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Rabies is a fatal zoonotic disease caused by a virus, primarily spread through

bites or saliva. Dogs are the main source of human infections worldwide.

This article introduces a new mathematical model using fractional di�erential

equations to analyze rabies transmission dynamics. The model consists of

four compartments: susceptible and infected populations of both humans and

animals, forming a system of fractional di�erential equations (SOFDEs). The

modified Hermite wavelet collocation method (HWCM) is used to solve these

equations by converting them into a non-linear algebraic system. Newton-

Raphson’s approach determines the unknown Hermite coe�cients, and the

results are compared with ND Solver and RK4 methods. Visual and numerical

analysis confirms the proposed method’s superior accuracy and e�ectiveness.
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1 Introduction

Dogs are the primary carrier of most human cases of rabies worldwide. Rabies is an

acute and deadly zoonotic virus illness that primarily affects all species of mammals and

other animals [1]. Animal saliva is the primary reservoir for the rabies virus, although

it can also be detected in tears, semen, urine, and other bodily fluids [2]. Once clinical

symptoms appear, there is no doubt about the virus’s death rate since it affects the central

nervous system and causes cerebral dysfunction in the brain [3]. Furthermore, with a

case fatality rate that is almost 100%, rabies has the highest of all traditional infectious

diseases. Humans contract rabies mostly from dogs, and the disease is primarily spread by

dog bites or scratches, particularly from infected dogs [4]. Direct contact with a wound or

mucosal surface (such as the nose, mouth, or eye) infected with a rabid dog’s saliva can also

spread rabies. Rabies can be transmitted by aerosols or tissue and organ transplantation in

humans and other species. Early rabies symptoms include fever with discomfort, tingling,

sore throat, hypersalivation, cough, vomiting, nausea, and burning sensation or prickling

(paraesthesia) at the site of an animal bite. These symptoms are similar to the flu [5].

Subsequently, when the virus spreads throughout the central nervous system, a deadly

and progressive inflammation of the brain and spinal cord occurs, leading to paralysis and

hyperactivity. Most rabies cases in humans and dogs occur during incubation, the interval

between exposure to the virus and the onset of symptoms. However, this interval can vary,

ranging from 1 week to a year, contingent on variables such as the site of virus entry and

viral load [6]. The incubation period may extend to 7 years in severe circumstances [7, 8].
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Except in Antarctica and the Arctic, rabies is still a very deadly

disease that affects practically every country in the world to varied

degrees. The natural seclusion of islands such as the Seychelles,

Australia, New Zealand, and Mauritius is beneficial. A teenage kid

in Wisconsin managed to survive rabies in 2004, although the

reasons for this positive outcome are still unknown. Every year,

rabies causes between 50,000 and 60,000 deaths, as well as 1.74

million DALYs (disability-adjusted life years) to be lost [9, 10]. Over

99% of these fatalities take place in underdeveloped nations where

the disease is widespread in the population of domestic dogs. The

World Health Organization (WHO) classifies rabies as a “100%

vaccine-preventable disease” [11]. Caroll et al. recognized the

three most popular rabies control methods as population control,

dog mass vaccination, and epidemiological surveillance [12].

Immediate wound cleaning with soap and water following contact

with a suspected rabid animal is one of the additional preventive

strategies against rabies [13]. There are vaccinations for treating

rabies that can be given either before or after exposure and are

developed from different types of tissue culture or chicken embryos.

Cultural, societal, and economic aspects make it difficult to control

the disease, even with annual treatment and control costs exceeding

500 million [14]. Due to the extensive international mobility of

animals and people, it seems inevitable that rabies will continue

to be brought into nations that have never before experienced the

disease [15].

Studying the mathematical model of rabies is crucial for several

reasons:

Understanding disease dynamics: Mathematical models help

researchers understand how rabies spreads through populations,

including factors such as transmission rates, infection cycles,

and the impact of various interventions. This understanding is

essential for predicting outbreaks and planning effective responses.

Optimizing control strategies: Models can simulate different

control strategies, such as vaccination campaigns, quarantine

measures, or changes in wildlife management. By analyzing

these simulations, public health officials can determine the most

cost-effective and efficient approaches to control and eventually

eliminate rabies. Resource Allocation: Mathematical models can

help allocate resources effectively. For instance, they can predict

the number of vaccines needed in different regions and times,

ensuring that limited resources are used where they are most

needed to prevent outbreaks. Predicting outbreaks: Models can

forecast the likelihood of future rabies outbreaks based on current

data and trends. This predictive capability is critical for preparing

and implementing preventive measures before an outbreak occurs.

Evaluating intervention impact: By using models to simulate

the impact of various interventions, researchers can assess their

effectiveness in reducing the incidence of rabies. This helps fine-

tune strategies and make data-driven decisions to improve public

health outcomes. Informing policy decisions: Policymakers can

use insights frommathematical models tomake informed decisions

about rabies control policies, such as vaccination requirements

for pets or wildlife management practices. Educational and

training tools: Mathematical models can serve as educational

tools for training public health professionals, veterinarians, and

researchers, helping them to understand the complexities of disease

transmission and control. Addressing emerging challenges: As

new challenges arise, such as changes in animal populations

or human behavior, mathematical models can be adapted to

address these issues and provide updated recommendations for

rabies control.

Mathematical models are invaluable for enhancing our

understanding of rabies and improving our ability to control and

prevent this potentially fatal disease.

Fractional calculus is a branch of mathematical analysis

that extends the concept of integer-order differentiation and

integration to non-integer (fractional or real) orders. Unlike

classical calculus, which deals with derivatives and integrals of

integer orders, fractional calculus provides a more generalized and

flexible framework to describe complex dynamical systems with

memory effects, hereditary properties, and anomalous diffusion.

The origins of fractional calculus date back to the 17th century

when Leibniz and L’Hospital first discussed the possibility of

taking derivatives of non-integer orders. However, significant

developments occurred only in the 19th and 20th centuries with

the formalization of fractional derivatives and integrals through

various definitions, including the Riemann-Liouville, Caputo, and

Grunwald-Letnikov approaches. Fractional calculus has gained

widespread applications in diverse scientific and engineering

disciplines due to its ability to describe real-world phenomenamore

accurately than classical integer-order models. Some key reasons

for its importance include the following: Memory and non-local

effects: Many natural and engineering systems exhibit memory-

dependent behaviors, where past states influence the current

dynamics. Fractional derivatives inherently account for such

memory effects. Generalization of classical models: Fractional

differential equations are a natural extension of traditional

differential equations, offering greater flexibility in modeling

complex systems. Anomalous diffusion and power-law behavior:

Many physical and biological processes, such as viscoelasticity, fluid

mechanics, and epidemiology, exhibit anomalous diffusion, which

is best captured using fractional-order models.

Joseph Fourier’s findings in the early 1800s state that sines

and cosines could be used to create a variety of functions

revolutionized mathematical analysis. As a result of this finding,

techniques for approximating extra functions by superimposing

distinct functions were developed. Sines and cosines might be

a better choice for estimating noisy signals, even if necessary

to create Fourier analysis. For this reason, mathematicians have

been looking for more efficient methods of approximating these

signals. Note that these functions have limitless extensions because

they are non-local. As a result, they are unable to represent

sharp spikes accurately. Wavelet theory is one intriguing and

recent advancement in mathematics. Wavelet numerical methods

have become increasingly popular in various fields due to their

versatility and effectiveness in handling complex problems. Here

is an overview of the scope and applications of wavelet numerical

methods: Wavelets decompose signals into different frequency

components, which can be useful for noise reduction and signal

reconstruction. Techniques such as JPEG2000 use wavelets for

image compression, offering better quality and compression ratios

than traditional methods. Wavelets help in removing noise from

images while preserving important features and edges. Wavelet

methods can solve PDEs by providing efficient and adaptive
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representations of solutions. This is particularly useful in problems

involving irregular domains and helps create adaptive meshes that

refine only where necessary, improving computational efficiency

and accuracy. They are used to construct mathematical models

requiring multi-resolution analysis, providing a powerful tool for

studying complex phenomena across scales. Wavelets are used

in financial modeling to analyze price movements and volatility,

helping assess and predict risk. With this, wavelet numerical

methods are notable for their ability to handle data with varying

degrees of smoothness and discontinuities, making them highly

effective across various applications. Their versatility and ability to

provide both time and frequency domain information make them

a valuable tool in modern computational techniques.

Wavelet numerical methods leverage wavelet transforms

to solve various numerical problems, particularly differential

equations, signal processing, and data analysis. Wavelet numerical

methods are used to solve partial differential equations (PDEs) and

other complex differential equations more efficiently. They provide

a flexible approach to handling problems with variable coefficients

and irregular domains. For instance: Wavelet Galerkin methods:

These methods use wavelet bases to approximate solutions to

differential equations. They offer advantages in terms of accuracy

and convergence rates. Wavelet collocation methods: These

methods approximate solutions by collocating the equations at

specific points using wavelets, which can effectively handle irregular

domains and boundary conditions. Wavelet methods can improve

the stability and accuracy of numerical algorithms, especially

for problems with sharp gradients or discontinuities. They offer

a way to handle irregularities and singularities more effectively

than traditional methods. Wavelet numerical methods are versatile

and can be adapted to various problems and applications. Their

flexibility in handling different data types and domains makes them

a valuable tool in theoretical and applied contexts. In addition,

these methods enhance the efficiency, accuracy, and flexibility

of numerical computations. Their ability to handle multiscale

data, adapt to different problem characteristics, and improve

computational performance makes them essential in modern

numerical analysis and scientific computing. Numerous fields have

seen its application, including biology, time-frequency analysis,

signal analysis for waveform segmentation and representation, and

straightforward, quick implementation methods. The introduction

of wavelet theory in the mid-1980s significantly impacted applied

and pure mathematics. In the past 30 years, wavelet techniques

for the numerical approximation of differential equations (DE)

have attracted much attention due to their orthogonality, compact

support, etc. Numerous wavelet techniques can be used to solve

DE numerically. For instance, Lepik et al. [16, 17] investigated

the numerical solution of DE by the Haar wavelet technique.

Yeshwanth et al. investigated the Chlamydia transmission using the

HWM [18], and Darweesh et al. solved Fredholm integro DE using

the Haar wavelet method [19]. Manohara et al. employed Bernoulli

wavelets on [20] biological models; Shiralashetti et al. employed

Laguerre wavelets [21] to resolve a differential equation system;

Preetham et al. addressed Bernoulli wavelet method for the flow of a

viscous fluid [22].WhileMulimani developed the solutions of brain

tumormodel [23], Mishra et al. employed the Taylor wavelet [24] to

non-linear singular value concerns. Yeshwanth et al. examined the

smoking model [25] using the Haar wavelet collocation approach.

Kumbinarasaiah et al. used the HWM to discuss the impact of

global warming [26]. Marriage divorce model through modified

Hermite wavelet [27]. Since rabies is a fatal viral disease, studying it

with the help of Mathematical models gives a clear understanding

of the spread of the disease. Traditional integer-order models often

fail to capture long-term memory effects and delayed responses

in epidemiological systems. Rabies exhibit a prolonged incubation

period, requiring a more flexible modeling approach that accounts

for historical dependence. Fractional-order models provide a

better fit to real-world epidemiological data, improving prediction

accuracy and intervention planning. Understanding the impact of

fractional derivatives on stability, equilibrium points, and control

measures is crucial for effective rabies management strategies. The

obtained results are contrasted with the RK4 solution, the ND

Solver, and the Haar wavelet method (HWM). The recommended

plan provides the most straightforward and effective approach to

fixing FDEs. Since no one has used HWCM to examine these

models in the literature study, we are motivated to investigate this

model utilizing the available approaches. This article is organized

as follows: The model’s formulation and definition of Fractional

derivative and Hermite wavelet are covered in Section 2. Hermite

wavelet OMI and convergence analysis, uniqueness, and existence

of solution are performed in Section 3. The method for solving

this problem is presented in Section 4, and the application of the

proposed scheme is explained in Section 5. The article is concluded

in Section 6.

2 Model formulation, preliminaries of
Hermite wavelets, and Fractional
derivative

The mathematical model of Rabies has two populations:

human and animal populations. The human and animal

populations are further divided into two sub-populations at

time t: susceptible human population S(t), infected human

population I(t), susceptible animal population U(t), and infected

animal population V(t). The following system of differential

equations represents the model,

D
β
τ S(τ ) = λ− bS I − cS V − dS ,

D
β
τ I(τ ) = bS I − (d + e)I ,

D
β
τ U(τ ) = 3− g U V − hU ,

D
β
τ V(τ ) = g U V − iV ,



















(1)

with initial data, S[0] ≥ 0, I[0] ≥ 0, U[0] ≥ 0, V[0] ≥ 0.

Figure 1 shows the flow of dependent variables of the rabies model

(Equation 2.1). Table 1 explains the model’s parameter values. The

susceptible human population S(t) is increasing at a rate birth rate

(λ) and decreasing at an infection rate of susceptible humans due to

infected humans and animals (b & c) and natural death rate (d). The

infected human population I(t) is increasing at an infection rate of

susceptible humans due to infected humans (b) and decreasing due

to natural death rate and death rate due to infected humans (d &

e). Similarly, the susceptible animal population U(t) is increasing

at a production rate (3) and decreasing due to the infection rate
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FIGURE 1

Rabies model flowchart.

TABLE 1 Overview of the rabies model’s parameters.

Parameter Description

λ Birth rate of humans

b Infection rate of susceptible humans due to infected humans

c Infection rate of susceptible humans due to infected animals

d Natural death rate of susceptible humans

e Death rate of Infected humans

3 Production rate of animals

g Infection rate of susceptible animals

h Natural death rate of susceptible animals

i Death rate of Infected animals

of susceptible animals and the natural death rate of susceptible

animals (g & h). The infected animal population V(t) is increasing

at an infection rate of susceptible animals (g) and decreasing due to

the death rate of infected animals (i).

Definition 1. The Riemann-Liouville’s fractional integral of g ∈ Cµ
of the order δ ≥ 0 defined as,

Qβs =

{

g(s) if δ = 0
1

Ŵ(β)

∫ s
0 (s− t)β−1g(t)dt if δ > 0.

The gamma function is indicated here by the symbol Ŵ where Cµ is

continuous linear space.

Definition 2. The Caputo fractional derivative of g(s) ∈ Cµ is

defined as [28]:

∂βg(s)

∂sβ
=

1

Ŵ(q− β)

∫ s

0
(s− t)q−β−1g(q)(t)dt

for q − 1 < β ≤ q, q is any positive integer, s > 0, g(s) ∈ C
q
µ,µ ≥

−1. C
q
µ is continuous linear space containing gq(s).

A single translated and dilated function known as the mother

wavelet is the basis of a family of functions known as wavelets.

When the dilation parameter a and translation parameter b

fluctuate continuously, we have the following family of continuous

wavelets:

ϕa,b(y) = |a|−
1
2 ϕ

( y− b

a

)

, ∀a, b ∈ R, a 6= 0.

Parameters a and b can have only discrete values if they are

restricted to a = a−k
0 , b = nb0a

−k
0 , a0 > 1, and b0 > 0. This is the

family of discrete wavelets we have,

ϕk,n (x) = |a|−
1
2 ϕ (ak0x− nb0), ∀a, b ∈ R, a 6= 0,

The wavelet basis for L2(R) is formed by ϕk,n. Specifically, ϕk,n (y)

forms an orthonormal basis when a0 = 2 and b0 = 1.

Definition 3. Hermite wavelets are defined as [29],

ϕn,m (y) =







2
k+1
2√
π
Hm (2ky− 2n+ 1), n−1

2k−1 ≤ y < n
2k−1

0, otherwise
(2)

where m ranges from 0 to M − 1. In this instance, the Hermite

polynomialsHm(y) satisfy the recurrence formula and have degree

m for the weight function W(y) =
√

1− y2 on the real line R.

H0 (y) = 1,H1 (y) = 2y, Hm+2 (y) = −2(m+ 1)Hm+1 (y).

3 Operational matrix of integration
(OMI)

The Hermite wavelets OMI for k = 1 and M = 6 is shown in
this section. The following lists the six basis functions on [0, 1):

ϕ1,0 (t) = 2√
π
,

ϕ1,1 (t) = 2√
π
(4 t − 2),

ϕ1,2 (t) = 2√
π
(16 t2 − 16 t + 2),

ϕ1,3 (t) = 2√
π
(64 t3 − 96 t2 + 36 t − 2),

ϕ1,4 (t) = 2√
π
(256 t4 + 512 t2 + 320 t2 − 64 t + 2),

ϕ1,5 (t) = 2√
π
(1024 t5 − 2560 t4 + 2240 t3 − 800 t3 + 100 t − 2).























































(3)

by using the collocation points ti = 2 i−1
2kM

, where i =
1, 2, . . . , 2k−1 M. The corresponding H can be represented as

follows by collocating the base functions with the collocation above

points:

H =























2√
π

2√
π

2√
π

2√
π

2√
π

2√
π

− 10
3
√
π

− 2√
π

− 2
3
√
π

2
3
√
π

2√
π

10
3
√
π

14
9
√
π

− 2√
π

− 34
9
√
π

− 34
9π − 2√

π
14

9
√
π

290
27
√
π

10√
π

106
27
√
π

− 106
27
√
π

− 10√
π

− 290
27
√
π

− 2206
81
√
π

2√
π

1730
81
√
π

1730
81
√
π

2√
π

− 2206
81
√
π

− 9850
243

√
π

− 82√
π

− 9362
243

√
π

9362
243

√
π

82√
π

9850
243

√
π























Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2025.1544002
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Yeshwanth et al. 10.3389/fams.2025.1544002

Integrate Eqn. 3 with respect to t between 0 and t. We obtain

∫ t
0 ϕ1,0 (t) = 2√

π
t,

∫ t
0 ϕ1,1 (t) = 2√

π
(2t2 − 2t),

∫ t
0 ϕ1,2 (t) = 2√

π
(16t3 − 8t2 + 2t),

∫ t
0 ϕ1,3 (t) = 2√

π
(16t4 − 32t3 − 18t2 − 2t),

∫ t
0 ϕ1,4 (t) = 2√

π
( 2565 t5 − 128t4 + 320

3 t3 − 32t2 + 2t),

∫ t
0 ϕ1,5 (t) = 2√

π
( 5123 t6 − 512t5 + 560t4 − 800

3 t3 + 50t2 − 2t).



























































(4)

To obtain the first OMIH
′
, collocate Equation 4.

H
′
=























1
6
√
π

1
2
√
π

5
6
√
π

7
6
√
π

3
2
√
π

11
6
√
π

− 11
6
√
π

− 3
4
√
π

− 35
36
√
π

− 35
36
√
π

− 3
4
√
π

− 11
36
√
π

37
162

√
π

1
6
√
π

− 55
162

√
π

− 161
162

√
π

− 3
2
√
π

253
162

√
π

517
648

√
π

21
8
√
π

2485
648

√
π

2485
648

√
π

21
8
√
π

517
648

√
π

− 6869
2430

√
π

− 49
10
√
π

− 1325
486

√
π

2737
2430

√
π

33
10
√
π

2981
2430

√
π

− 10241
8748

√
π

− 51
4
√
π

− 207305
8748

√
π

− 207305
8748

√
π

− 51
4
√
π

− 10241
8748

√
π























Similarly, OMI is as follows forM = 2 and k = 2,

ϕ1,0 (t) = 2√
π
,

ϕ1,1 (t) = 4
√

2
π
(−1+ 4 t),

ϕ2,0 (t) = 2√
π
,

ϕ2,1 (t) = 4
√

2
π
(−3+ 4 t).



































(5)

by using the collocation points xi = 2 i−1
2kM

, where

i = 1, 2, . . . , 2k−1 M. Collocating the basis functions with the

collocation points as follows will yield an expression for H as

follows:

H =

















2
√

2
π

2
√

2
π

0 0

−2
√

2
π

2
√

2
π

0 0

0 0 2
√

2
π

2
√

2
π

0 0 −2
√

2
π

2
√

2
π

















Integrate Eqn. 5 with respect to t between 0 to t. We get

∫ t
0 ϕ1,0 (t) = 2

√

2
π
t,

∫ t
0 ϕ1,1 (t) = −4

√

2
π
t + 8

√

2
π
t2,

∫ t
0 ϕ2,0 (t) = 2

√

2
π
t,

∫ t
0 ϕ2,1 (t) = −12

√

2
π
t + 8

√

2
π
t2.







































(6)

To obtain the first OMIH
′
, collocate Equation 6.

H
′
=













1
2
√
2π

3
2
√
2π

0 0

− 3
4
√
2π

− 3
2
√
4π

0 0

0 0 5
2
√
2π

7
2
√
2π

0 0 − 35
4
√
2π

− 35
4
√
2π













Similarly, we can design the OMI with a different sequence.

3.1 Convergence analysis, uniqueness, and
existence of solution

Theorem 1. Let y(x) be a continuous bounded function in the

Hilbert spaceH2[0, 1), then the Hermite wavelets expansion of y(x)

converges to it [30].

Theorem 2. Let Rn be polynomial space of degree n + 1 over field

R and y : [a, b] → R
n be the solution of arbitrary linear second

order differential equation, then the solution for such differential

equation by the present method is exact [30].

Theorem 3. Suppose y ∈ Cp [0, 1) is an p times continuously

differentiable function such that y =
∑2k−1

n=1 yn (x) and {φn,m} be
a sequence of Hermite wavelets, where n = 1, . . . , 2k−1 and m =
0, . . . ,M − 1, k is any positive integer. Let Yn = L({φn,m}) be the
linear space spanned by {φn,m}. If CT

n Hn (x) is best approximation

to yn from Yn, then CT H(x) approximates y with following error

bound [31]:

||y− CT H(x)||2 ≤
K

√

(2p+ 1)2(k+1)(p+ 1
2 )

where,

K = maxyp(ζ ) ∀ζ ∈
[n− 1

2k−1
,

n

2k−1

)

Theorem 4. Let z(y) ∈ L2(R) be a continuous bounded function

defined on [0, 1), then the Hermite wavelet expansion of z(y) is

uniformly converges to it.

Proof. Consider z(y) be a continuous function defined on [0, 1) and

|z(y)| ≤ µ, where µ is a positive real number. Then, we define z(y)

in the form

z(y) =
∞
∑

i=0

∞
∑

j=0

ci,j Wi,j (y),

where ci,j = 〈z(y),Wi,j (y)〉, and 〈, 〉 denotes inner product. Then,
the Hermite wavelet coefficients of continuous functions z(y) are

defined as

ci,j =
∫

I
z(y)Wi,j (y) dy,

ci,j =
∫

I
z(y)

2
k+1
2

√
π

Hm(2
ky− 2n+ 1) dy.

where I =
[

n−1
2k−1 ,

n
2k−1

)

. Put 2kτ − 2n+ 1 = p, then

ci,j =
2

k+1
2

√
π

∫

I
z
(p− 1+ 2n

2k−1

)

Hm(p)
dp

2k
,

ci,j =
2−

k+1
2

√
π

[

∫

I
z
(p− 1+ 2n

2k

)

Hm(p) dp
]

,
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By generalized mean value theorem for integrals

ci,j =
2−

k+1
2

√
π

z
( ξ − 1+ 2n

2k

) [

∫ 1

0
Hm(p) dp

]

,

where ξ ∈ (−1, 1). SinceHm(p) is a bounded continuous function.

Put
∫ 1
0 Hm(p) dp = h

|ci,j| =
∣

∣

∣

2−
k+1
2

√
π

∣

∣

∣

∣

∣

∣
z(
ξ − 1+ 2n

2k
)
∣

∣

∣
h.

Since z is bounded by µ. Hence |Ci,j| =
∣

∣

∣

2−
k+1
2√
π
µh

∣

∣

∣
. Where µ =

z
(

ξ−1+2n

2k

)

. Therefore,
∞
∑

i,j=0
ci,j is absolutely convergent. Hence, the

Hermite wavelet expansion z(y) converges uniformly to it.

Theorem 5. The solution of the considered model (1) exists and is

unique in the region A× [0,T], where

A = (S ,I ,U ,V) ∈ R
4
: ||S|| < k1, ||I|| < k2, ||U || < k3, ||V||

< k4, &T <∞.

Proof. Let W(τ ) = (S(τ ),I(τ ),U(τ ),V(τ )) and W(τ ) =
(S(τ ),I(τ ),U(τ ),V(τ )). Consider a function Z(U, τ ) on A× [0,T]

and its decomposed form is

Z(U, τ ) =
(

Z1(W, τ ),Z2(W, τ ),Z3(W, τ ),Z4(W, τ )
)

,

with Z1,Z2,Z3, and Z4 are

Z1(U, τ ) = λ− bS I − cS V − dS ,

Z2(U, τ ) = bS I − (d + e)I ,

Z3(U, τ ) = 3− g U V − hU ,

Z4(U, τ ) = g U V − iV ,

Norm is taken as

||W(τ )|| = sup
τ∈[0,T]

|W(τ ) & m = sup
A

||Z(W, τ )||

Consider

||Z(W, τ )− Z(W, τ )||
= ||λ− bS I − cS V − dS − λ+ bS I + cS V + dS+
bS I − (d + e)I − bS I + (d + e)I +3− g U V − hU−
3+ g U V + hU + g U V − iV − g U V + iV||

= (λ− bk2 − ck4 − d)||S − S||
+ (bk1 − (d + e))||I − I||
+ (3− gk4 − h)||U − U ||
+ (gk3 − i)||V − V||.

This implies

||Z(W, τ )− Z(W, τ )|| ≤ ψ1||S − S|| + ψ2||I − I||
+ψ3||U − U || + ψ4||V − V||, (7)

where,

ψ1 = λ− bk2 − ck4 − d,

ψ2 = bk1 − (d + e),

ψ3 = 3− gk4 − h,

ψ4 = gk3 − i,

put ψ = max{ψ1,ψ2,ψ3,ψ4} then we obtain

||Z(W, τ )− Z(W, τ )|| ≤ ψ ||W(τ )−W(τ )|| (8)

This equation represents Lipschitz continuity of Z(W, τ ). We

obtain the following equation on constructing a picard’s operator

1, using the function Z and fractional integral

1W = W(0)+ IαZ(W, τ ) (9)

Now, we need to show that1 is a contraction operator.

That is, 1 contracts the distance between points in metric space.

Consider

||Wτ −W(0)|| ≤ β (10)

from (9)

||W(τ )−W(0)|| ≤ Iα(1)||Z(W, τ )|| ≤
Tα

Ŵ(α + 1)
m < β (11)

Again

||1W −1W|| = ||Iα[Z(W, τ )− Z(τ ,W)]||
≤ Iα(1)||Z(W, τ )− Z(W, τ )||

≤
Tα

Ŵ(α + 1)
ψ ||W −W||

put Tα

Ŵ(α+1)
ψ = φ then

||1W − 1W|| ≤ φ||W − W|| this shows that 1 is a contraction

mapping. Therefore, 1 possesses a unique fixed point. Hence, by

Banach’s fixed point theorem, the fractional differential equation

represented by Equation 7 possesses a unique solution.

4 Hermite wavelet collocation
method

Collocation methods in numerical analysis offer several

distinct advantages, especially when solving differential equations

and other related problems. Here are some key benefits:

Simplicity of implementation: collocation methods are relatively

straightforward to implement. They involve choosing a set of

collocation points and ensuring that the solution satisfies the

differential equation at those points. This simplicity makes

them easier to apply than more complex numerical methods.

Flexibility in choice of basis functions: collocation methods

can use various basis functions, such as polynomials, splines,

or other functions, depending on the problem. This flexibility

allows for tailoring the method to the specific differential equation

or problem domain characteristics. Local accuracy: by focusing

on ensuring that the solution satisfies the differential equation
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TABLE 2 Numerical depiction of S with various methods.

t NDSolve HWCM AE of RK4 AE of HWCM (k = 1) AE of HWCM (k = 2)

With ND solve With ND solve With ND solve

0 100.0 100.0 0.0 0.0 0.0

0.1 77.4297 77.4297 3.59× 10−2 1.06× 10−5 4.31× 10−8

0.2 50.9475 50.9475 6.28× 10−2 1.44× 10−5 4.74× 10−8

0.3 28.0623 28.0623 6.80× 10−2 1.21× 10−5 5.21× 10−8

0.4 13.7368 13.7368 7.43× 10−2 7.28× 10−5 2.92× 10−8

0.5 6.5186 6.5186 6.56× 10−2 3.72× 10−5 1.88× 10−8

0.6 3.2388 3.2388 4.54× 10−2 1.79× 10−5 7.77× 10−8

0.7 1.8000 1.8000 2.72× 10−2 8.65× 10−5 4.83× 10−8

0.8 1.1735 1.1735 1.53× 10−2 4.25× 10−5 1.74× 10−8

0.9 0.9024 0.9024 8.34× 10−3 2.25× 10−6 1.31× 10−10

1.0 0.7888 0.7888 4.51× 10−3 3.88× 10−6 3.14× 10−10

TABLE 3 Numerical depiction of I with various methods.

t NDSolve HWCM AE of RK4 AE of HWCM (k = 1) AE of HWCM (k = 2)

With ND solve With ND solve With ND solve

0 10.0 10.0 0.0 0.0 0.0

0.1 22.9835 22.9835 3.66× 10−2 1.09× 10−5 6.30× 10−8

0.2 41.1517 41.1517 6.52× 10−2 1.53× 10−5 8.70× 10−8

0.3 57.1750 57.1750 7.31× 10−2 1.37× 10−5 1.03× 10−8

0.4 65.8848 65.8848 8.06× 10−2 9.31× 10−5 8.25× 10−8

0.5 68.3520 68.3520 7.28× 10−2 5.96× 10−5 7.57× 10−8

0.6 67.4410 67.4410 5.39× 10−2 4.09× 10−5 6.23× 10−8

0.7 65.0700 65.0700 3.69× 10−2 3.11× 10−5 5.77× 10−8

0.8 62.1718 62.1718 2.55× 10−2 2.59× 10−5 5.28× 10−8

0.9 59.1509 59.1509 1.87× 10−2 2.29× 10−6 4.97× 10−9

1.0 56.1745 56.1745 1.48× 10−2 1.58× 10−6 4.54× 10−9

at specific collocation points, these methods can achieve high

local accuracy. This is particularly useful for problems where

high precision is needed in certain domain regions. Handling

complex geometries: collocation methods can be applied to

problems with complex geometries or boundary conditions. They

can effectively handle irregular domains and varying boundary

conditions by choosing appropriate collocation points and basis

functions. Convergence properties: collocation methods can

exhibit good convergence properties, especially when appropriate

basis functions and collocation points are chosen. For example,

when the degree of the polynomial increases, utilizing polynomial

basis functions can result in fast convergence to the exact solution.

Compatibility with adaptive methods: collocation methods can

be combined with adaptive strategies to improve efficiency and

accuracy. For example, adaptive refinement of collocation points

can be used to focus computational resources on regions where

the solution exhibits rapid changes or high gradients. Efficient

computation: in many cases, collocation methods can lead to

relatively easy linear equation systems, especially when using well-

chosen basis functions. This can make the numerical solution

process more efficient than methods requiring iterative solvers or

complex discretization.Application to time-dependent problems:

collocation methods can be effectively applied to time-dependent

partial differential equations by discretizing the time variable and

applying collocation to the spatial part of the problem. This allows

for the analysis of dynamic systems with varying temporal behavior.

Error analysis: error analysis for collocation methods is often more

straightforward than for other numerical methods. The choice of

basis functions and collocation points can be analyzed to estimate

and control the error in the numerical solution. Modularity:

Collocation methods can be modular and adaptable. For example,

you can use different collocation points or basis functions in other

domain regions, allowing for a customized approach that fits the

specific problem requirements.

Collocation methods provide a powerful and flexible tool

for solving various numerical problems, particularly differential
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TABLE 4 Numerical depiction of U with various methods.

t NDSolve HWCM AE of RK4 AE of HWCM (k = 1) AE of HWCM (k = 2)

With ND solve With ND solve With ND solve

0 10.0 10.0 0.0 0.0 0.0

0.1 9.6085 9.6085 6.34× 10−3 2.30× 10−6 4.22× 10−9

0.2 9.2231 9.2231 1.25× 10−3 2.56× 10−6 9.84× 10−9

0.3 8.8439 8.8439 1.86× 10−3 2.83× 10−6 1.40× 10−9

0.4 8.4710 8.4710 2.45× 10−3 3.10× 10−6 1.76× 10−9

0.5 8.1046 8.1046 3.01× 10−3 3.37× 10−6 2.24× 10−9

0.6 7.7449 7.7449 3.55× 10−3 3.63× 10−6 2.62× 10−9

0.7 7.3922 7.3922 4.06× 10−4 3.88× 10−7 3.03× 10−10

0.8 7.0469 7.0469 4.55× 10−4 4.12× 10−7 3.43× 10−10

0.9 6.7092 6.7092 5.01× 10−4 4.33× 10−7 3.80× 10−10

1.0 6.3795 6.3795 5.44× 10−4 5.40× 10−7 4.09× 10−10

TABLE 5 Numerical depiction ofV with various methods.

t NDSolve HWCM AE of RK4 AE of HWCM (k = 1) AE of HWCM (k = 2)

With ND solve With ND solve With ND solve

0 1.0 1.0 0.0 0.0 0.0

0.1 1.0997 1.0997 6.97× 10−3 3.80× 10−6 3.65× 10−9

0.2 1.2046 1.2046 1.38× 10−3 4.14× 10−6 6.76× 10−9

0.3 1.3145 1.3145 2.06× 10−3 4.48× 10−6 4.09× 10−9

0.4 1.4291 1.4291 2.73× 10−3 4.83× 10−6 6.63× 10−9

0.5 1.5480 1.5480 3.38× 10−3 5.18× 10−6 6.27× 10−9

0.6 1.6706 1.6706 4.01× 10−3 5.53× 10−6 6.71× 10−9

0.7 1.7965 1.7965 4.63× 10−4 5.87× 10−7 7.59× 10−10

0.8 1.9252 1.9252 5.22× 10−4 6.21× 10−7 7.59× 10−10

0.9 2.0561 2.0561 5.80× 10−4 6.52× 10−7 8.28× 10−10

1.0 2.1886 2.1886 6.35× 10−4 8.33× 10−7 1.01× 10−10

equations, by leveraging their simplicity, accuracy, and adaptability.

Here, we considered the Hermite wavelet collocation method.

There are two approaches to improve the correctness of the solution

using this method. First, the domain should be made smaller

and the terms (more basic elements) larger. We implemented

both simultaneously in the current study to achieve the required

accuracy in the solution. We can select more basis elements by

breaking the supplied domain into smaller parts. In the end, the

solutions are combined linearly. Consider the following partition

of
[

n−1
2k−1 ,

n
2k−1

)

in the form Bk = ∪2k−1

n=1

[

n−1
2k−1 ,

n
2k−1

)

, where n =
1, 2, . . . , 2k−1, and k = 1, 2, . . . .

Consider the approximation as

z′i,k (τ ) =
2k−1
∑

n=1

M−1
∑

m=0

pin,m ψn,m (τ ), (12)

where k denotes the solution’s domain and i denotes the

independent variables. Pin,m are unknown coefficients of Hermite

wavelets, and wavelet basis elements are ψn,m (τ ).

z′i,k = Pin,m9n,m (τ ), (13)

where, Pin,m = [pi1,0, p
i
1,1, . . . p

i
1,M−1, p

i
2,0, . . . p

i
2,M−1, . . . p

i
2k−1 ,0

, . . .

pi
2k−1 ,M−1

] 9n,m (τ ) = [ψ1,0 (τ ), . . . ψ1,M−1 (τ ),ψ2,0 (τ ), . . . ψ2,M−1

(τ ), . . . ψ2k−1 ,0 (τ ), . . . ψ2k−1 ,M−1 (τ )]
T

Define characteristic function3 (τ ) particular one
connected components of Bk

=

{

1, if τ ∈ particular one connected component of Bk,

0, if τ /∈ particular one connected component of Bk.

Now, the general approximation is considered as,

Z′
i (τ ) =

∑

vary on each
components of Bk

3k (τ ) z
′
i,k (τ ), ∀τ ∈ Bk, k ∈ N
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FIGURE 2

Pictorial representation of S with various methods.

FIGURE 3

Pictorial representation of I with various methods.

Now, let us select the collocation points as τj =
2ij−1

2k(2k−1)M
, where

ij=1,...,k = 1, 2, . . . , 2k−1M.

Z′
i (τj) =

∑

vary on each
components of Bk

3 (τj) z
′
i,k (τj) (14)

The matrix representation of (Eqn. 14) is

Z′
i (τj) =

∑

3k (τj) P
i
n,m HBk , (15)

where section 2 defines HBk . integrate (15) from 0 to x. We obtain

Zi (τj) = Zi (0)+
∑

3 (τj) P
i
n,m H′

Dk (16)

Fractionally differentiating (Eqn 16) of order β . We obtain

Z
β
i (τj) = Z

β
i (0)+

∑

3 (τj) P
i
n,m H

β

Dk
(17)
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FIGURE 4

Pictorial representation of U with various methods.

FIGURE 5

Pictorial representation of V with various methods.

In the provided fractional model (2.1), replace (14), (16), and (17).

We obtain the following system of equations,

Zi(P
1
1,0, . . . , P

1
1,M−1, P

1
2,0, . . . , P

1
2,M−1, . . . , P

1
2k−1 ,0

, . . . , P1
2k−1 ,M−1

,

P21,0, . . . , P
2
1,M−1, . . . ,

P2
2k−1 ,0

, . . . , P2
2k−1 ,M−1

, . . . , P91,0, . . . , P
9
1,M−1, . . . , P

9
2k−1 ,0

, . . . , P9
2k−1 ,M−1

) = 0,

where, i = 1, 2, . . . , 4 2k−1M. The Newton-Raphson approach

is used in the following ways to obtain the Hermite wavelet

coefficients P1n,m, P
2
n,m,. . . , P

4
n,m: Regarding K = 1, 2, 3, 4. The slope

intercept is PK
(n,m)i+1

, which may be written using Taylor series

expansion. The PKn,m represents the initial guess of the root,

Z1,i+1 = Z1,i + (PK(1,0),i+1 − PK(1,0),i)
∂Z1,i

∂PK
(1,0)

+ (PK(2,0),i+1 − PK(2,0),i)

∂Z1,i

∂PK
(2,0)

+, . . . ,+

(PK
(2k−1 ,M−1),i+1

− PK
(2k−1 ,M−1),i

)
∂Z1,i

∂PK
(2k−1 ,M−1)

,

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2025.1544002
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Yeshwanth et al. 10.3389/fams.2025.1544002

FIGURE 6

Pictorial representation of S for various values of β.

FIGURE 7

Pictorial representation of I for various values of β.

Applying the same method of Taylor series expansion for

Z2, . . . ,Z4 2k−1M and expanding it to 4 2k−1M equations, we obtain

∂Zk,i

∂PK
(1,0)

PK1,i+1 +
∂Zk,i

∂PK
(2,0)

PK2,i+1+, . . . ,+
∂Zk,i

∂PK
(2k−1 ,M−1)

PKm,i+1

= −Zk,i + PK1,i
∂Zk,i

∂PK
(1,0)

+PK2,i
∂Zk,i

∂PK
(2,0)

+, . . . ,+PKm,i

∂Zk,i

∂PK
(2k−1 ,M−1)

, (18)

The equations are shown by the first subscript k,

and the function at the present value (i) or at

the next value (i + 1) is shown by the second

subscript. For Equation (18), the matrix notation is

as follows:

[Q][PKi+1] = −[Z]+ [Q][PKi ]. (19)

When the Jacobianmatrix made up of partial derivatives is used

to express the partial derivatives assessed at i:
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FIGURE 8

Pictorial representation of U for various values of β.

FIGURE 9

Graphical representation of V for various values of β.

[Q] =





















∂Z1,i
∂PK

(1,0)

∂Z1,i
∂PK

(2,0)

· · · ∂Z1,i
∂PK

(2k−1,M−1)
∂Z2,i
∂PK

(1,0)

∂Z2,i
∂PK

(2,0)

· · · ∂Z2,i
∂PK

(2k−1,M−1)

... · · ·
...

∂Z
4 2k−1M,i

∂PK
(1,0)

∂Z
4 2k−1M,i

∂PK
(2,0)

· · ·
∂Z

4 2k−1M,i

∂PK
(2k−1,M−1)





















The vector form expression for the start and final values is as

follows:

[PKi ]
T =

[

PK
(1,0),i

PK
(2,0),i

· · · PK
(2k−1 ,M−1),i

]

,

[PKi+1]
T =

[

PK
(1,0),i+1

PK
(2,0),i+1

· · · PK
(2k−1 ,M−1),i+1

]

, and

[Z]T=
[

Z1,i Z2,i · · · Z4 2k−1M,i

]

Multiplying the inverse of the Jacobian to Equation 19

[PKi+1] = [PKi ]− [Q]−1[Z]. (20)

Using (20), we derive the Hermite wavelet coefficients PKn,m. By

replacing PKn,m, we obtain the desired solution of Equation 16 of

order β .

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2025.1544002
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Yeshwanth et al. 10.3389/fams.2025.1544002

FIGURE 10

Pictorial depiction of variation of λ.

FIGURE 11

Pictorial depiction of variation of 3.

FIGURE 12

Pictorial depiction of variation of d.

5 Numerical results

The mathematical model of Rabies presented in section 2 is

studied with the presented HWCM under the following model

constraints: S(0) = 100, I(0) = 10, U(0) = 10, V(0) = 1 and

λ = 5, b = 0.1, c = 0.5, d = 0.5, e = 0.1, 3 = 0.055, g = 0.1, h =
0.3, i = 0.03. The numerical depictions and pictorial comparisons

of S(τ ), I(τ ), U(τ ), V(τ ) are done with ND Solver, RK4, and

the present approach. The numerical depictions are shown in

Tables 2–5 with various methods. The pictorial representation of
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FIGURE 13

Pictorial depiction of variation of e.

FIGURE 14

Pictorial depiction of variation of i.

FIGURE 15

Pictorial depiction of variation of g.

RK4, ND Solve, and Hermite are represented in Figures 2–5.

Figures 6–9 show the pictorial depiction for fractional values of β .

We also conclude that, compared to the corresponding integer-

order model, the suggested model under Caputo–the fractional

order derivative produces more flexible and fruitful results. The

results for integer and fractional orders show how quickly and

easily the problems can be solved using the newly adjusted Hermite

wavelet matrix.
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FIGURE 16

Flowchart of HWCM.

Variation of the birth rate of humans (λ): the graphic

representation of the variation of S(t), I(t) that affects the

susceptible, infected human population is shown in Figure 10.

As the birth rate of humans λ rises, so the susceptible human

population S(t), the infected human population I(t), increases.

Variation of the production rate of animals (3): the graphic

representation of the variation of U(t), V(t) that affects the

susceptible, infected animal population is shown in Figure 11. As

the Production rate of animals 3 rises, so the susceptible animal

population U(t), the infected animal population V(t), increases.

Variation of the natural death rate of susceptible humans (d):

the graphic representation of the variation of S(t), I(t) that affects

the susceptible, infected human population is shown in Figure 12.

As the natural death rate of susceptible humans d rises, so the

susceptible human population S(t), the infected human population

I(t), decreases.

Variation of the death rate of infected humans (e): The

graphic representation of the variation of S(t), I(t) that affects the

susceptible, infected human population is shown in Figure 13. As

the death rate of infected humans e rises, the susceptible human

population S(t) increases, whereas the infected human population

I(t) decreases.

Variation of the death rate of infected animals (i): The

graphic representation of the variation of U(t), V(t) that affects

the susceptible, infected animal population is shown in Figure 14.

As the death rate of infected animals i rises, the susceptible animal

population U(t) increases, whereas the infected animal population

V(t) decreases.

Variation of the infection rate of susceptible animals (g): the

graphic representation of the variation of U(t), V(t) that affects

the susceptible, infected animal population is shown in Figure 15.

As the infection rate of susceptible animals g rises, the susceptible

animal population U(t) decreases, whereas the infected animal

population V(t) increases.

6 Conclusion

A rabies model uses mathematical and computational

techniques to analyze disease transmission and develop effective

control strategies. This study presents an efficient and accurate

solution for the non-linear rabies model with fractional-order

equations using the Hermite wavelet collocation method (HWCM)

(Figure 16). The method constructs an operational matrix for

numerical solutions using Hermite wavelets, demonstrating

consistency with Mathematica’s NDSolver. The Results, supported

by tables and figures, confirm that HWCM outperforms traditional

numerical models in accuracy. The study also shows that a

moderate number of Hermite wavelets is sufficient for precise

results, making this approach computationally efficient and easy

to implement. Preventive strategies such as mass dog vaccination,

public awareness campaigns, pre- and post-exposure prophylaxis,

and stray animal management are crucial to controlling rabies.

Avoiding contact with stray animals and improving surveillance

further help in reducing transmission. The study reinforces that

rabies can be effectively managed and controlled with proper

vaccination and awareness.
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