈ (K, 1], where

K is R0 that satisfies the discriminant of g(x2) > 0. Based on this

calculation, we have the following theorem.

Theorem 3. The special case of the TB model in Equation 3 has:

1. Unique TB-endemic equilibrium point ifR0 > 1.

2. Twin TB-endemic equilibrium points atR0 = K if b∗2 > 1.

3. Two different TB-endemic equilibrium points at R0 ∈ (K, 1] if

b∗2 > 1.

To illustrate Theorem 3, we use the following parameter values:

µ = 1/73, γ = 1/2,α = 1/10.

With these parameter values, we obtain b∗2 = 0.63 and K =

0.44. We consider two different values for b2 to generate the

equilibrium diagram shown in Figure 2, by selecting b1 as the

bifurcation parameter. The branching point BP is defined where

R0 = 1, specifically at b1 = 0.5136, while the fold point FP

corresponds to b1 = K, i.e., b1 = 0.4416. In Figure 2a, we set

b2 = 0.2 < b∗2 . Therefore, as per Theorem 3, when b1 < BP,

there is no TB-endemic equilibrium point, whereas if b1 > BP, a

unique TB-endemic equilibrium point arises. On the other hand,

when b2 = 0.9 > b∗2 as shown in Figure 2b, there is no endemic

equilibrium if b1 < 0.4416, a twin TB-endemic equilibrium point

when b1 = 0.4416, two distinct endemic equilibrium points for

b1 ∈ (0.4416, 0.5136), and a unique TB-endemic equilibrium point

for b1 ≥ 0.5136.

3.4 Stability of TB-free equilibrium point

Linearizing system (Equation 2) in E
∗ gives:

J(E∗) =

[

b1 − µ − γ pα

γ −α − µ

]

. (9)

Hence, the characteristic polynomial of J(E∗) is given by:

h(λ) = λ2 + c1λ + c0 = 0, (10)

where c1 = γ +α+2µ−b1 and c0 = (µ+γ )(µ+α)(1−R0)−pαγ .

Hence, h(λ) = 0 will give eigenvalues with negative real parts if

c0 > 0 and c1 < 0. Therefore, we have the following theorem.

Theorem 4. The TB-free equilibrium point E
∗ of

system (Equation 2) is locally asymptotically stable ifR0 < R1.

To illustrate Theorem Equation 4, we use the following

parameter values:

b1 = 0.2, b2 = 0.1,µ = 1/73, γ = 1/2, p = 0.5,α = 1/5, v = 0.1,

which gives

R0 = 0.389 < min{1, 0.544} = 0.544.

Then the TB-free equilibrium E
∗ = (0, 0) is locally

asymptotically stable since the eigenvalues are λ1 = −0.49 and

λ2 = −0, 034.

3.5 Stability of TB-endemic equilibrium
point

We conducted numerical experiments using MatCont to

illustrate the stability of the endemic equilibrium point of TBmodel

in Equation 2. MatCont is a MATLAB-based software package

intended for numerical continuation and bifurcation analysis

of dynamical systems. It is mostly employed in mathematical

modeling to examine the behavior of differential equations,

particularly for assessing the stability of equilibrium points and

pinpointing bifurcation points in nonlinear systems.

Unless stated otherwise, we use the following parameter values:

b2 = 0.5,µ = 1/73, γ = 1/2, p = 0.5,α = 0.001
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FIGURE 2

Equilibrium diagram of special case TB model in Equation 3 when (a) β2 = 0.2 and (b) β2 = 0.9.

with v varying and b1 as the bifurcation parameter. Here, BP

denotes the branching point and FP denotes the fold point. The

first numerical experiment is illustrated in Figure 3 with v =

0.1. Figure 3 shows a forward bifurcation phenomenon, that as

b1 increases from 0, a stable TB-free equilibrium exists until it

reaches the branching point BP at b1 = 0.4966. At b1 =

0.4966, the TB-free equilibrium shifts from a stable to an unstable

equilibrium, while a unique TB-endemic equilibrium point begins

to emerge. Figures 3a–c represent the bifurcation diagram in

the b1 − x2 − x3 space, the b1 − x2 plane, and the b1 − x3
plane, respectively.

The second simulation in this section is shown in Figure 4,

where we set v = 1.5. With this parameter configuration, the

system exhibits a forward bifurcation, departing from the branch

point BP at b1 = 0.4966 and soon encountering its first fold point

FP1 at b1 = 0.4984. The TB-endemic equilibrium is stable as

it leaves the branch point but loses stability upon reaching FP1.

This unstable TB-endemic equilibrium continues to increase in

backward direction as b1 decreases along this branch until it reaches

the second fold point FP2 at b1 = 0.4425. When passing FP2, the

TB-endemic equilibrium transitions from unstable to stable and

remains stable for all subsequent values of b1. From this simulation,

we can define four intervals of b1 based on the number and stability

of the equilibria:

1. Interval 1: For b1 < 0.4425, only the stable TB-free equilibrium

point exists. The dynamics of x2 for different initial conditions

tends to a same TB-free equilibrium can be seen in Figure 5a.

2. Interval 2: For b1 ∈ [0.4425, 0.4966], the TB-free equilibrium

remains stable, the smaller TB-endemic equilibrium is unstable,

and the larger TB-endemic equilibrium is stable. Thus, a

bistability phenomenon occurs in this interval. The dynamics of

x2 for different initial conditions tends to a different equilibrium

can be seen in Figure 5b.

3. Interval 3: For b1 ∈ (0.4966, 0.4984], the TB-free equilibrium

becomes unstable, but three TB-endemic equilibria exist, with

the smallest and largest equilibria being stable and the middle

one unstable. Bistability is also observed in this interval, with

two stable TB-endemic equilibria appears. The dynamics of x2

for different initial conditions tends to a different TB-endemic

equilibrium can be seen in Figure 5c.

4. Interval 4: For b1 > 0.4984, the TB-free equilibrium remains

unstable, and the only remaining stable equilibrium is the TB-

endemic equilibrium. The dynamics of x2 for different initial

conditions tends to a same TB-endemic equilibrium can be seen

in Figure 5d.

This analysis reveals a rich structure of equilibrium behavior

depending on the value of b1 as an impact of v, including regions

with bistability between TB-free and TB-endemic equilibrium

points.

The next simulation is presented in Figure 6 with v = 2.

Increasing v from 0.1 in Figure 3 to v = 2 in Figure 6 shifts

the bifurcation diagram from forward to backward bifurcation.

Backward bifurcation reveals a bistability phenomenon, where both

TB-free and TB-endemic equilibrium points can coexist. Starting at

b1 = 0 and increasing b1 in Figure 6b, a stable TB-free equilibrium

persists until the branching point BP at b1 = 0.4966. Beyond BP,

the TB-free equilibrium becomes unstable, while a TB-endemic

equilibrium point appears in the backward direction. For values

of b1 between 0.233 and 0.4966, an initial unstable TB-endemic

equilibrium point emerges. Upon reaching the fold point FP, this

TB-endemic equilibrium point adopts a stable asymptotic behavior,

maintaining stability as b1 continues to increase. Consequently,

within the range b1 ∈ (0.233, 0.4966), a bistability phenomenon

occurs: a stable TB-free equilibrium exists and two TB-endemic

equilibria are present, with the smaller equilibrium being unstable

and the larger one being stable.

4 Sensitivity analysis

4.1 Global sensitivity analysis

To better understand the impact of relapse, reinfection, and

nonlinear incidence rate on the dynamics of TB within our

proposed model in Equation 2, we performed a global sensitivity

analysis on the dynamics of the proportion of infected individuals,
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FIGURE 3

Forward bifurcation diagram of system (Equation 2) with v = 0.1 between (a) b1 with x2 and x3, (b) b1 with x2, and (c) b1 with x3.

x2. We used a combination of Latin Hypercube Sampling (LHS)

and Partial Rank Correlation Coefficient (PRCC) to pick 5000

samples for this global sensitivity analysis. The results of this

analysis are presented in Figure 7. Through this simulation, we can

identify the parameters that most significantly affect the dynamics

of x2.

It is clear from Figure 7 that all parameters in Equation 2

have positive PRCC values, except γ . Therefore, an increase in

b1, b2, v, p, and α will result in an increase in the number of infected

individuals. In other words, an increase in the infection rate,

reinfection rate, relapse rate, proportion of relapse, and correction

parameter for nonlinear incidence rate would all contribute to

increasing the number of infected individuals. In contrast, an

increase in the natural recovery rate γ will reduce the number of

infected individuals.

An additional insight from Figure 7 is that b1 is the most

influential parameter on the dynamics of x2, followed by γ , p, b2, v,

and α, respectively. Therefore, the most impactful interventions

to control the number of infected individuals would involve

reducing b1 or increasing γ . This could be achieved by minimizing

primary infections through measures like utilization of face masks,

vaccinations, or any prevention strategy that reduces b1, or by

improving the TB recovery rate through better medication or

by reducing treatment failure rates through Directly Observed

Therapy (DOT).

The following global sensitivity analysis focuses on the stability

threshold of the TB-free equilibrium from Theorem 4. According

to Theorem 4, the TB-free equilibrium point is locally stable if

R0 < R1, or equivalently if

R2 =
R0

R1
=

b1(α + µ)

µ(µ + α + γ )+ (1− p)αγ
< 1.

The next global sensitivity analysis examines the impact of

parameter values on model (Equation 2) with respect to R2.

Notably, only the parameters b1, p, α, γ , and µ appear in R2,

while b2 and v do not. This indicates that b2 and v do not
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FIGURE 4

Forward bifurcation with hysteresis diagram of system (Equation 2) with v = 1.5 between (a) b1 with x2 and x3, (b) b1 with x2, and (c) b1 with x3.

determine the stability of the TB-free equilibrium; however, they

can affect the magnitude of xi at the endemic equilibrium point.

The global sensitivity analysis results for R2 are presented in

Figure 8. As shown in Figure 8a, among the studied parameters,

γ has the maximum influence on R2, followed by p, b1, and α.

The distribution of R2 based on the samples used in Figure 8a

is illustrated in Figure 8b, where most frequencies of R2 are

concentrated below 1.

4.2 Two-parameter sensitivity analysis

From previous global sensitivity analysis, it can be seen that

b1 is the most sensitive parameter on the dynamic of infected

individuals. Hence, it is essential to analyze the effect of b1 and other

parameters on the stability of the TB-free equilibrium point.

The first numerical experiment is given in Figure 9a, where we

depict the sensitivity of R2 with respect to b1 and p. It is clearly

seen that an increase in the number of primary infections and the

proportion of people getting relapses will increase R2. The second

simulation depicted in Figure 9b shows how the combination of

α and γ affect R2. It can be clearly seen that increasing α will

increase R2, while reducing γ will reduce R2. Hence, increasing

the natural recovery rate of TB can increase the chances of TB

elimination efforts.

4.3 Autonomous simulation

In this section, we conducted numerical experiments to explore

the dynamics of x2 in response to variations in parameter values.
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FIGURE 5

Dynamic of x2 tends to it equilibrium depend on di�erent value of b1 correspond to interval 1, 2, 3, and 4 for (a–d), respectively.

The baseline parameters were set as follows:

b1 = 0.5, b2 = 0.5,µ = 1/73, γ = 1/2, p = 0.5,α = 0.001, v = 1.5,

unless specified otherwise. The time frame for simulation is varying

to expose the dynamic of x2. Results are shown in Figure 10.

The first experiment, shown in Figure 10a, illustrates the effect

of the primary infection rate, b1, on the dynamics of x2. Holding

all other parameters constant, we observe that higher TB primary

infection rates lead to a larger number of infected individuals

and prolong the outbreak. Figure 10b similarly demonstrates that

increasing the reinfection parameter, b2, also raises infection levels.

In Figure 10c, we examine the effect of the proportion of

individuals experiencing relapse, p. With no relapse (p = 0), x2
directly tends to it TB-free equilibrium faster than case of p = 0.2

and p = 0.4. On the other hand, when p = 0.6, 0.8, and 1, the

dynamic of x2 increasing significantly and tends to it TB-endemic

equilibrium. Figure 10d highlights the impact of the relapse rate, α,

where higher values of α correlate with a larger infected population.

This finding is intuitive, as a lower relapse rate means a larger

reservoir of individuals, x3, who are susceptible to reinfection.

Thus, when this recovered group remains high due to a smaller α,

reinfection events occur more frequently, increasing x2.

The final simulation, shown in Figure 10e, examines the effect

of the recovery rate, γ , on x2 dynamics. Here, higher recovery rates

significantly decrease x2 levels and expedite outbreak control. This

underscores the importance of rapid recovery in curbing disease

transmission and achieving stability within the population.

4.4 Impact of infection rate adjustments:
intensity, timing, and duration analysis

Inmany cases in the field, the intervention to control the spread

of diseases depends on time. The duration of the intervention also

adapts to the current situation or depends on budget limitations.

Hence, in many cases, if intervention needs to be implemented,

the duration of this intervention sometimes only takes a short time

period for implementation. Based on this argument, here in this
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FIGURE 6

Backward bifurcation diagram of system (Equation 2) with v = 2 between (a) b1 with x2 and x3, (b) b1 with x2, and (c) b1 with x3.

section we introduce a possible time-dependent infection rate b1(t)

which will depend on the intensity, timing of implementation, and

duration of implementation. Reducing b1 in TB spread can be

related to any prevention strategy to avoid contact with infected

individuals, such as the use of face masks. Hence, we define our

adjusted b1(t) as follows:

b1(t) =

{

θ t1 ≤ t ≤ t2

0.47 else
, (11)

where t1 is the first day of control measurement, t2 is the last day of

control measurement, and θ is the reduced infection rate b1. Hence,

we have three variables derived from the adjusted b1 in Equation 11.

The first variable is θ , which describes the intensity of the control

measures to reduce the infection rate b1. The second variable is the

first day of intervention, denoted as t1. A smaller t1 indicates that

the intervention was implemented earlier. The last variable is the

duration of the intervention, given by T̄ = t2 − t1 > 0. A larger T̄

indicates a longer period of intervention.

For this simulation, we use the baseline parameters to produce

Figure 5b with the initial condition represented by the red curve.

In this case, bistability appears in the TB model, where the solution

depends on the initial condition. In the red curve, where the initial

number of infected individuals is larger, the trajectories tend to the

TB-endemic equilibrium point. Conversely, with a smaller initial

condition for x2, the solution tends to the TB-free equilibrium

point. The goal is to find the appropriate values of θ , t1, or T̄ such

that the trajectories can change from the TB-endemic equilibrium

to the TB-free equilibrium point.

We conduct four type of scenario to analyze the possible

adjustment of b1. The function of b1 is given in Equation 11 with

the value of θ , t1, and t2 is given in Table 3.
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FIGURE 7

PRCC values for all parameters (except µ) when measured against the dynamics of infected individuals over time.

FIGURE 8

(a) PRCC results on R2 and (b) the distribution of R2 using samples

used on PRCC.

The result for the first scenario is shown in Figure 11a. It

can be seen that when the infection rate is reduced from 0.47

to 0.1 starting from t = 60 for 10 years, the dynamics of the

infected compartment x2 decline until the end of the 70th year

and then begin to increase again, tending toward the TB-endemic

equilibrium as the intervention is lifted. Thus, the effort in the first

scenario does not succeed in pushing the trajectories of x2 from the

TB-endemic to the TB-free equilibrium point.

The second numerical simulation is conducted with the same

setup as in scenario 1, but with a higher intensity of intervention

such that b1 is reduced from 0.47 to only 0.05. The result is

shown in Figure 11b. Unlike scenario 1, with a higher intensity of

reduction in b1, we can push the trajectories of x2 from the TB-

endemic equilibrium to the TB-free equilibrium. Even when the

intervention ends at the end of year 70, the trajectories of x2 do not

return to their natural path toward the TB-endemic equilibrium.

Instead, it tend toward the TB-free equilibrium point. Hence, in this

example, we can conclude that a sufficiently intense intervention

can shift the solution trajectories from the TB-endemic to the TB-

free equilibrium, even if the duration of the intervention remains

the same.

The third scenario is conducted in the samemanner as scenario

1, but with the intervention implemented earlier, specifically in

the 40th year. The duration and intensity of intervention remain

the same as in scenario 1. The result is shown in Figure 11c. It

can be seen that when the intervention is implemented 10 years

earlier than in scenario 1, the solution trajectories can be pushed

toward the TB-free equilibrium point. Therefore, determining the

appropriate timing for the start of the intervention is essential to

achieve a TB-free equilibrium in the population.

The fourth simulation is conducted for scenario 4. In many

cases of disease control strategy, maintaining an intervention over

a longer period is more feasible than applying a higher intensity

to reduce the infection rate. In scenario 4, we illustrate this

by reducing b1 by only 50%, to 0.235, while assuming that the
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FIGURE 9

Contour plot of R2 with respect to b1 vs. p in (a) and α vs. γ in (b). TB-free equilibrium will be stable if R2 < 1.
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FIGURE 10

Sensitivity on the dynamics of x2 with respect to (a) b1, (b) b2, (c) ρ, (d) α, and (e) γ .

government can sustain this intervention for a longer period–

in this case, 20 years. The result is shown in Figure 11d. It

is clear that when the intervention can be maintained for a

longer duration, the intensity of reduction does not need to

be at the highest level to achieve a TB-free equilibrium. Thus,

identifying an optimal duration for intervention and the minimum

reduction in infection rate can enhance the effectiveness of TB

elimination efforts.
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4.5 Impact of recovery rate adjustments:
intensity, timing, and duration analysis

Another potential intervention for the TB control program

that can be analyzed using our proposed model is enhancing the

recovery rate of infected individuals. This can be achieved through

TABLE 3 Description of scenarios for adjusted b1, where blue text

indicates changes of strategy compared to scenario 1.

Scenario θ t1 t2 T̄ Description

1 0.1 60 70 10 Baseline for adjusted b1 scenarios

2 0.05 60 70 10 More intense in the reduction of

b1 than scenario 1

3 0.1 40 50 10 Intervention implemented earlier

compare to scenario 1

4 0.235 60 80 20 Intensity of intervention is lower

but longer than scenario 1

various measures, such as improving the quality of treatment

or increasing the number of medical staff available to care for

TB-infected individuals in hospitals. Similar approaches were

implemented during the global COVID-19 outbreak from 2020 to

2022.

The concept behind this type of scenario is similar to that

discussed in the previous section, where we define γ = γ (t), where:

γ (t) =

{

ζ t1 ≤ t ≤ t2

0.5 else
. (12)

Here, ζ > 0.5 represents the improved value of the natural

recovery rate achieved through government interventions using

the aforementioned strategies. In this article, we implement four

different strategies for defining γ (t), as shown in Table 4.

The numerical results for the first scenario in Table 4 are shown

in Figure 12a. It can be observed that increasing the recovery rate

by 10%, from 0.5 to 0.55, during t ∈ [60, 70] does not succeed in

shifting the stability from the TB-endemic equilibrium to the TB-

free equilibrium point. Although the recovery rate improvement

FIGURE 11

Changes in the trajectories of x2 depend on the adjusted b1. (a–d) represent scenarios 1 to 4 in Table 3, respectively. The blue and green curves

represent the dynamics of x2, while the red dotted curve shows the value of b1 as a step function. The left y-axis corresponds to x2, while the right

y-axis corresponds to the value of b1. The time scale is in years.
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TABLE 4 Description of scenarios for adjusted γ , where blue text

indicates changes of strategy compared to scenario 1.

Scenario θ t1 t2 T̄ Description

1 0.55 60 70 10 Baseline for adjusted γ scenarios

2 0.6 60 70 10 More intense in the improvement

of γ than scenario 1

3 0.55 40 50 10 Intervention implemented earlier

compare to scenario 1

4 0.55 40 60 20 Intensity of intervention is the

same as in scenario 1, but with a

earlier and longer

5 0.6 400 410 10 Intensity of intervention is

improved compare to scenario 1,

but implemented late

6 0.6 400 420 20 Intensity of intervention is the

same as in scenario 5, but

implemented longer

significantly reduces the number of infected individuals during

t ∈ [60, 70], the number of infected individuals begins to rise

again and returns to the stable endemic equilibrium immediately

after the recovery rate enhancement ceases. However, when the

recovery rate is increased by 20% over the same time interval as in

Scenario 1, Figure 12b shows that the dynamics of x2 shift from the

TB-endemic equilibrium to the TB-free equilibrium. In Scenario

3, represented in Figure 12c, the improvement of γ occurs earlier

than in Scenario 1, specifically during t ∈ [40, 50]. It can be seen

that these interventions do not succeed in shifting the stability

to the TB-free equilibrium. Conversely, when the intervention is

implemented over a longer period, as shown in Scenario 4, the

stability successfully transitions from the TB-endemic to the TB-

free equilibrium. The numerical results for Scenario 4 are illustrated

in Figure 12d.

The fifth simulation describes a scenario where the intervention

is introduced very late, at a point when the dynamics of x2 are

already approaching the TB-endemic equilibrium. In this case, the

recovery rate γ is increased from 0.5 to 0.6, but the intervention

is implemented late, during the interval t ∈ [400, 410]. The

results, depicted in Figure 12e, indicate that while the dynamics

of x2 decrease during the intervention, they rise again to the TB-

endemic equilibrium immediately after γ reverts to 0.5. However,

when the same recovery rate improvement is applied at the

same starting point but over a longer period, as in Scenario 6,

the dynamics of x2 shift to the TB-free equilibrium, as shown

in Figure 12f.

From the numerical experiments involving γ , as defined

in Equation 12, it is evident that improving the recovery

rate requires appropriate intensity, timing, and duration of

interventions. A carefully adjusted γ can redirect the dynamics of

the infected population from the TB-endemic equilibrium to the

TB-free equilibrium when bistability phenomena occur.

5 Conclusion

Mathematical models of tuberculosis transmission have been

extensively studied by many researchers, incorporating key factors

such as vaccination, quarantine, treatment, slow-fast disease

progression, co-infection with other diseases, and more [42–47].

However, to the best of our knowledge, only few TB models

consider the impact of population ignorance regarding the dangers

of TB. Unlike COVID-19, which prompted high awareness early

in the 2019 pandemic, TB has existed for decades, leading to

a comparatively lower level of public awareness about its risks

compared to newly emerging diseases like COVID-19.

In this paper, we have proposed a mathematical model to

predict Tuberculosis (TB) transmission that considers a nonlinear

incidence rate to capture the population’s low awareness response

to TB transmission, as well as relapse and reinfection. First, we non-

dimensionalized the model and reduced it from a three- to a two-

dimensional system by assuming a constant population over time.

Using this non-dimensionalized model, we analyzed the dynamic

behavior of the system with respect to the existence and local

stability of equilibria.We identified two types of equilibrium points:

the TB-free equilibrium and the TB-endemic equilibrium. Our

findings suggest that a basic reproduction number less than one is

not sufficient to ensure TB eradication; the reproduction number

must be lower than a new threshold, which we denote as R1.

Our analysis also reveals that the model may exhibit multiple TB-

endemic equilibria, making TB eradication more challenging. The

model demonstrates three types of bifurcation: forward bifurcation,

backward bifurcation, and forward bifurcation with hysteresis.

For more examples on TB transmission model which produced

complex bifurcation phenomena, readers may refer to Aldila et al.

[26].

A global sensitivity analysis, using a combination of Latin

Hypercube Sampling (LHS) and Partial Rank Correlation

Coefficient (PRCC), was conducted to identify the most influential

parameters in our TB model. This analysis revealed that primary

infection and recovery rates are the most significant parameters

impacting the dynamics of the proportion of infected individuals.

Moreover, although reinfection and the nonlinear incidence rate

parameter do not appear in the endemic threshold, they exhibit

significant positive PRCC values in relation to the dynamics of

infected individuals. This finding highlights the importance of

controlling reinfection and shaping population perspectives on TB

to achieve more effective results in TB eradication.

In the final numerical experiment with an adjustable infection

rate, we have demonstrated a potential strategy for TB eradication

when bistability occurs–that is, when both the TB-free and

TB-endemic equilibrium points are stable simultaneously. Our

results indicate that if the intervention cannot be maintained

indefinitely, careful consideration must be given to the intensity

of the intervention (i.e., the reduction in infection rate), the

timing of intervention (i.e., when it should begin), and the

duration of intervention. When implemented appropriately, these

factors can shift the system from a TB-endemic to a TB-

free equilibrium. This highlights the importance of strategic,

time-sensitive interventions in TB control, especially in settings

where both TB-endemic and TB-free situation are possible

outcomes. From a public health standpoint, this results shows

how optimizing intervention intensity, timing, and duration

is crucial to achieving sustained reductions in TB prevalence,

ultimately moving toward eradication even when resources

are limited.
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FIGURE 12

Changes in the trajectories of x2 depend on the adjusted γ . (a–f) represent scenarios 1 to 6 in Table 4, respectively. The blue and green curves

represent the dynamics of x2, while the red dotted curve shows the value of γ as a step function. The left y-axis corresponds to x2, while the right

y-axis corresponds to the value of γ . The time scale is in years.

In this paper, we have introduced a modified Susceptible-

Infected-Recovered (SIR) model for TB transmission. Despite

its simplicity, the model accommodates the key factors in TB

transmission, such as relapse and reinfection. The results highlight

the importance of relapse and reinfection as hidden parameters that

do not appear in the basic reproduction number but significantly
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influence infection dynamics. However, our model has room for

further improvement. Incorporating vaccination and its imperfect

effects could be a direction for future work, given that vaccination

is a critical TB control strategy. Additionally, modeling resistance

to TB drugs (multi-drug resistance) could add further detail to the

model.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

DA: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research was funded

by the Ministry of Research and Higher Education, Republic of

Indonesia with Fundamental Research Grant Scheme 2024 (ID

Number: NKB-894/UN2.RST/HKP.05.00/2024).

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Chukwu C, Bonyah E, Juga M, et al. On mathematical modeling of fractional-
order stochastic for tuberculosis transmission dynamics. Results Control Optim. (2023)
11:100238. doi: 10.1016/j.rico.2023.100238

2. Centers for Disease Control and Prevention. Signs and Symptoms of Tuberculosis
(2024). Available online at: https://www.cdc.gov/tb/signs-symptoms/?CDC_AAref_
Val=https://www.cdc.gov/tb/topic/basics/signsandsymptoms.htm (accessed May 10,
2024).

3. Aldila D, Fardian B, Chukwu C, Noor Aziz MH, Kamalia P. Improving
tuberculosis control: assessing the value of medical masks and case detection–a multi-
country study with cost-effectiveness analysis. R Soc Open Sci. (2021) 8:210507.

4. WHO. Global Tuberculosis Report 2020 (2020). Available online at: https://www.
who.int/publications/i/item/9789240013131 (accessed May 15, 2024).

5. Barry CE, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn D, et al. The spectrum
of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev
Microbiol. (2009) 7:845–55. doi: 10.1038/nrmicro2236

6. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN. Molecular epidemiology
of tuberculosis: current insights. Clin Microbiol Rev. (2006) 19:658–86.
doi: 10.1128/CMR.00061-05

7. Crampine A C. Recurrent TB: relapse or reinfection? The effect of HIV
in a general population cohort in Malawi. Epidemiol Soc. (2010) 24:417–426.
doi: 10.1097/QAD.0b013e32832f51cf

8. Shen X, Yang C,Wu J, Lin S, Gao X,WuZ, et al. Recurrent tuberculosis in an urban
area in China: Relapse or exogenous reinfection? Tuberculosis. (2017) 103:97–104.
doi: 10.1016/j.tube.2017.01.007

9. Aldila D, Aulia Puspadani C, Rusin R. Mathematical analysis of the impact of
community ignorance on the population dynamics of dengue. Front Appl Mathem
Statist. (2023) 9:1094971. doi: 10.3389/fams.2023.1094971

10. Abidemi A, Fatmawati, Peter OJ. An optimal control model for dengue
dynamics with asymptomatic, isolation, and vigilant compartments.Dec Anal J. (2024)
10:100413. doi: 10.1016/j.dajour.2024.100413

11. Handari BD, Ramadhani RA, Chukwu CW, Khoshnaw SHA, Aldila D. An
optimal control model to understand the potential impact of the new vaccine and

transmission-blocking drugs for malaria: a case study in Papua and West Papua,
Indonesia. Vaccines. (2022) 10:1174. doi: 10.3390/vaccines10081174

12. Febiriana IH, Hassan AH, Aldila D. Enhancing malaria control strategy: optimal
control and cost-effectiveness analysis on the impact of vector bias on the efficacy
of mosquito repellent and hospitalization. J Appl Mathem. (2024) 2024:9943698.
doi: 10.1155/2024/9943698

13. Aldila D, Awdinda N, Fatmawati, Herdicho FF, Ndii MZ, Chukwu CW. Optimal
control of pneumonia transmission model with seasonal factor: Learning from Jakarta
incidence data. Heliyon. (2023) 9:e18096. doi: 10.1016/j.heliyon.2023.e18096

14. Aldila D, Fardian BL, Chukwu CW, Hifzhudin Noor Aziz M, Kamalia PZ.
Improving tuberculosis control: assessing the value of medical masks and case
detection–amulti-country study with cost-effectiveness analysis. R Soc Open Sci. (2024)
11:231715. doi: 10.1098/rsos.231715

15. Ginting EDA, Aldila D, Febiriana IH. A deterministic compartment model for
analyzing tuberculosis dynamics considering vaccination and reinfection. Healthcare
Anal. (2024) 5:100341. doi: 10.1016/j.health.2024.100341

16. Belabbas M, Souna F, Tiwari PK, Menacer Y. Role of intervention strategies and
psychological effect on the control of infectious diseases in the random environment. J
Biol Syst. (2024) 32:971–1001. doi: 10.1142/S0218339024500402

17. Mondal J, Samui P, Chatterjee AN, Ahmad B. Modeling hepatocyte apoptosis
in chronic HCV infection with impulsive drug control. Appl Math Model. (2024)
136:115625. doi: 10.1016/j.apm.2024.07.032

18. Roy PK, Chatterjee AN Li XZ. The effect of vaccination to dendritic cell
and immune cell interaction in HIV disease progression. Int J Biomathem. (2016)
09:1650005. doi: 10.1142/S1793524516500054

19. Wang B, Mondal J, Samui P, Chatterjee AN, Yusuf A. Effect of an antiviral drug
control and its variable order fractional network in host COVID-19 kinetics. Eur Phys
J Special Topics. (2022) 231:1915–29. doi: 10.1140/epjs/s11734-022-00454-4

20. Rai RK, Pal KK, Tiwari PK, Martcheva M, Misra AK. Impact of social
media and word-of-mouth on the transmission dynamics of communicable
and non-communicable diseases. Int J Biomathem. (2024) 2024:2450094.
doi: 10.1142/S1793524524500943

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2025.1541981
https://doi.org/10.1016/j.rico.2023.100238
https://www.cdc.gov/tb/signs-symptoms/?CDC_AAref_Val=https://www.cdc.gov/tb/topic/basics/signsandsymptoms.htm
https://www.cdc.gov/tb/signs-symptoms/?CDC_AAref_Val=https://www.cdc.gov/tb/topic/basics/signsandsymptoms.htm
https://www.who.int/publications/i/item/9789240013131
https://www.who.int/publications/i/item/9789240013131
https://doi.org/10.1038/nrmicro2236
https://doi.org/10.1128/CMR.00061-05
https://doi.org/10.1097/QAD.0b013e32832f51cf
https://doi.org/10.1016/j.tube.2017.01.007
https://doi.org/10.3389/fams.2023.1094971
https://doi.org/10.1016/j.dajour.2024.100413
https://doi.org/10.3390/vaccines10081174
https://doi.org/10.1155/2024/9943698
https://doi.org/10.1016/j.heliyon.2023.e18096
https://doi.org/10.1098/rsos.231715
https://doi.org/10.1016/j.health.2024.100341
https://doi.org/10.1142/S0218339024500402
https://doi.org/10.1016/j.apm.2024.07.032
https://doi.org/10.1142/S1793524516500054
https://doi.org/10.1140/epjs/s11734-022-00454-4
https://doi.org/10.1142/S1793524524500943
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Aldila 10.3389/fams.2025.1541981

21. Pal KK, Rai RK, Tiwari PK. Influences of media-induced awareness and
sanitation practices on cholera epidemic: a study of bifurcation and optimal control.
Int J Bifurc Chaos. (2024) 2024:2550002. doi: 10.1142/S0218127425500026

22. Simorangkir G, Aldila D, Rizka A, Tasman H, Nugraha ES. Mathematical
model of tuberculosis considering observed treatment and vaccination interventions. J
Interdisc Mathem. (2021) 24:1717–37. doi: 10.1080/09720502.2021.1958515

23. Kamalia PZ, Ayumi T, Fathiyah AY, Aldila D. Global stability analysis and
optimal control problem arise from tuberculosis transmission model with monitored
treatment. Commun Math Biol Neurosci. (2024) 15:27.

24. Aldila D, Ramadhan DA, Chukwu CW, Handari BD, Shahzad M, Kamalia PZ.
On the role of early case detection and treatment failure in controlling tuberculosis
transmission: a mathematical modeling study. Commun Biomathem Sci. (2024)
7:61–86. doi: 10.5614/cbms.2024.7.1.4

25. Aldila D, Saslia BR, Gayarti W, Tasman H. Backward bifurcation analysis
on Tuberculosis disease transmission with saturated treatment. J Phys. (2021)
1821:012002. doi: 10.1088/1742-6596/1821/1/012002

26. Aldila D, Chavez JP, Wijaya KP, Ganegoda NC, Simorangkir GM, Tasman
H, et al. A tuberculosis epidemic model as a proxy for the assessment of the
novel M72/AS01E vaccine. Commun Nonl Sci Numer Simulat. (2023) 120:107162.
doi: 10.1016/j.cnsns.2023.107162

27. Bhunu CP. Mathematical analysis of a three-strain tuberculosis transmission
model. Appl Math Model. (2011) 35:4647–60. doi: 10.1016/j.apm.2011.03.037

28. Sergeev R, Colijn C, Cohen T. Models to understand the population-level
impact of mixed strain M. tuberculosis infections. J Theor Biol. (2011) 280:88–100.
doi: 10.1016/j.jtbi.2011.04.011

29. Omede BI, Peter OJ, Atokolo W, Bolaji B, Ayoola TA. A mathematical analysis
of the two-strain tuberculosis model dynamics with exogenous re-infection.Healthcare
Anal. (2023) 4:100266. doi: 10.1016/j.health.2023.100266

30. Singh R, ul Rehman A, Ahmed T, Ahmad K, Mahajan S, Pandit AK, et al.
Mathematical modelling and analysis of COVID-19 and tuberculosis transmission
dynamics. Inform Med Unlocked. (2023) 38:101235. doi: 10.1016/j.imu.2023.101235

31. Ojo MM, Peter OJ, Goufo EFD, Nisar KS. A mathematical model for the co-
dynamics of COVID-19 and tuberculosis. Math Comput Simul. (2023) 207:499–520.
doi: 10.1016/j.matcom.2023.01.014

32. Mekonen KG, Obsu LL. Mathematical modeling and analysis for
the co-infection of COVID-19 and tuberculosis. Heliyon. (2022) 8:e11195.
doi: 10.1016/j.heliyon.2022.e11195

33. Kubjane M, Osman M, Boulle A, Johnson LF. The impact of HIV and
tuberculosis interventions on South African adult tuberculosis trends, 1990-
2019: a mathematical modeling analysis. Int J Infect Dis. (2022) 122:811–9.
doi: 10.1016/j.ijid.2022.07.047

34. Otunuga OM. Analysis of the impact of treatments on HIV/AIDS and
Tuberculosis co-infected population under random perturbations. Infect Dis Model.
(2024) 9:27–55. doi: 10.1016/j.idm.2023.11.002

35. Gweryina RI, Madubueze CE, Bajiya VP, Esla FE. Modeling and analysis of
tuberculosis and pneumonia co-infection dynamics with cost-effective strategies.
Results Control Optim. (2023) 10:100210. doi: 10.1016/j.rico.2023.100210

36. Malek A, Hoque A. Mathematical model of tuberculosis with
seasonality, detection, and treatment. Inform Med Unlocked. (2024) 49:101536.
doi: 10.1016/j.imu.2024.101536

37. Das DK, Kar TK. Dynamical analysis of an age-structured tuberculosis
mathematical model with LTBI detectivity. J Math Anal Appl. (2020) 492:124407.
doi: 10.1016/j.jmaa.2020.124407

38. Mishra BK, Srivastava J. Mathematical model on pulmonary and multidrug-
resistant tuberculosis patients with vaccination. J Egypt Mathem Soc. (2014) 22:311–6.
doi: 10.1016/j.joems.2013.07.006

39. Saramba MI, Zhao DA. Perspective of the diagnosis and management
of congenital tuberculosis. J Pathog. (2016) 2016:8623825. doi: 10.1155/2016/86
23825

40. Yaghoubi A, Salehabadi S, Abdeahad H, Hasanian SM, Avan A, Yousefi M,
et al. Tuberculosis, human immunodeficiency viruses and TB/HIV co-infection in
pregnant women: a meta-analysis. Clin Epidemiol Global Health. (2020) 8:1312–20.
doi: 10.1016/j.cegh.2020.05.003

41. Diekmann O, Heesterbeek JAP, Roberts MG. The construction of next-
generation matrices for compartmental epidemic models. J R Soc. (2010) 7:873–85.
doi: 10.1098/rsif.2009.0386

42. Fuller NM, McQuaid CF, Harker MJ, Weerasuriya CK, McHugh TD, Knight
GM. Mathematical models of drug-resistant tuberculosis lack bacterial heterogeneity:
a systematic review. PLoS Pathog. (2024) 20:e1011574. doi: 10.1371/journal.ppat.
1011574

43. Starshinova A, Osipov N, Dovgalyk I, Kulpina A, Belyaeva E, Kudlay D.
COVID-19 and tuberculosis: mathematical modeling of infection spread taking into
account reduced screening. Diagnostics. (2024) 14:698. doi: 10.3390/diagnostics140
70698

44. Emani S, Alves K, Alves LC, da Silva DA, Oliveira PB, Castro MC, et al.
Quantifying gaps in the tuberculosis care cascade in Brazil: a mathematical
model study using national program data. PLoS Med. (2024) 21:e1004361.
doi: 10.1371/journal.pmed.1004361

45. OjoMM, Peter OJ, Goufo EFD, Panigoro HS, Oguntolu FA. Mathematical model
for control of tuberculosis epidemiology. J Appl Mathem Comput. (2022) 69:69–87.
doi: 10.1007/s12190-022-01734-x

46. Peter OJ, Abidemi A, Fatmawati F, Ojo MM, Oguntolu FA. Optimizing
tuberculosis control: a comprehensive simulation of integrated interventions using
a mathematical model. Mathem Model Numer Simul Applic. (2024) 4:238–55.
doi: 10.53391/mmnsa.1461011

47. Devi AS, Pal KK, Tiwari PK. Exploring fractional dynamical probes in the context
of gender-structured HIV–TB coinfection: a study of control strategies. J Biol Syst.
(2024) 32:719–69. doi: 10.1142/S0218339024500256

Frontiers in AppliedMathematics and Statistics 18 frontiersin.org

https://doi.org/10.3389/fams.2025.1541981
https://doi.org/10.1142/S0218127425500026
https://doi.org/10.1080/09720502.2021.1958515
https://doi.org/10.5614/cbms.2024.7.1.4
https://doi.org/10.1088/1742-6596/1821/1/012002
https://doi.org/10.1016/j.cnsns.2023.107162
https://doi.org/10.1016/j.apm.2011.03.037
https://doi.org/10.1016/j.jtbi.2011.04.011
https://doi.org/10.1016/j.health.2023.100266
https://doi.org/10.1016/j.imu.2023.101235
https://doi.org/10.1016/j.matcom.2023.01.014
https://doi.org/10.1016/j.heliyon.2022.e11195
https://doi.org/10.1016/j.ijid.2022.07.047
https://doi.org/10.1016/j.idm.2023.11.002
https://doi.org/10.1016/j.rico.2023.100210
https://doi.org/10.1016/j.imu.2024.101536
https://doi.org/10.1016/j.jmaa.2020.124407
https://doi.org/10.1016/j.joems.2013.07.006
https://doi.org/10.1155/2016/8623825
https://doi.org/10.1016/j.cegh.2020.05.003
https://doi.org/10.1098/rsif.2009.0386
https://doi.org/10.1371/journal.ppat.1011574
https://doi.org/10.3390/diagnostics14070698
https://doi.org/10.1371/journal.pmed.1004361
https://doi.org/10.1007/s12190-022-01734-x
https://doi.org/10.53391/mmnsa.1461011
https://doi.org/10.1142/S0218339024500256
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Change in stability direction induced by temporal interventions: a case study of a tuberculosis transmission model with relapse and reinfection
	1 Introduction
	2 Mathematical model
	3 Model analysis
	3.1 TB-free equilibrium points and the basic reproduction number
	3.2 TB-endemic equilibrium point 
	3.3 Special case when v=0, p=0
	3.4 Stability of TB-free equilibrium point
	3.5 Stability of TB-endemic equilibrium point

	4 Sensitivity analysis
	4.1 Global sensitivity analysis
	4.2 Two-parameter sensitivity analysis
	4.3 Autonomous simulation
	4.4 Impact of infection rate adjustments: intensity, timing, and duration analysis
	4.5 Impact of recovery rate adjustments: intensity, timing, and duration analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


