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Assessing the role of model
choice in parameter identifiability
of cancer treatment e�cacy
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Several mathematical models are commonly used to describe cancer growth

dynamics. Fitting of these models to experimental data has not yet determined

which particular model best describes cancer growth. Unfortunately, choice

of cancer growth model is known to drastically alter the predictions of both

future tumor growth and the e�ectiveness of applied treatment. Since there is

growing interest in using mathematical models to help predict the e�ectiveness

of chemotherapy, we need to determine if the choice of cancer growth model

a�ects estimates of chemotherapy e�cacy. Here, we simulate an in vitro study

by creating synthetic treatment data using each of seven commonly used cancer

growth models and fit the data sets using the other (“wrong”) cancer growth

models. We estimate both the εmax (the maximum e�cacy of the drug) and the

IC50 (the drug concentration at which half the maximum e�ect is achieved) in

an e�ort to determine whether the use of an incorrect growth model changes

the estimates of chemotherapy e�cacy parameters. We find that IC50 is largely

weakly practically identifiable nomatter which growthmodel is used to generate

or fit the data. The εmax is more likely to be practically identifiable, but is sensitive

to choice of growth model, showing poor identifiability when the Bertalan�y

model is used to either generate or fit the data.

KEYWORDS

parameter estimation, mathematical model, drug characterization, growth model,

cancer

1 Introduction

Cancer is a leading cause of death and causes a serious burden for patients and society

even when it isn’t fatal [1]. While new cancer treatment modalities are constantly being

developed [2–4], chemotherapy is still one of the primary treatments for cancer. However,

even chemotherapy is constantly being improved with the development of new drugs [5, 6]

and new drug delivery methods [7, 8] that, hopefully, reduce side effects while maintaining

drug effectiveness.

New chemotherapeutics and new drug delivery systems need to be tested in vitro

before they can be considered for use in humans. The standard method for characterizing

chemotherapy is to generate a dose-response curve by measuring the amount of cancer

cell death at a particular time as a function of the drug dose [9]. The resulting curve is

characterized by two parameters: the maximum effect of the drug (εmax), and the drug

effect at which we achieve half the maximum effect (IC50). While both quantities are

needed to fully characterize the effectiveness of a drug, often only the IC50 is reported.

It has also been noted that the dose response curve, and therefore the estimates of IC50

and εmax, depend on the time at which the cell death measurement is made [10–13]. This

can lead to incorrect dosing when moving to animal and human studies [14–18] and
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might lead to the conclusion that the drug is ineffective or too toxic.

For this reason, new methods for quantifying the effectiveness of a

drug have been proposed and are being tested [11–13, 19–21].

One suggestion is to use tumor growth time courses, both

control and treated, along with a mathematical model of cancer

growth to extract estimates of the IC50 and εmax assuming that

the drug alters the growth rate of the tumor [20, 21]. The

experimental protocol for this can be implemented using either

traditional wells [21] or spherical organoids [22–24]. While this

method yields IC50 and εmax estimates that do not depend on

a particular measurement time, there are potential drawbacks to

using this method. One major concern is that there are several

different mathematical models that are used to describe cancer

growth [25–27]. Comparison of the models shows that they can

lead to very different predicted outcomes when used to simulate

tumors [25, 28]. Other studies have found that using different

tumor growth models can lead to different predictions of treatment

effectiveness [18, 20, 29]. Researchers have tried to determine

which of these models best describes cancer growth [30–35] with

results suggesting that the best model depends on the details of

the experiment [32, 33]. Since it is not clear which growth model

most accurately represents the growth of the cancer cells used in a

particular drug characterization experiment, we need to determine

whether the drug effectiveness parameters depend on the choice of

growth model.

The issue of how model structure affects the predictions

made by models is an issue encountered in many fields [36–

40]. Note that this is a slightly different question than how

uncertainty in experimental data affects model predictions and

parameter estimates which has been widely studied [41–43]. How

erroneous model structure affects parameter estimation is less

frequently addressed, although there have been some attempts to

understand how using incorrect model structure affects parameter

estimation [36, 44–46]. Some studies have examined the relative

contribution of model structure uncertainty to uncertainty in

parameter estimates and in resulting model predictions [47, 48],

although it is unclear whether the methods used to determine

these estimates are generalizable to other models and systems.

Suggestions have also been made on how to potentially deal with

model structure uncertainty, including the use of hybrid models

that incorporate measured data [49–51] or machine learning [52],

but this is not always feasible.

In this paper, we study the effect of growth model choice on

estimates of drug effectiveness parameters. We use seven common

ODE cancer growth models to generate data that is then fit by the

other models. We find that most of the models are interchangeable

and lead to similar estimates of IC50 and εmax, with the exception

of the Bertalanffy model, which leads to incorrect estimates of εmax.

We also find, however, that using this method to estimate other,

non-drug-related, parameters of the growth models can lead to

inaccurate estimates of these parameters.

2 Materials and methods

2.1 Generating tumor growth time courses

We used the seven commonly used cancer growth

ordinary differential equation models [25] shown

TABLE 1 ODE tumor growth models.

Model Equation

Exponential V̇ = aV

Mendelsohn V̇ = aVb

Logistic V̇ = aV

(

1−
V

b

)

Linear V̇ =
aV

(V + b)

Surface V̇ =
aV

(V + b)
1
3

Gompertz V̇ = aV ln
b

(V + c)

Bertalanffy V̇ = aV
2
3 − bV

V represents the tumor volume. a, b, and c describe are parameters that determine how

quickly the cells replicate.

TABLE 2 Model parameters.

Model a b c

Exponential 0.0262/day

Mendelsohn 0.286/day 0.616

Logistic 0.037/day 2, 000 mm3

Linear 58.7 mm3/day 1,690 mm3/day

Surface 0.265 mm/day 506 mm3

Gompertz 0.279/day 13, 900 mm3 12, 000 mm3

Bertalanffy 0.306 mm/day 0.0119/day

in Table 1. Brief explanations of each model are

given below:

• Exponential: in the early stages of tumor growth, cells divide

regularly, creating two daughter cells each time. A natural

description of the early stages of cancer growth is thus the

exponential model [53], where growth is proportional to the

population. This model predicts early growth very well, but is

known to fail at later stages when angiogenesis and nutrient

depletion begin to play a role [26, 33].

• Mendelsohn: the Mendelsohn model is a generalization of the

exponential growth model where growth is proportional to

some power of the current population [54]. This can help

account for different spatial geometries of cancer growth.

• Logistic: the logistic (or Pearl-Verhulst) equation was created

by Pierre Francois Verhulst in 1838 [55]. This model describes

the growth of a population that is limited by a carrying

capacity. The logistic equation assumes that the growth

rate decreases linearly with size until it equals zero at the

carrying capacity.

• Linear: we use a slightly modified version of a linear growth

model. This version assumes initial exponential growth that

changes to growth that is constant over time. A linear growth

model was used in early research to analyze growth of cancer

cell colonies [56].

• Surface: the surface model assumes only a thin layer of cells

at the surface of the tumor are dividing while the cells inside

the solid tumors do not reproduce [57]. Our formulation again
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assumes exponential growth at early times with the surface

growth taking over at longer times.

• Bertalanffy: the Bertalanffy equation was created by Ludwig

Bertalanffy as a model for organism growth [58]. This model

assumes that growth occurs proportional to surface area, but

that there is also a decrease of tumor volume due to cell

death. This model was shown to provide the best description

of human tumor growth [31].

• Gompertz: Benjamin Gompertz originally created the

Gompertz model in 1825 in order to explain human mortality

curves [59]. The model is a generalization of the logistic

model with a sigmoidal curve that is asymmetrical with the

point of inflection. The curve was eventually applied to model

growth in size of entire organisms [60] and more recently,

was shown to provide the best fits for breast and lung cancer

growth [33].

Model parameters were taken from fits to experimental data

[25] and are given in Table 2. These parameters are such that all

models had essentially the same time course over the first 60 days

of the tumor. Each of these models was used to generate several

synthetic data sets consisting of a control tumor time course and

five treated tumor time courses, each at a different concentration

of drug.

Chemotherapy is assumed to affect the growth rate of each

model and is modeled using the Emax model [61],

ε =
εmaxD

IC50 + D
,

where ε is the efficacy of the drug, εmax is the maximum efficacy

of the drug, IC50 is the drug dose at which half the maximum

effect is achieved, and D is the dose of the drug. Growth rate is

modified by multiplying the parameter a in each model by (1− ε).

We assume an εmax value of 1 and an IC50 of 1, which simply

means that we are measuring the drug dose relative to the IC50.

Drug dose is assumed to be constant over the entire course of the

experiment. Tumor time courses are simulated for 14 days, with

tumor volume measurements taken every 2 days (see Figure 1, top

left). We then added Gaussian noise to each data point at levels of

5%, 10%, and 20%. This was done by drawing a random number

from the distribution

f (x) =
1

√
2πσ 2

e
− x2

2σ2 , (1)

where we have assumed a mean value of 0, and σ is 5%, 10%, or

20% of the value of the data point. This number is then added to

the original data point. 10 synthetic data sets were generated for

each model at each of the three noise levels. Example data sets for

the exponential model are shown in Figure 1.

2.2 Fitting models to data

In order to test whether drug effectiveness measurements are

robust to incorrect model choice, each of the synthetic data sets was

fit using each of the growth models to extract estimates for model

parameters and for εmax and IC50. Fitting was done using Python’s

scipy.minimize function using the Nelder-Mead algorithm to

minimize the sum of squared residuals,

SSR =
∑

(ydata − yfit)
2,

where ydata is the synthetic data, and yfit is the model’s predicted

tumor volume. Bounds were used to limit the parameter space

when fitting and are given in Table 3. We used the base model

parameters as the initial guess when fitting. Note that while cancer

growth is exponential, our time courses are over a short time

period and the variation in tumor volume is less than an order

of magnitude. Parameter estimates retrieved from the model fits

for the 10 synthetic data sets for each of the seven models at each

noise level were compared to the expected values of the parameters.

Sample code for both generating and fitting the models is available

at https://github.com/hdobrovo/Efficacy_robustness.

We use the average relative error,

ARE = 100%×
1

N

N
∑

i=1

|θ0 − θi|
|θ0|

, (2)

where θ0 is the known parameter value, and θi is the estimated

parameter value. TheARE is used to judge practical identifiability of

parameters with rough guidelines as follows: if ARE(θ) < σ , where

sigma is the amount of added noise, the parameter is considered

identifiable; if σ < ARE(θ) < 10σ , the parameter is considered

weakly identifiable; and if 10σ < ARE(θ), the parameter is not

identifiable [38].

3 Results

3.1 Estimating drug e�cacy parameters

Since the primary motivation for this work is to determine

whether drug effectiveness parameter estimates are robust to the

choice of growth model, we first examine whether the growth

models were able to return the correct values of IC50 and εmax.

Figure 2 shows the estimated values of IC50 for synthetic data sets

generated with different cancer growth models. The title of each

plot indicates the model used to generate the synthetic data, while

the models used to fit the data are listed along the x-axis. The

expected value of IC50 (IC50 =1) is indicated by the solid red line.

The colored bars indicate the interquartile range of the estimates

with the error bars extending to the 95% confidence intervals,

estimated from the fitted parameter values. Stars indicate outlier

estimates. We also include the ARE values for IC50 in Table 4.

The columns indicate which model was used to fit the data, while

the horizontal headings indicate the model used to generate the

data. ARE values suggesting practical identifiability are given in

bold and those suggesting weak practical identifiability are given

in italics.

Data generated by the exponential model (Figure 2, top left)

and fit by other models returns IC50 values close to the expected

value when there is 5% or 10% noise. With 20% noise, most

of the models return IC50 estimates that are larger than the

expected value. The two exceptions are the Bertalanffy model,

which slightly underestimates the IC50 and the Gompertz, which
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FIGURE 1

An example of the synthetic data. (top left)We used the exponential model to generate a control and five treated tumor time courses. We then

added Gaussian noise of (top right) 5%, (bottom left) 10%, and (bottom right) 20%.

TABLE 3 Bounds used for model fitting.

Model a b c IC50 εmax

Exponential 10−3.5–10−0.5 10−1–10 10−2–10

Mendelsohn 10−2.5–100.5 10−2.5–100.5 10−1–10 10−2–10

Logistic 10−3.5–10−0.5 101.5–104.5 10−1–10 10−2–10

Linear 10−0.5–102.5 101.5–104.5 10−1–10 10−2–10

Surface 10−2.5–100.5 100.5–103.5 10−1–10 10−2–10

Gompertz 10−2.5–100.5 102.5–105.5 102.5–105.5 10−1–10 10−2–10

Bertalanffy 10−2.5–100.5 10−3.5–10−0.5 10−1–10 10−2–10

slightly overestimates the IC50. While the IC50 values are close to

the expected value, ARE indicates that IC50 is weakly practically

identifiable in almost all cases. Data generated by the Mendelssohn

model (Figure 2, top right) leads to fits that tend to slightly

overestimate IC50 at 5% noise, underestimate IC50 at 10% noise,

and return large values of IC50 at 20% noise. All models return

correct estimates of IC50 when fit to data generated by the logistic

model (Figure 2, second row left) with 5% noise. The models

start to overestimate the IC50 with 10% noise and with 20%

noise, the models are returning fairly large estimates of IC50.

Data generated with the linear model (Figure 2, second row right)

leads to fairly accurate estimates of IC50 when there is 5% noise,

tends to underestimate IC50 when there is 10% noise, and even

returns somewhat accurate IC50 estimates at 20% noise except for

the occasional outlier. The data generated by the surface model

(Figure 2, third row left) shows slightly more error in IC50 estimates

at the 5% noise level than does data generated by other models.

However, the error in IC50 at the 20% noise level is smaller than for

data generated by other models, although we observe some large

outlier estimates again. Data generated by the Bertalanffy model
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FIGURE 2

Estimated values of IC50. The title indicates the model used to generate the synthetic data, while the models along the x-axis indicate the model used

to fit the data. The solid red line indicates the expected value of IC50. The colored bars indicate the interquartile range of the estimates with the error

bars extending to the 95% confidence intervals. Stars indicate outlier estimates.
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TABLE 4 ARE values for IC50 for the di�erent models.

Noise Exponential Mendelsohn Logistic Linear Surface Gompertz Bertalan�y

Exponential data

5% 32.8 27.6 28.1 29.5 32.8 20.3 31.3

10% 91.8 78.0 76.0 86.6 89.1 62.2 89.0

20% 255 255 260 255 255 122 163

Mendelsohn data

5% 35.4 35.4 29.0 30.6 27.6 26.6 29,3

10% 36.4 34.9 42.0 36.6 35.4 22.3 37.9

20% 226 207 107 163 213 101 211

Logistic data

5% 25.3 16.6 23.9 21.4 23.7 14.4 23.5

10% 58.7 58.6 61.6 51.8 56.6 43.9 49.6

20% 336 276 272 256 253 260 158

Linear data

5% 31.6 25.6 23.5 27.7 30.7 5.83 26.9

10% 42.8 46.3 46.1 39.9 42.3 37.6 37.7

20% 156 146 80.0 150 145 57.9 195

Surface data

5% 43.9 40.2 42.1 40.2 34.8 14.7 40.8

10% 78.2 71.5 63.6 66.1 72.3 37.3 68.3

20% 128 131 116 111 126 92.0 116

Gompertz data

5% 40.3 40.8 41.8 35.0 35.8 27.2 28.2

10% 79.4 68.1 67.2 61.0 73.0 59.9 40.1

20% 152 155 69.2 145 153 68.3 68.8

Bertalan�y data

5% 25.1 31.6 26.5 29.6 27.0 28.8 23.2

10% 38.8 31.6 31.1 34.5 37.9 62.2 34.0

20% 97.1 97.9 87.3 90.5 94.1 40.9 78.2

ARE values suggesting practical identifiability are given in bold and those suggesting weak practical identifiability are given in italics.

(Figure 2, third row right) also leads to IC50 estimates with small

amounts of error, even at the 20% noise level, although the IC50 is

generally underestimated at the 10% and 20% noise levels. Finally,

data generated by the Gompertz model (Figure 2, bottom) leads to

fairly consistent estimates of IC50, although there are some large

outlier estimates when there is a large amount of noise.

While IC50 is the quantity most often used to characterize

the effectiveness of chemotherapy, εmax is also needed to fully

describe a dose-response curve. We show the estimated values of

εmax in Figure 3, where again the model used to generate the data is

indicated in the title, while themodel used to fit the data is indicated

along the x-axis. The expected value of εmax is indicated by the solid

red line and stars indicate outlier estimates. We also include the

ARE values for εmax in Table 5. The columns indicate which model

was used to fit the data, while the horizontal headings indicate the

model used to generate the data. ARE values suggesting practical

identifiability are given in bold and those suggesting weak practical

identifiability are given in italics.

We first note that when the Bertalanffy model is used to fit data,

no matter which model was used to generate the data, the estimated

values of εmax tend to be different from the estimates generated

by fits using the other models, which also results in higher values

of ARE. When the Bertalanffy model is used to generate the data,

using other models to fit the data leads to overestimation of εmax.

This is quite different from what we observe for estimated values of

IC50, where no particular model seemed to stand out either when it

was used to generate data or when it was used to fit data. The other

model that stands out somewhat is the Gompertz model. When

the Gompertz model is used to generate the data, the remaining

models tend to underestimate the correct value of εmax at high

levels of noise. The remaining models return similar results when

used for generating data and for fitting to return the εmax estimates.
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FIGURE 3

Estimated values of εmax. The title indicates the model used to generate the synthetic data, while the models along the x-axis indicate the model used

to fit the data. The solid red line indicates the expected value of εmax. The colored bars indicate the interquartile range of the estimates with the error

bars extending to the 95% confidence intervals. Stars indicate outlier estimates.
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TABLE 5 ARE values for εmax for the di�erent models.

Noise Exponential Mendelsohn Logistic Linear Surface Gompertz Bertalan�y

Exponential data

5% 10.5 9.84 9.78 9.92 10.2 9.30 40.0

10% 10.5 10.3 9.10 10.0 10.2 9.60 32.4

20% 18.7 19.7 17.2 18.4 18.4 14.5 36.8

Mendelsohn data

5% 10.7 10.6 9.96 10.3 11.0 10.7 18.1

10% 12.7 12.7 11.0 11.8 12.5 9.88 12.5

20% 17.7 17.1 10.2 17.9 17.1 9.89 35.3

Logistic data

5% 7.02 7.18 6.59 6.28 6.68 6.54 30.2

10% 13.3 12.1 9.93 12.3 12.8 9.27 48.5

20% 33.7 29.7 24.5 29.0 29.0 19.3 53.2

Linear data

5% 9.74 9.39 8.71 9.65 9.51 8.95 22.7

10% 15.6 15.3 14.8 14.5 15.1 14.4 32.7

20% 13.9 12.7 10.0 12.5 12.5 7.22 49.9

Surface data

5% 9.66 9.39 9.02 9.10 9.83 9.64 25.5

10% 14.7 14.3 11.7 13.5 14.3 12.1 51.2

20% 18.8 19.3 18.2 17.2 18.5 18.5 32.0

Gompertz data

5% 9.59 9,28 8.92 9.04 9.05 10.2 31.4

10% 10.6 10.2 9.59 9.13 10.2 9.81 20.0

20% 22.1 21.5 19.3 19.8 21.3 18.9 35.5

Bertalan�y data

5% 21.1 20.8 21.2 20.3 20.7 20.5 36.4

10% 17.9 15.4 14.8 16.4 16.8 14.2 47.8

20% 24.0 23.9 21.0 21.9 23.0 17.1 40.0

ARE values suggesting practical identifiability are given in bold and those suggesting weak practical identifiability are given in italics.

ARE values for εmax are notably lower than for IC50, with many

parameters being practically identifiable at least in some cases.

3.2 Estimating base model parameters

When fitting models to data, we also fit the model parameters

(a, b, and c) along with the drug efficacy parameters IC50 and

εmax. Thus we also checked whether our fits returned the correct

values for these model parameters. Recall that the parameter values

we used produce nearly identical untreated tumor growth curves

regardless of which model is used to generate the data. The

expectation then is that we will retrieve our original parameter

values when we fit the data using a particular model, even when that

model was not used to generate the data. Figures 4, 5 show the fitted

parameter estimates when different models were used to generate

the underlying data. Note that in these figures, the title indicates

the model that was used to fit the data while the model used to

generate the data is indicated along the x-axis. Figure 4 shows the

results for the a parameter of each model and Figure 5 shows the

results for the b (and c for the Gompertz model) parameters. We

also include the ARE values for a in Table 6 and for b and c in

Table 7. The columns indicate which model was used to generate

the data, while the horizontal headings indicate the model used to

fit the data. ARE values suggesting practical identifiability are given

in bold and those suggesting weak practical identifiability are given

in italics.

Interestingly, even when the same model is used to both

generate the data and subsequently fit the data, we do not always

get the correct parameter values. For example, the Mendelssohn

model tends to underestimate its own a parameter, but overestimate

its own b parameter, particularly at the 5% and 10% noise levels.
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FIGURE 4

Estimated values of model parameters. The x-axis indicates the model used to generate the synthetic data, while the titles indicate the model used to

fit the data. The solid red line indicates the expected value of the parameter. The colored bars indicate the interquartile range of the estimates with

the error bars extending to the 95% confidence intervals. Stars indicate outlier estimates.
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FIGURE 5

Estimated values of model parameters. The x-axis indicates the model used to generate the synthetic data, while the titles indicate the model used to

fit the data. The solid red line indicates the expected value of the parameter. The colored bars indicate the interquartile range of the estimates with

the error bars extending to the 95% confidence intervals. Stars indicate outlier estimates.
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TABLE 6 ARE values for a parameter for the di�erent models.

Noise Exponential Mendelsohn Logistic Linear Surface Gompertz Bertalan�y

Exponential fit

5% 4.99 24.3 21.8 14.0 10.2 33.0 31.5

10% 6.95 32.6 22.1 18.8 7.74 30.5 31.3

20% 13.3 17.3 16.7 26.3 17.3 36.4 39.3

Mendelsohn fit

5% 582 273 549 466 386 353 445

10% 362 274 672 442 446 366 723

20% 262 390 715 552 223 461 369

Logistic fit

5% 35.6 42.3 30.1 35.7 38.4 34.4 17.7

10% 97.6 81.1 143 14.8 127 40.2 111

20% 99.2 236 145 10.1 58.3 128 56.8

Linear fit

5% 227 281 169 291 207 281 141

10% 249 251 183 297 144 249 257

20% 354 226 230 226 326 255 332

Surface fit

5% 41.8 60.1 28.4 45.6 42.5 66.3 26.6

10% 37.5 78.9 39.2 41.3 42.2 55.7 38.0

20% 43.7 46.3 42.9 48.0 50.2 66.5 57.1

Gompertz fit

5% 290 362 175 235 269 246 236

10% 284 180 282 130 401 226 298

20% 347 383 317 397 226 293 256

Bertalan�y fit

5% 60.0 20.8 57.7 34.3 61.4 65.6 61.6

10% 144 15.4 25.1 75.5 192 41.8 232

20% 132 146 312 236 123 146 170

ARE values suggesting practical identifiability are given in bold and those suggesting weak practical identifiability are given in italics.

The Gompertz model also tends to overestimate its own b and c

values. ARE values suggest that many of these parameters are not

identifiable, particularly the b and c parameters.

Some parameters appear to be more easily identifiable and

robust to model choice, as indicated by the small error bars.

Examples of these are the a parameters of the exponential,

surface, and Bertalanffy models, as well as the b parameter of

the Mendelssohn model. The ARE values for these parameters

are also more likely to be at least weakly practically identifiable

than other model parameters. Other parameters are difficult to

identify with any sort of accuracy. Examples of these are the a

parameter of the linear model and the b parameters of the logistic,

linear, surface, and Bertalanffy models. The large error in the

estimates of the b parameter of so many models might be due to

the short duration of the data set. The b parameters in many of

the models are determined by behavior at long time scales. For

example, b is the carrying capacity of the logistic model and sets

the maximum tumor size. Since the data set is not approaching the

maximum size, there isn’t sufficient information to determine these

parameters accurately.

Perhaps one of themost interesting results is for the exponential

model. Since the data is only taken over 14 days, a relatively

short time frame even compared to the time constant for the

exponential model (about 38 days), growth of the tumor should be

well approximated by an exponential model. However, when using

the exponential model to fit data generated by other functions,

we find that we over-estimate the true growth rate (Figure 4, top

left). A similar issue is observed with the estimated values of the

a parameter of the logistic model, another commonly-used model

for tumor growth. The a parameter for the logistic model also

represents the exponential growth rate since the tumor sizes here

are small compared to the carrying capacity. For the logistic model,
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TABLE 7 ARE values for b and c parameters for the di�erent models.

Noise Exponential Mendelsohn Logistic Linear Surface Gompertz Bertalan�y

Mendelsohn fit

5% 88.6 83.7 61.3 93.4 89.5 77.0 60.8

10% 83.2 103 76.9 89.8 73.9 85.4 79.9

20% 106 80.3 97.2 102 114 102 113

Logistic fit

5% 635 908 478 917 763 677 766

10% 774 1,060 493 776 469 766 620

20% 1,200 236 780 636 1,200 888 1,060

Linear fit

5% 294 293 184 337 256 275 143

10% 349 241 201 326 167 251 257

20% 480 261 266 226 378 236 298

Surface fit

5% 308 346 173 275 268 355 126

10% 251 395 217 226 182 307 227

20% 397 270 227 219 354 312 272

Gompertz fit (b)

5% 723 509 549 241 201 907 147

10% 613 312 555 484 58.6 709 371

20% 913 574 270 480 1,370 1,160 929

Gompertz fit (c)

5% 509 416 366 79.6 38.9 690 111

10% 202 113 338 206 54.2 225 102

20% 464 300 154 354 735 641 303

Bertalan�y fit

5% 242 213 189 109 214 259 241

10% 546 97.3 873 286 785 162 901

20% 493 560 1,230 912 457 589 674

ARE values suggesting practical identifiability are given in bold and those suggesting weak practical identifiability are given in italics.

the true value is usually within the 95% CI, but most estimates are

higher than the true value.

4 Discussion

We used synthetic data generated with seven different cancer

growth models to assess the robustness of estimates of IC50 and

εmax to the incorrect choice of growth model. We found that IC50

estimates were fairly robust to the choice of growth model, with

accuracy of the estimate being determined more by the amount

of added noise than by choice of growth model. εmax, however,

did show some dependence on the choice of growth model. In

particular, when the Bertalanffy model was used to fit synthetic

data generated by other models, it generally underestimated the

correct value of εmax. When the synthetic data was generated by

the Bertalanffy model, the other models overestimated the correct

value of εmax. Note, however, that while we get consistent parameter

estimates with most of the growth models, the parameters are

mostly only weakly identifiable with these measurements.

It is not clear why the Bertalanffy model is an outlier in this

study. The Bertalanffy model is able to fit cancer growth curves

about as well as the other models [25, 33–35, 62, 63]. although

it sometimes gives outlier predictions when chemotherapy is

incorporated into the model [10, 28]. A possible reason for this

is the mathematical formulation of the model (see Table 1). The

Bertalanffy model assumes that there is a necrotic core whose size

grows along with the tumor. The growth rate of the necrotic core is

determined by the parameter b. When we apply the chemotherapy

in our model, it is applied solely to the parameter a, so the growth

of living tumor cells is slowed, but the growth of the necrotic core

is not. This is different from all the other models where applying
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the drug to the parameter a reduces growth of the entire tumor

since the other models do not include the assumption of some

non-replicating cells. In this way, the volume predicted by the

Bertalanffy model might actually shrink faster than other models

(the term bV is negative and reduces the volume) than the volume

predicted by other models, making it hard for the other models to

correctly replicate this dynamic.

We also examined whether the untreated model parameter

values (a, b, and c) were robust to model choice. We found that

a mismatch between the generating model and the fitting model

often leads to incorrect parameter estimates. In particular, the

two most commonly used models, the exponential and logistic

models [33, 62], overestimate the tumor growth rate when other

models are used to generate the data. In reality, tumor growth

is complex and most likely does not strictly follow either of

these models, so when using exponential or logistic models to fit

this data, researchers might be overestimating the growth rate. If

modeling is being used to help personalize treatment for patients

[64–67], this overestimation could have serious implications. A

higher growth rate requires higher doses of chemotherapy, which

could cause worse side effects for patients [68]. Some of the

estimation error could be due to the type of data set used here.

The data used for fitting included not only untreated tumor growth

curves, but also treated tumor growth curves where the treatment

was assumed to affect the growth rate. It’s possible that using

only the untreated growth curve will yield more accurate growth

rate estimates.

We also found that several of the model parameter values were

not really identifiable, as indicated by the large 95% confidence

intervals. These tended to be parameter values that played a role

in determining tumor growth over long time frames. This is

not particularly surprising since our data sets were taken over

a fairly short period of time. Such short duration data sets are

not uncommon in cancer studies for a variety of reasons. In

vitro studies often do not provide data for more than two weeks

since cells tend to die after that time [21]. Small animal models

also often cannot support tumor growth for longer than two or

three weeks. This suggests that many available pre-clinical data

sets are not long enough to accurately identify some of these

parameters. For the purposes of using mathematical modeling to

personalize treatment plans, often the untreated tumor growth

curve is over a short time period [18, 65], and this is used to

make predictions on possible treatment plans. This short time

span could potentially lead to inaccurate parameter estimates that

result in poor prediction of long-term treatment outcomes. These

inaccuracies could be amplified by some of the issues faced in

trying to translate parameter and/or growth model results from

in vitro studies to in vivo animal studies and then to humans

[14–18].

In addition to the short time span of the collected data, there are

a number of simplifying assumptions made here that complicate

parameter identifiability for in vivo systems. While maintaining

a constant drug dose is possible for in vitro studies, modeling

of in vivo studies will need to consider the pharmacokinetics of

the drug [69, 70]. One study examined whether it was possible

to model a time-varying drug concentration with a constant

drug dose [71], finding that this was a reasonable assumption

particularly at smaller doses. While that study examined treatment

of a viral infection, it is likely also a reasonable assumption for

treatment of cancer, particularly because cancer growth is typically

on a slower time scale than the oscillations of the drug. An

additional difficulty is that chemotherapy often has a number

of effects on the tumor and it is not clear that modeling the

effect of the drug as solely acting on the growth rate is a correct

assumption [20, 72]. Further complicating the measurements done

in vivo is the fact that tumors are heterogeneous and the cells

contained within the tumor can respond differently to the drug

[73]. There are also measurement factors for in vivo systems that

impact parameter identifiability [74–77]. For example, there is

often censored data — measurements below a certain threshold

that cannot be accurately measured — that is discarded when

fitting, which has been shown to affect parameter estimates [74].

The frequency of measurements [77] and the amount of noise

in the measurements [77] also have a significant impact on our

ability to identify model parameters. Finally, using proxy data, such

as measurements of prostate-specific antigen, rather than direct

measurements of the tumor volume also hampers our ability to

properly identify model parameters [76].

5 Conclusion

This study has determined that using short time courses

of tumor growth curves treated with different amounts

of drug to estimate drug efficacy parameters leads to

consistent estimates of IC50 and εmax for most tumor

growth models, although they are mostly weakly practically

identifiable. Estimation of the other model parameters using

this data is generally not very accurate and could lead to

overestimation of the growth rate and poor predictions of

long-term behavior.
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