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Malaria, an infectious disease transmitted by mosquitoes and caused by

the Plasmodium parasite, poses a significant global public health challenge,

especially in areas lacking modern medical infrastructure. Traditional medicine

often serves as either a primary or complementary treatment avenue. This

study introduces a novel deterministic model that considers the impact of

treatment seeking-behaviors on malaria transmission dynamics. Expanding

upon the existing model, we incorporate distinct groups: individuals seeking

treatment at health facilities and those self-treating with traditional remedies,

which lack clinical validation. The study employs mathematical techniques

for a comprehensive analysis of the model, including positivity, boundedness,

existence and uniqueness, equilibrium, reproduction number, sensitivity, optimal

control, and numerical simulations performed using MATLAB and the fourth-

order Runge-Kutta method. Furthermore, we explore three time-dependent

optimal control variables: antimalarial drug treatment, personal protective

measures like ITNs, and promoting awareness to discourage inappropriate

traditional medicine usage, all aimed at reducing disease transmission. Sensitivity

analysis helps identify key parameters a�ecting malaria dynamics. Notably,

increased utilization of health facilities for treatment significantly reduces the

basic reproduction number, highlighting the importance of e�ective healthcare

interventions. Numerical simulations underscore the vital role of treating infected

individuals at health facilities in malaria eradication e�orts. Optimal control

analysis suggests that a combination of the three control strategies is most

e�ective in combating malaria. This provides insights for public health policies

to address the risk factors of using clinically not validated traditional medicine in

malaria-endemic areas.
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1 Introduction

Malaria remains a significant global public health challenge, particularly in endemic

regions [1]. According to the World Malaria Report (2023), the estimated number

of malaria cases worldwide reached 249 million in 2022, marking an increase of

16 million from the pre-pandemic level of 233 million in 2019 [2]. Malaria-related
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mortality has also remained high, with 608,000 deaths reported

in 2022. The disease burden is disproportionately concentrated

in the WHO African Region, accounting for approximately 94%

of global cases and 96% of malaria deaths. Malaria is caused by

Plasmodium parasites, which are transmitted to humans through

the bites of infected female Anopheles mosquitoes [2].1 Of the

five Plasmodium species known to infect humans—Plasmodium

falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium

ovale, and Plasmodium knowlesi—P. falciparum and P. vivax are the

most virulent and contribute to the highest morbidity andmortality

rates [3].

The transmission dynamics of malaria are influenced by

various factors, including human treatment-seeking behavior

[4]. Effective and timely treatment plays a critical role in

mitigating malaria transmission and reducing its societal

impact [5, 6]. Historically, traditional medicine has played a

crucial role in malaria treatment, particularly in regions with

limited access to modern healthcare [7, 8]. It is estimated that

between 25% and 75% of individuals in endemic areas rely

on traditional remedies as either a primary or complementary

treatment [9]. However, traditional medicine use presents

substantial challenges, including a lack of rigorous clinical

validation, unpredictable dosage variations, and concerns

regarding safety and efficacy [10, 11]. The authors in [12]

found that the main challenge with herbal malaria treatment

is inappropriate dosage specifications. Unlike standardized

pharmaceutical treatments, herbal malaria therapies are often

prepared and administered based on empirical knowledge rather

than precise scientific formulations. The absence of standardized

dosing regimens increases the risk of treatment failure, severe

complications, and, potentially, the emergence of antimalarial

drug resistance, which is currently a major challenge to malaria

control [9].

Mathematical modeling serves as a powerful tool for

understanding infectious disease dynamics, evaluating intervention

strategies, and informing public health policies [13]. Since the

early work of Sir Ronald Ross in 1911 [14], as the disease burden

increased, numerous malaria transmission models have been

developed [15–18], incorporating factors such as latency periods,

human–mosquito interactions, immunity, and heterogeneous

susceptibility. The study in [16] presented a mathematical

model for malaria dynamics, considering blood transfusion

transmission and saturated treatment function to delay in

administering anti-malaria drug treatment transmission in the

population. They investigated the role of saturated treatment

on the dynamics of malaria and verified that delay in treatment

is responsible for the decrease in recovery from infection.

The authors [17] developed and analyzed a population-level

compartmental model of human–mosquito interactions that

takes into account an intervention using transmission-blocking

drugs. Their results show that the effect of treatment rate on

reducing reproduction number depends on the efficacy of the

drug. A mathematical model was developed by [19] to assess

the effectiveness of antimalarial herbal therapy in controlling

1 https://www.cdc.gov/dpdx/malaria/index.html

malaria transmission. Their study suggests a massive campaign

for the use of antimalarial traditional medicine as a treatment

for malaria infection. However, further empirical studies and

clinical trials are needed to validate the model’s predictions

and assess the feasibility and effectiveness of implementing

herbal therapy on a larger scale. The authors in [5] proposed

a deterministic model that explains the transmission dynamics

between mosquito and human populations and the impacts of

control interventions. A malaria dynamic model with partial

immunity and protected travelers using optimal control and

cost-effectiveness analysis was developed [16]. They showed

that a quadruple of control strategies could minimize infection

and implementation costs, suggesting not all strategies are

necessary with limited resources. In addition, the study in

[20] developed a deterministic model to assess the impact of

awareness campaigns on malaria transmission. They applied

optimal control theory to minimize disease control costs,

concluding that media-driven awareness campaigns are effective

for cost-efficient malaria management. The authors in [21]

formulated a model incorporating drug resistance, treatment,

and mosquito net usage to study malaria dynamics in Nigeria.

By fitting the model to real-world data, they identified key

parameters influencing disease transmission and emphasized

the need for improved control measures targeting resistant

strains. Again, the study in [22] proposed a malaria model

incorporating insecticide-treated bed nets, human treatment,

sterile mosquito techniques, and interventions for pregnant

women and newborns, demonstrating that effective control

strategies can reduce malaria transmission. The study presented

in [23] a nonlinear deterministic model to analyze climatic

variability’s impact on malaria transmission, highlighting the

significance of environmental factors in disease control strategies.

The researchers developed a model incorporating partial immunity

and protected travelers’ movement, using optimal control theory

to evaluate intervention strategies for malaria management

in populations with varying immunity levels and mobility

patterns [24]. Moreover, the study introduced a two-group

model distinguishing between symptomatic and asymptomatic

carriers of malaria [25]. Optimal control strategies were analyzed

to determine effective interventions, emphasizing the role of

asymptomatic individuals in disease persistence and control.

The study in [15] develops a nonlinear mathematical model to

investigate the effects of relapse on malaria transmission dynamics

in both human and mosquito populations. Their result showed

that relapse occurs not only because of incomplete treatment

but also when symptoms reappear after the parasites have been

eliminated from blood but persist as dormant hypnozoites in

liver cells. However, the model does not explicitly incorporate

treatment-seeking behavior, which is a critical factor in malaria

control efforts.

Despite extensive research, the disease continues to spread

due to various factors, including treatment-seeking behaviors.

Many individuals seek treatment from traditional medicine

practitioners, whose remedies often lack clinical validation.

This study aims to fill the gap in mathematical modeling

by incorporating the effect of treatment-seeking behaviors

on malaria transmission dynamics using optimal control

approaches. Thus, this study is an extension of the model
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studied in [15], taking into account the treatment-seeking

behavior. It extends the existing model by classifying infected

individuals based on their treatment choices: those seeking

treatment at healthcare facilities and those using traditional

remedies without clinical validation. The model further

integrates three optimal control strategies: antimalarial drug

treatment, the use of insecticide-treated bed nets (ITNs), and

awareness campaigns to discourage inappropriate reliance on

traditional medicine.

In general, the rest of this article is organized as follows: In

Section 2 of the work, the mathematical model is formulated.

Section 3 discusses the basic properties of the model, and a

sensitivity analysis of the basic reproduction number is conducted

in Section 4, followed by numerical simulations in Section 5.

In Section 6, optimal control analysis is made analytically, and

numerical simulations of optimal control are discussed. Then,

discussions and conclusions are provided in Section 7. Lastly, in

Section 8, limitations of the study are provided.

2 Model formulation

This study is an extension of the model provided in

[15], taking into account the treatment-seeking behavior by

adding more compartments and assumptions. The total human

population at a time t, denoted by Nh(t), is divided into

six epidemiological groups in the presence of the disease

as susceptible (Sh), infected (Eh), infectious (Ih), infectious

individuals who are undergoing treatment at health facilities

(Th), infectious individuals who are undergoing treatment with

inappropriate traditional medicine by traditional practitioners (Ts),

and recovered (individuals who recover as a result of receiving

treatment using traditional medicine or natural immunity Rh).

Thus, at any time t ≥ 0, the total human population is

given by:

Nh(t) = Sh(t)+ Eh + Ih(t)+ Th(t)+ Ts(t)+ Rh(t).

Likewise, the vector population is categorized into three groups:

susceptible (Sm), exposed (Em), and infectious (Im). The vector

compartment does not include an immune class as mosquitoes

never recover from the infection, that is, their infected period

ends with their death due to their relatively short lifecycle. Thus,

the total vector population denoted Nm(t), at any time t ≥ 0 is

given by:

Nm (t) = Sm (t)+ Em(t)+ Im(t).

Individuals naturally enter the susceptible class Sh at a constant

rate 3h, due to the natural loss of immunity from the human

treatment class at health facilities (a constant rate ρ), by loss of

immunity from the recovered class (at a constant rate ρ1) and can

be decreased by a natural death at a constant rate µ or infected

after a bite from an infectious mosquito, and the sporozoites

are passed on to them. The transmission rate of infections in

a susceptible human population (from an infectious mosquito

to a susceptible human) is assumed to be given by a rate λh.

An exposed individual becomes infectious at a constant rate θh
and an infectious human Ih who is seeking treatment at health

facilities will move to the treatment class, Th at a constant rate

τ1. It is assumed that individuals who are undergoing treatment at

health facilities will recover successfully and then go back to the

susceptible class Sh by loss of immunity at a constant rate ρ. Again,

an infectious human who is seeking treatment with traditional

medicine without a prescription from health professionals will

move to the treatment class, Ts at a constant rate τ2. We assumed

that an individual in a treatment class, Ts with traditional medicine

can recover temporarily due to natural immunity and the use

of traditional medicine and will move to the recovered class at

a constant rate γ ; while the others go back to a health facility

due to the ineffectiveness of traditional medicine treatment at

a constant progression rate ω. A temporarily recovered human

class can be entered into the susceptible human class by losing

immunity at a constant rate ρ1 if the merozoites of parasites clear

from the blood completely, and if they don’t, they go back to the

infectious class Ih at a constant rate γ1. All human population

classes decreased through natural death at a constant rate µ and

disease-induced death rates for Ih and Ts at a constant δ and

ψ , respectively.

Similarly, new vectors are recruited at a constant rate, Λm into

the susceptible mosquito compartment, Sm. When a susceptible

mosquito bites an infectious human, Ih or human in treatment

with traditional medicine, Ts, the parasite (in the form of

gametocytes) enters the mosquito, and the mosquito moves from

the susceptible class to the exposed class, Em at a rate Λm. An

infected mosquito will become infectious at a constant rate θm. The

vector population classes decreased by natural death at a constant

rate η.

The formulation of the model is primarily guided by the

following assumptions:

1. When an individual is infected with malaria, we categorize

the human treatment class into two groups based on

community treatment-seeking behaviors: those receiving

treatment at health facilities and those undergoing treatment

with traditional medicines without a prescription from

healthcare professionals.

2. In this study, the term ‘traditional medicines’ (TMs) refers

to antimalarial drugs prepared by traditional practitioners.

However, it is important to note that these medicines

lack clinical validity and are devoid of quality control,

safety measures, standardized dosage, and potential drug

interactions [26].

3. An infectious individual receiving treatment at health

facilities will recover fully and subsequently lose

natural immunity, rendering them susceptible to

malaria again.

4. An infectious individual undergoing treatment with traditional

medicine may experience temporary recovery due to their

natural immunity. However, it is assumed that the merozoites

of parasites are not completely eliminated from the bloodstream

due to the ineffectiveness of traditional antimalarial drugs.

Consequently, they may revert to the infectious human

class [15].
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FIGURE 1

Flow diagram of the malaria transmission dynamics.

The flow chart (Figure 1) shows the dynamics of malaria in

human and vector populations.

The dynamical system of the flow chart of Figure 1 is given

as follows:
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dSh
dt (t) = Λh − λhSh + ρTh + ρ1Rh − µSh
dEh
dt (t) = λhSh − (θh + µ)Eh
dIh
dt (t) = θhEh + γ1Rh − (δ + τ1 + τ2 + µ) Ih
dTh
dt (t) = τ1Ih + ωTs − (ρ + µ)Th
dTs
dt (t) = τ2Ih − (ω + γ + µ+ ψ)Ts
dRh
dt (t) = γTs − (γ1 + ρ1 + µ)Rh
dSm
dt (t) = Λm − (λm + η) Sm
dEm
dt (t) = λmSm − (θm + η)Em
dIm
dt (t) = θmEm − ηIm

(1)

With an initial conditions [Sh (0) , Eh (0) , Ih (0) , Th (0) , Ts (0) ,

Rh (0) , Sm (0) , Em (0) , Im (0)]∈ R
9
+ and where λh and λm are the

force of infections from vector to human and human to vector,

respectively given by

λh(Im) =
qβmhIm

Nh
, λm(Ih + Ts) =

qα1mIh

Nh
+

qα2mTs

Nh
(2)

3 Model analysis

The model represented by the system of differential equation

(Equation 1) will be analyzed in the feasible region and since

the model represents the populations all the state variables and

the parameters are assumed positive [26]. The positivity and

boundedness are given in lemma 1 and 2.

Lemma 1 (Positivity). [18, 27] If Sh (0) > 0, Eh (0) > 0,

Ih (0) > 0, Th (0) > 0, Ts (0) > 0, Rh (0) > 0, Sm (0) >

0, Em (0) > 0, Im (0) > 0, then the solution Sh (t) , Eh (t) ,

Ih (t) , Th (t) , Ts (t) , Rh (t) , Sm (t) , Em (t) and Im (t) of the system

(Equation 1) are all positive for all time t ≥ 0.

Proof: From the first equation of system (Equation 1), we have
dSh
dt

+ (λh + µ)Sh = Λh + ρTh + ρ1Rh.

After some simplification and integrating both sides given as:

∫ t

0

(

eQ(s)+µsSh(s)
)′

ds =

∫ t

0
(Λh + ρTh + ρ1Rh)e

Q(s)+ µsds.

Sh (t) = Sh (0) e
−Q(t)+Q(0)−µt + e−Q(t)−µt

∫ t

0
(Λh + ρTh + ρ1Rh)e

Q(s)+µ(s)ds. (3)

Since Sh (0) > 0 and f (t) > 0, for all t > 0, and also the

exponential function is always positive, then the solution Sh (t) >

0 for all t > 0.

Similarly, it can be shown that the rest of the state variables,

Eh (t) , Ih (t) , Th (t) , Ts (t) , Rh (t) , Sm (t) , Em (t),Im (t) are

non-negative for all time t > 0.

Thus, we can conclude that all solutions of model (Equation 1)

remain positive for all t > 0 and the solution of the model

is positive.

Lemma 2 (Boundedness) [28, 29]. The feasible region �

defined by

�h =
{

(Sh, Eh, Ih, Th,Ts, Rh
)

∈ R
6
+ :

(Sh + Eh + Ih + Th + Ts + Rh) ≤
Λh

µ
},

�m =
{

(Sm, Em, Im
)

∈ R
3
+ : (Sm + Em + Im)

≤ Λm/η},

With initial condition Sh (0) > 0, Eh (0) > 0, Ih (0) >

0, Th (0) > 0, Ts (0) > 0, Rh (0) > 0, Sm (0) > 0, Em (0) >

0,Im (0) > 0 is positively invariant for the system (Equation 1)

in R
9
+.

Proof:GivenNh (t) = Sh (t)+Eh(t)+Ih(t)+Th(t)+Ts(t)+Rh(t)

and Nm(t) = Sm(t) + Em(t) + Im(t). The rate of change in total

human population size Nh (t) = Sh (t)+ Eh (t)+ Ih (t)+ Th (t)+

Ts (t)+ Rh(t) can be obtained as:

dNh

dt
(t) = (Λh − µSh − µEh − (δ + µ) Ih − µTh

−(µ+ ψ)TS − µRh
)

≤ Λh − µ Nh(t).
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After some simplification and integrating both sides, we have:

Nh (t) ≤ Nh (0) e
−µt +

Λh

µ

(

1− e−µt
)

(4)

Now, taking the lim sup as t → ∞, gives Nh (t) ≤

lim
t→∞

supNh (0) e
−µt +

Λh
µ
(1− e−µt) =

Λh
µ
.

Nh (t) ≤
Λh

µ
(5)

Similarly, the boundedness of the total vector population is

given as:

Nm (t) ≤
Λm

η
(6)

In particular, Nh (t) ≤
Λh
µ

if the total human population at the

initial instant of time, Nh(0) ≤
Λh
µ

and Nm (t) ≤
Λm
η
, if Nm(0) ≤

Λm
η
. Therefore, the region is positively invariant for the system

(Equation 1). Moreover, if Nh (t) >
Λh
µ

and Nm (t) >
Λm
η

, then

either the solution of model (Equation 1) enters � in a finite time,

orNh (t) approaches
Λh
µ

andNm (t) approaches
Λm
η

asymptotically.

Hence, the region� is positively invariant and attracts all solutions

of model (Equation 1) in R
6
+xR

3
+.

Lemma 3 (Existence and uniqueness). In model (Equation 1)

if the initial conditions Sh (0) > 0, Eh (0) > 0, Ih (0) >

0, Th (0) > 0, Ts (0) > 0, Rh (0) > 0, Sm (0) > 0, Em (0) >

0,Im (0) > 0, and t0 > 0, then for all t∈ R the solutions

Sh (t) ,Eh (t) , Ih (t) , Th (t) , Ts (t) , Rh (t) , Sm (t) , Em (t) and Im (t)

exist in R
9
+ [17, 28, 30, 31].

Proof: The model (Equation 1) can be described as:

Ẋ (t) = f (X (t)) , X (0) = X0, (7)

where X(t)=(Sh (t) ,Eh (t) , Ih (t) , Th (t) , Ts (t) , Rh (t) ,

Sm (t) , Em (t) , Im (t))
T with the corresponding initial condition.

V−1 =

















1
µ+θh

0 0 0 0

−
−η2θh−ηθhθm

η(µ+θh)(η+θm)(δ+µ+τ1+τ2)
1

δ+µ+τ1+τ2
0 0 0

0 0 1
η+θm

0 0

0 0 θm
η(η+θm)

1
η

0
η2θhτ2+ηθhθmτ2

η(γ+µ+ψ+ω)(µ+θh)(η+θm)(δ+µ+τ1+τ2)
τ2

(γ+µ+ψ+ω)(δ+µ+τ1+τ2)
0 0 1

γ+µ+ψ+ω

















F.V−1 =















0 0
qβhmθm
η(η+θm)

qβhm
η

0

0 0 0 0 0

−
qµαm(−η

2θh−ηθhθm)Λm

η2(µ+θh)(η+θm)Λh(δ+µ+τ1+τ2)
+

qµα2mΛm(η
2θhτ2+ηθhθmτ2)

η2(γ+µ+ψ+ω)(µ+θh)(η+θm)Λh(δ+µ+τ1+τ2)

qµαmΛm

ηΛh(δ+µ+τ1+τ2)
+

qµα2mΛmτ2
η(γ+µ+ψ+ω)Λh(δ+µ+τ1+τ2)

0 0
qµα2mΛm

η(γ+µ+ψ+ω)Λh

0 0 0 0 0

0 0 0 0 0















(8)

X0=(Sh(0),Eh(0), Ih(0), Th(0), Ts(0), Rh(0), Sm(0), Em(0), Im(0))

and f (X) is the vector-valued function representing the hand-right

side of the system (Equation 1) which is

f (X) =





























Λh−λhSh+ρTh+ρ1Rh−µSh
λhSh−(θh+µ)Eh

θhEh + γ1Rh − (δ + τ1 + τ2 + µ) Ih
τ1Ih + ωTs − (ρ + µ)Th

τ2Ih − (ω + γ + µ+ ψ)Ts

γTs − (γ1 + ρ1 + µ)Rh
Λm − (λm + η) Sm
λmSm − (θm + η)Em

θmEm − ηIm





























(9)

Since a function f in the system (Equation 1) has a continuous

first derivative in R
9
+ and X0∈R

9
+, Nh 6= 0 and Nm 6= 0, f is

well defined at t = 0. Consequently, according to the widely used

fundamental existence and uniqueness theorem [32], lemmas 1 and

2 above, there exists a unique, positive, and bounded solution for

the model (Equation 1) in R
9
+.

3.1 Malaria-free equilibrium point, E0

Malaria-free equilibrium points (MFE) are steady-

state solutions where there is no malaria [33]. The

malaria-free equilibrium of the system (Equation 1) is

E0 =
(

Λh
µ
, 0, 0, 0, 0, 0, Λm

η
, 0, 0

)

.

3.2 The basic reproduction number

The reproduction number (R0) is defined as the average

number of secondary infections produced by one infected

individual in a completely susceptible population [13]. To obtain

R0 for model (Equation 1), we use the next-generation matrix

technique described in [18, 34] and is the spectral radius

ρ
(

FV−1
)

, where

F =













0 0 0 qβmh 0

0 0 0 0 0

0
qµα1mΛm

ηΛh
0 0

qµα2mΛm

ηΛh

0 0 0 0 0

0 0 0 0 0













and

V =













(θh + µ) 0 0 0 0

−θh (δ + τ1 + τ2 + µ) 0 0 0

0 0 (θm + η) 0 0

0 0 −θm η 0

0 −τ2 0 0 (ω + γ + µ+ ψ)













By next generation operator method, the basic reproduction

number of the model (Equation 1) is given:

R0=ρ
(

FV−1
)

=

√

q2µβhmθhθmΛm ((γ + µ+ ω + ψ)α1m + τ2α2m)

η2Λh (µ+ θh) (η + θm) (γ + µ+ ω + ψ) (δ + µ+ τ1 + τ2)

(10)

Theorem 1. [13, 35, 36] The malaria-free equilibrium point, E0
of the model in the system (Equation 1) is locally asymptotically
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stable if the reproduction number R0 < 1 and is unstable

ifR0 > 1.

Proof: The Jacobian matrix J (E0 ) of the model to

(Sh, Eh, Ih, Th, TS, Rh, Sm, Em, Im) at the malaria-free

equilibrium point is the following:

J (E0) =

































µ 0 0 ρ 0 ρ1 0 0 −A

0 −B 0 0 0 0 0 0 A

0 θh −C 0 0 γ1 0 0 0

0 0 τ1 −D ω 0 0 0 0

0 0 τ2 0 −E 0 0 0 0

0 0 0 0 γ −F 0 0 0

0 0 −G 0 −H 0 −η 0 0

0 0 G 0 H 0 0 −I 0

0 0 0 0 0 0 0 θm −η

































(11)

where A = qβmh, B = (θh + µ) , C = (δ + τ1 + τ2 + µ),

D = (ρ + µ), E = (ω + γ + µ+ ψ), F = (γ1 + ρ1 + µ),

G =
qµα1mΛm

ηΛh
, H =

qµα2mΛm

ηΛh
, I = (θm + η), where eigenvalues

of λ1 = −µ and λ6 = − η.

The remaining eigenvalues are the roots of the characteristic

equation for Equation 11 given by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−B− λ 0 0 0 0 0 A

θh −C − λ 0 0 γ1 0 0

0 τ1 −D− λ ω 0 0 0

0 τ2 0 −E− λ 0 0 0

0 0 0 γ −F − λ 0 0

0 G 0 H 0 −I − λ 0

0 0 0 0 0 θm −η − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (12)

Ih
∗ = −

Λh

ρτ1
µ+ρ

+
ρωτ2

γ+µ+ψ+ω
+

γρ1τ2
(γ+µ+ψ+ω)(µ+γ1+ρ1)

+
(−µ−θh)(µ+λh)(δ+µ+τ1+(1−

γ γ1
(γ+µ+ψ+ω)(µ+γ1+ρ1)

)τ2)

θhΛh

,

Sm
∗ =

(

Λm

(λm + η)

)

,Em
∗ =

(

Λmλm

(λm + η) (θm + η)

)

andIm
∗ =

(

θmλmΛm

(θm + η) (λm + η)

)

.

(−D− λ) (−A (F + λ) θhθm (G (E+ λ)+Hτ2)

+ (I + λ) (B+ λ) (η + λ) ((C + λ) (E+ λ) (F + λ)

−γ γ1τ2)) = 0 (13)

Now, we have λ3 = −(ρ + µ) and the remaining eigenvalues

are obtained (Equation 14):

P6λ
6 + P5λ

5 + P4λ
4 + P3λ

3 + P2λ
2 + P1λ+ P0 = 0 (14)

Where, P6 = 1 > 0, P5 =

(γ + δ + 2η + 4µ+ ω + γ1 + θh + θm + ρ1 + τ1 + τ2) >

0, P4 > 0, P3 > 0, P2 > 0, P1 =
(

IBCEF + IBCFη + IBEFη + ICEFη + BCEFη + IBCEη
(

1−R0
2
)

−AFGθhθm − (IB+ Iη + Bη)γ γ1τ2
)

and P0 =

IBη
(

CEF
(

1−R0
2
)

− γ γ1τ2
)

> 0, where R0 < 1

and γ γ1τ2 < CEF.

Applying the Routh–Hurwitz stability criterion [37] and after

some little algebraic manipulations, it can be shown that the

eigenvalues of the block matrix have negative real parts .i.e. λ1 =

−µ < 0 , λ3 = − (ρ + µ) < 0, λ6 = −η < 0, if R0 < 1. If

R0 > 1, then P1 < 0, thus thematrix JE0 has at least one eigenvalue

with a positive real part. Hence, malaria-free equilibrium E0 of the

system (Equation 1) is locally asymptotically stable if R0 < 1 and

unstable ifR0 > 1.

3.3 Malaria-present equilibrium point, E∗

The endemic equilibrium point of the dynamical system of

Equation 4 is obtained by making the right side of the system equal

to zero, providing that Eh 6= 0, Ih 6= 0, Ts 6= 0, Rh 6= 0, Em 6=

0, Im 6= 0. We have supposed the endemic equilibrium point of the

model is denoted by E∗ = Sh
∗, Eh

∗, Ih
∗, Th

∗, TS
∗, Rh

∗, Sm
∗, Em

∗,

Im
∗ and the corresponding forces of infection are:

λh
∗ =

qβmhIm
∗ Sh

∗

Nh
and λm

∗ =
qα1mIh

∗ Sm
∗

Nh
+

qα2mTs
∗ Sm

∗

Nh
.

Next, after some steps of the computations, we have determined

the required endemic equilibrium point for the model given as:

Sh
∗ =

(θh+µ)
λh

(

(δ+τ1+τ2+µ)
θh

−
γ1γ τ2

θh(γ1+ρ1+µ)(ω+γ+µ+ψ)

)

Ih
∗,Eh

∗

=
(

(δ+τ1+τ2+µ)
θh

−
γ1γ τ2

θh(γ1+ρ1+µ)(ω+γ+µ+ψ)

)

Ih
∗

Th
∗ =

(

τ1
(

rho+ µ
) +

ωτ2

(ω + γ + µ+ ψ)

)

Ih
∗,

TS
∗ =

(

τ2

(ω + γ + µ+ ψ)

)

Ih
∗,

Rh
∗ =

(

γ τ2

(γ1 + ρ1 + µ) (ω + γ + µ+ ψ)

)

Ih
∗,

Then, by substituting Ih
∗ and Im

∗ in the λh
∗ and λm

∗,

respectively, we get the simplified form:

P1λh + P0 = 0 (15)

where P1 = (IBDEΛh (FC − γ γ1τ2)+ AθmΛm (BDEF (δ + µ)

+EF (BD− ρθh) τ1 + D (BEF − BEγγ1 − θh (Fρω + γρ1)) τ2))

and P0 = Dη2ΛhIB(CEF
(

R0
2 − 1

)

+ γ γ1τ2).

Consequently, the following result has been determined.

Theorem 2. The model of the system (Equation 1) admits

precisely [17].

a. One endemic equilibrium point ifR0 > 1 and P1 < 0 or P0 > 0

and P1 < 0.

b. One endemic equilibrium point if R0 < 1, γ γ1τ2 > CEF and

P1 < 0 or P0 > 0 and P1 < 0.

c. One endemic equilibrium point if R0 < 1, γ γ1τ2 < CEF and

P1 > 0 or P0 < 0 and P1 > 0.

d. No equilibrium point otherwise.
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From theorem 2, we can observe that, the existence of one

positive root in condition (b) and one positive root in condition

(c) suggests that the model can exhibit backward bifurcation

phenomenon, where both locally asymptotically stable malaria-free

and endemic steady states co-exist, where R0 < 1. It suggests that

while eliminating diseases from the population is dependent on the

criterionR0 < 1, this need is no longer sufficient to ensure disease

eradication. Thus, when R0 < R0
∗ < 1, it can be demonstrated

that backward bifurcation happens for certain values of R0. The

backward bifurcation phenomena in system (Equation 1) make it

challenging to manage or eradicate malaria becauseR0 < R0
∗ < 1

requires lowering themodel’s reproduction number to a level below

unity. This implies that further control efforts will be required to

eradicate malaria from the population.

Theorem 3. The malaria-present equilibrium, E∗ =
(

Sh
∗, Eh

∗, Ih
∗,Th

∗,TS
∗,Rh

∗, Sm
∗,Em

∗, Im
∗
)

of the system

(Equation 1), is locally asymptotically stable (LAS), if R0 > 1 and

unstable ifR0 < 1 [38].

Proof: The Jacobian matrix of the model (Equation 1) is

given by

J
(

E∗
)

=

































a1 0 0 a4 0 a6 0 0 −a9
b1 −b2 0 0 0 0 0 0 b9
0 c2 −c3 0 0 c6 0 0 0

0 0 d3 −d4 d5 0 0 0 0

0 0 e3 0 −e5 0 0 0 0

0 0 0 0 f5 −f6 0 0 0

0 0 −g3 0 −g5 0 −g7 0 0

0 0 h3 0 h5 0 h7 −h8 0

0 0 0 0 0 0 0 k8 −k9

































(16)

where a1 = µ +
qβmhIm

∗

Nh
∗ , a4 = ρ, a6 = ρ1, a9 =

qβmhSh
∗

Nh
∗ ,

b1 =
qβmhIm

∗

Nh
∗ , b2 = θh + µ, b9 =

qβmhSh
∗

Nh
∗ , c2 = θh, c3 =

(δ + τ1 + τ2 + µ), c6 = γ1, d3 = τ1, d4 = (ρ + µ), d5 = ω, e1 =

e2 = e3 = τ2, e5 = (ω + γ + µ+ ψ), f5 = γ, f6 = γ1 + ρ1 + µ,

g3 =
qα1m
Nh

∗ Sm
∗, g5 =

qα2m
Nh

∗ Sm
∗, g7 = (qα1m

Ih
∗

Nh
∗ +qα2m

TS
∗

Nh
∗ +η), h3 =

qα1m
Nh

∗ Sm
∗, h5 =

qα2m
Nh

∗ Sm
∗, h7 = (qα1m

Ih
∗

Nh
∗ +qα2m

TS
∗

Nh
∗ ), h8 = θm+η,

k8 = θm, k9 = η. The corresponding characteristic equation of

the Jacobian matrix with eigenvalue λ is given by |J (E∗)− λI| = 0;

that is,

P9λ
9 + P8λ

8 + P7λ
7 + P6λ

6 + P5λ
5 + P4λ

4 + p3λ
3

+ P2λ
2 + P1λ+ P0 = 0 (17)

where P0, P1, P2, . . . , P9 (see Appendix I in

Supplementary material).

Therefore, we show that when R0 > 1, all the coefficients

Pi of the characteristic (Equation 17), and the first column values

b1, c1, d1, e1, f1, g1, h1 and i0 of the Routh array are positive,

so by the Routh-Hurwitz stability criterion, all the eigenvalues of

the Jacobian matrix (Equation 17) have negative real parts. Thus,

the malaria-present equilibrium is locally asymptotically stable for

R0 > 1.

4 Sensitivity analysis of the
reproduction number

This section aims to perform a sensitivity analysis of

the basic reproductive number, which is crucial for designing

mitigation strategies to slow the spread of malaria by reducing

the reproduction number. Sensitivity analysis helps [39–41]

researchers, public health officials, and policymakers prioritize

interventions and decisions based on the most strongly influencing

factors, enabling them to understand the effects of each parameter

on the reproduction number and design effective strategies.

Definition 1. Normalized forward sensitivity index of R0

which is differentiable to a given parameter (p) is defined as [42]

SI
(

p
)

=

(

∂R0

∂p

)

∗

(

p

R0

)

(18)

By using the parameter values given in Table 1 and Def. 1, the

respective sensitivity indices values for reproduction number are

computed in Table 2 and we plot the sensitivity indices in Figure 2.

The positive parameter values increase the reproduction

number when they are increased, while the negative parameter

values decrease the reproduction number when they are increased.

From the parameter values displayed in Table 2, we can observe

that factors such as the biting rate of mosquitoes and the

probability of transmission of infection from humans in treatment

with traditional medicine to susceptible mosquitoes are the most

sensitive factors. So, interventions should be introduced to reduce

these factors. In another way, factors such as the rate of infectious

humans who are undergoing treatment at health facilities (τ1) and

the progression rate (ω) due to failure of treatment with traditional

medicine to treatment at health facilities are also sensitive to

the basic reproduction number. Increasing these factors will

decrease the reproductive number and reduce malaria. Moreover,

if SI
(

p
)

=y, then a 1% increase in the parameter p results in a y%

increase if y > 0 (decrease if y < 0) in reproduction number.

From our sensitivity indices results, for example, a 10% increase in

the probability of transmission of infection from human treatment

with traditional medicine to susceptible mosquitoes results in

a 3.5% increase in the value of reproduction number. A 10%

increase in treatment with traditional medicine results in a 1.9%

decrease in value of the reproduction number; a 10% increase in

the progression rate (ω) results in a 3% decrease in the value of

the reproduction number. Again, an 10% increase in treatment

at health facilities results in a 3.1% decrease in the value of the

reproduction number and, hence a reduction in malaria.

5 Numerical simulations

This section conducts a numerical simulation to validate the

analytical results of a model (Equation 1) designed to study the

dynamics of malaria in communities. Parameter values from many

sources are used in the model, which employs the fourth-order

Runge–Kutta method andMATLAB R2023a to examine the impact

of parameters on malaria transmission.

Here, one of our main goals is to look into how treatment with

inappropriate traditional medicines affects the dynamics of malaria

transmission. Figure 3a shows how varying the treatment rate at

health facilities affects the infectious human populations. We can

observe that when the treatment rate at health facilities increases,

the population of infectious humans can be reduced, and the

disease can be eliminated from the community after 140 months.

Figure 3b shows how varying the treatment rate with traditional

medicines affects the infectious human populations. We can
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TABLE 1 Parameters description of the model with their values.

Parameters Descriptions Units Values References

Λh Constant recruitment rate for humans month 0.000215 [16]

Λm Constant recruitment rate for mosquitoes month 0.07 [16]

µ Natural death rate of humans month 0.000045 [17]

η Natural death rate of mosquitoes permonth 0.0477 [17]

q Average per capita biting rate of mosquitoes permonth 0.33 [17]

α1m Probability of transmission of infection from Ih to

Sm

- 0.8333 [15]

α2m Probability of transmission of infection from Ts to

Sm

- 0.0833 [15]

βmh Probability of transmission of infection from Im to

Sh

- 0.02 [15]

θh Latent period in humans permonth 0.1 [17]

θm Latent period in mosquitoes permonth 0.08 [17]

δ Disease-induced death rate of Ih class permonth 0.0018 [17]

ψ Disease-induced death rate of Ih class permonth 0.0001 Assumed

τ1 From infectious human class to human treatment

class at health facilities, the constant treatment

rate of humans

permonth [0, 1] Estimated from [43, 44]

τ2 From infectious human class to human treatment

class with traditional medicine

permonth 0.605 Assumed

ρ From human treatment class at health facilities to

a susceptible human class, the rate of loss of

immunity

permonth 0.0166 [43, 44]

γ Recovery rate due to natural immunity and the use

of traditional antimalarial drugs

permonth 0.0065 Assumed

ω From humans treatment with traditional medicine

class to treatment at health facilities, the

progression rate due to ineffectiveness of

traditional medicines

permonth 0.01 Assumed

γ1 From a recovered human class to an infectious

human class, the relapse rate

/month 0.1 [43]

ρ1 From a recovered human class to a susceptible

human class, the rate of loss of immunity

permonth 0.0146 [15]

TABLE 2 Sensitivity indices ofR0 to parameters evaluated at the parameter values given in Table 1.

Parameter Sensitivity Index Sign Parameter Sensitivity Index Sign

Λh −0.5 −ve µ 0.00793578 +ve

Λm 0.5 +ve η −0.356 −ve

βmh 0.5 +ve τ1 −0.305104 −ve

α1m 0.0990734 +ve τ2 −0.194303 −ve

α2m 0.359975 +ve ψ −0.0030039 −ve

δ −0.000617773 −ve q 1 +ve

θh 0.0002248997 +ve ω −0.300391 −ve

θm 0.186766 +ve γ −0.059842 −ve

observe that when the treatment rate with traditional medicine

increases, the population of infectious humans can be increased

because of factors such as lack of quality control, safety, dosage, and

potential drug interactions and can be reduced when traditional

remedies are considered with caution and in consultation with

healthcare professionals or skilled traditional practitioners. If so,
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FIGURE 2

Sensitivity indices of the model parameters for reproduction number, R0.

FIGURE 3

E�ect of treatment-seeking behaviors on infectious humans. (a) The e�ect of treatment at health facilities on infectious humans. (b) The e�ect of

treatment with traditional medicines on infectious humans.

it takes more than 400 months to eliminate the disease in the

targeted community.

Figure 4a shows how varying the progression rate (awareness)

to health facilities affects the human population’s treatment with

traditional medicines. We can observe that when the progression

rate from Ts to Th increases, the population treated with traditional

medicines decreases, resulting in the population of infectious

humans being reduced, and the disease can be eliminated from the

community after 200 months, as shown in Figure 4b.

The depicted graph in Figure 5 delineates the relationship

between the reproduction number and the treatment rate (τ1)

for the transition from the infectious human class to the

human treatment class at a health facility. Remarkably, a notable

intersection occurs at a reproduction number of one and a

treatment rate of τ1 = 0.17. This intersection point carries

significant epidemiological implications, suggesting a critical

threshold where the spread of infection is balanced by treatment

efforts. Now, the rate of new infections matches the rate of

individuals transitioning to treatment, potentially indicating a

pivotal point for disease control and management strategies.

Understanding and leveraging this intersection point can inform

targeted interventions aimed at effectively curtailing outbreaks and

minimizing their impact on public health.

The convergence of the treatment rate (τ2) and the

reproduction number on the Figure 6 denotes a significant

intersection point, occurring at a value of 0.80. This intersection

holds profound implications for the transition from the infectious

human class to the human treatment class with traditional

medicines. At this point, the treatment rate aligns with the

reproduction number, indicating a pivotal balance between the rate
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FIGURE 4

E�ect of progression rate on Ts and Ih. (a) E�ect of progression rate from treatment with TM to health facility on Ts. (b) E�ect of progression rate

from treatment with TM to health facility on Ih.

FIGURE 5

E�ect of treatment rate at health facility on reproduction number,

R0.

of new infections and the effectiveness of treatment interventions.

Notably, to achieve a reproduction number of less than one, it is

essential for the treatment rate (τ2) to exceed 0.80. Such equilibrium

underscores a critical threshold in disease management, where

treatment efforts are optimally poised to mitigate the spread of

infection effectively. Recognizing and leveraging this intersection

point is paramount for devising targeted strategies to control

outbreaks and safeguard public health.

6 Formulation and analysis of optimal
control

In this part, we use Pontryagin’s maximum principle [45, 46]

to identify the parameters required for effective malaria control.

We use three time-dependent controls in the model (Equation 1) to

find the best disease control approach. The study proposes a model

to minimize malaria transmission by introducing control measures

like ITNs, antimalarial drug treatment, and raising awareness

about avoiding inappropriate traditional medicines. The model is

FIGURE 6

E�ect of treatment rate with traditional medicines on reproduction

number, R0.

designed to investigate the potential impact of these interventions,

with the use of insecticide-treated bed nets, antimalarial drug

treatment, and awareness creation being incorporated into the

model to determine the most effective approach as follows:



































































dSh
dt (t) = Λh − ((1− u1)λh + µ)Sh + ρTh + ρ1Rh

dEh
dt (t) = (1− u1)λhSh − (θh + µ)Eh

dIh
dt (t) = θhEh + γ1Rh −

(

δ + u2τ1 + (1− u3)τ2 + µ
)

Ih
dTh
dt (t) = u2τ1Ih + ωTs − (ρ + µ)Th

dTs
dt (t) = (1− u3) τ2Ih − (ω + γ + µ+ ψ)Ts

dRh
dt (t) = γTs − (γ1 + ρ1 + µ)Rh

dSm
dt (t) = Λm −

(

(1− u1)λm + η
)

Sm
dEm
dt (t) = (1− u1)λmSm − (θm + η)Em

dIm
dt (t) = θmEm − ηIm

(19)

with the corresponding initial conditions

Sh (0) > 0, Eh (0) ≥ 0, Ih (0) ≥ 0, Th (0) ≥ 0, Ts (0) ≥ 0,

Rh (0) ≥ 0, Sm (0) > 0, Em (0) ≥ 0, Im (0) ≥ 0 (20)
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and 0 ≤ u1 (t) ≤ 1 represents malaria infection personal

protection measures, 0 ≤ u2 ≤ 1 represents antimalarial drug

treatment control and 0 ≤ u3 ≤ 1 represents providing awareness

on avoiding the inappropriate use of traditional medicines.

The objective function of the system (Equation 19)

is to minimize the total number of exposed humans,

infectious humans, and mosquitoes while minimizing

the cost of control u1 (t) , u2 (t) , u3(t) and to find the

optimal control values u∗ = (u1
∗, u2

∗, u3
∗) of the controls

u = (u1, u2, u3) such that the associated state trajectories
(

Sh
∗, Eh

∗, Ih
∗,Th

∗, Ts
∗, Rh

∗, Sm
∗, Em

∗, Im
∗
)

are solutions of the

optimal control system (Equation 19) with initial conditions as

given in Equation 20. The objective function is given by

J (u1, u2, u3) =

∫ tf

0

(

D1Eh (t)+ D2Ih (t)+ D3Nm (t)

+
1

2

(

w1u
2
1 + w2u

2
2 + w3u

2
3

)

)

dt (21)

Subject to (Equation 22) where tf is the final time, Nm =

(Sm + Em + Im), D1, D2, D3, w1, w2 and w3 are positive

weight constants. Our choice of control functions agrees with

other literature on control of epidemics [16, 40, 46, 47]. The

quadratic costs w1u
2
1(t), w2u

2
2(t) and w3u

2
3 are the costs associated

with the use of personal protection measures (ITNs), the use

of antimalarial drugs for infectious humans, and awareness on

avoiding the un-prescribed use of antimalarial drugs. Here, the

fact that the controls are linearly in Equation 19 and quadratic

in the objective function allows the Hamiltonian associated with

the optimal control problem to be maximized. We seek to find,

using the Pontryagin maximum principle [48], an optimal control

u1
∗(t), u2

∗(t) and u3
∗(t) satisfying (Equation 19) such that

J
(

u1
∗, u∗2 , u

∗
3

)

= min {J (u1, u2, u3) : u1, u2, u3 ∈ U} , (22)

Where U =
{

(u1, u2, u3)
}

such that u1, u2, u3 are measurable

with 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ u3 ≤ 1, for t ∈ [0, tf ]

is the control set. The controls
(

u1 (t) , u2 (t) , u3(t)
)

are bounded

Lebesgue integrable functions [49].

The optimal controls
(

u1 (t) , u2 (t) , u3(t)
)

satisfy necessary

conditions from Pontryagin’s maximum principle [48]. This

principle converts Equations 19, 21 into a problem of minimizing

pointwise a Hamiltonian H, to the controls
(

u1 (t) , u2 (t) , u3(t)
)

.

The optimality conditions are obtained using the Hamiltonian

formulated from the cost functional (Equation 21) and the

governing dynamics (Equation 19). Thus, Hamiltonian H is

given as:

H = D1Eh (t)+ D2Ih (t)+ D3Nm (t)+
1
2

(

w1u
2
1 + w2u

2
2 + w3u

2
3

)

+Ŵ1
[

Λh − ((1− u1)λh + µ)Sh + ρTh + ρ1Rh
]

+Ŵ2
[

(1− u1) λhSh − (θh + µ)Eh
]

+Ŵ3 [θhEh + γ1Rh − (δ + u2τ1 + (1− u3) τ2 + µ) Ih]

+Ŵ4 [u2τ1Ih + ωTs − (ρ + µ)Th]

+Ŵ5 [(1− u3) τ2Ih − (ω + γ + µ+ ψ)Ts]

+Ŵ6 [γTs − (γ1 + ρ1 + µ)Rh]

+Ŵ7 [Λm − ((1− u1) λm + η) Sm]

+Ŵ8 [(1− u1) λmSm − (θm + η)Em]

+Ŵ9 [θmEm − ηIm] (23)

Where Ŵi, i = 1, 2, . . . , 9 are the associated adjoints for the

state variables.

The system of equations is found by taking the appropriate

partial derivatives of the Hamiltonian (26) to the associated

state variable.

Theorem 4. [45, 47] Let u1
∗, u∗2 , u

∗
3 be the optimal control

and solutions
(

Sh
∗, Eh

∗, Ih
∗,Th

∗, Ts
∗, Rh

∗, Sm
∗, Em

∗, Im
∗
)

of the

corresponding state system (19) that minimizes J(u1, u2, u3) over

U. Then, there exists adjoint variables Ŵi, i = 1, 2, . . . , 9 satisfying

the following canonical equations

−
dŴ1

dt
= −Ŵ1 ((1− u1) λh + µ)+ Ŵ2 (1− u1)

−
dŴ2

dt
= D1 − Ŵ2 (θh + µ)+ Ŵ3θh

−
dŴ3

dt
= D2 − Ŵ3 (δ + u2τ1 + (1− u3) τ2 + µ)+ Ŵ4 (u2τ1)

+Ŵ5 (1− u3) τ2 + (Ŵ8 − Ŵ7)
(1− u1) qα1mSm

Nh

−
dŴ4

dt
= Ŵ1ρ − Ŵ4(ρ + µ)

−
dŴ5

dt
= Ŵ4ω − Ŵ5 (ω + γ + µ+ ψ)+ Ŵ6γ

+ (Ŵ8 − Ŵ7)
(1− u1) qα2mSm

Nh
(24)

−
dŴ6

dt
= Ŵ1ρ1 + Ŵ3γ1 − Ŵ6 (γ1 + ρ1 + µ)

−
dŴ7

dt
= D3 + Ŵ8 (1− u1) λm − Ŵ7 ((1− u1) λm + η)

−
dŴ8

dt
= D3 + Ŵ9θm − Ŵ8 (θm + η)

−
dŴ9

dt
= D3 + (Ŵ2 − Ŵ1) (1− u1) qβmh − Ŵ9η

With transversality conditions

Ŵ1
(

tf
)

= Ŵ2
(

tf
)

= Ŵ3
(

tf
)

= Ŵ4
(

tf
)

= Ŵ5
(

tf
)

= Ŵ6
(

tf
)

= Ŵ7
(

tf
)

= Ŵ8
(

tf
)

= Ŵ9
(

tf
)

= 0 (25)

and

u1
∗ = max

{

0, min

{

(Ŵ2 − Ŵ1) λhSh + (Ŵ8 − Ŵ7)λmSm

w1
, 1

}}

,

u∗2 = max

{

0, min

{

(Ŵ3 − Ŵ4) τ1Ih

w2
, 1

} }

,

u∗3 = max

{

0, min

{

(Ŵ5 − Ŵ3) τ2Ih

w3
, 1

}}

(26)
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Proof: By using [50], the integrand of the objective functional

J(u1, u2, u3) is a convex function of u1, u2 and u3. Since

the solution of the system (Equation 19) is bounded, hence the

system satisfies the Lipshitz property with respect to the variables

Sh, Eh, Ih, Th, Ts, Rh, Sm, Em and Im. Therefore, there exists

an optimal pair(u1
∗, u∗2 , u

∗
3). The governing equations of the

adjoint variables are obtained by differentiation of the Hamiltonian

function, evaluated at the optimal control. Then, the adjoint system

can be written as:

dŴ1

dt
= −

∂H

∂Sh
= −Ŵ1 ((1− u1) λh + µ)+ Ŵ2 (1− u1) Or

Ŵ
′

1 = Ŵ1 ((1− u1) λh + µ)− Ŵ2 (1− u1 )

dŴ2

dt
= −

∂H

∂Eh
= D1 − Ŵ2 (θh + µ)+ Ŵ3θh

dŴ3

dt
= −

∂H

∂Ih
= D2 − Ŵ3 (δ + u2τ1 + (1− u3) τ2 + µ)

+Ŵ4 (u2τ1)+ Ŵ5 (1− u3) τ2 + (Ŵ8 − Ŵ7)
(1− u1) qα1mSm

Nh

dŴ4

dt
= −

∂H

∂Th
= Ŵ1ρ − Ŵ4(ρ + µ)

dŴ5
dt

= − ∂H
∂Ts

= Ŵ4ω − Ŵ5 (ω + γ + µ+ ψ)+ Ŵ6γ

+(Ŵ8 − Ŵ7)
(1−u1)qα2mSm

Nh
(27)

dŴ6

dt
= −

∂H

∂Rh
= Ŵ1ρ1 + Ŵ3γ1 − Ŵ6 (γ1 + ρ1 + µ)

dŴ7

dt
= −

∂H

∂Sm
= D3 + Ŵ8 (1− u1) λm − Ŵ7 ((1− u1) λm + η)

dŴ8

dt
=
∂H

∂Em
= D3 + Ŵ9θm − Ŵ8 (θm + η)

dŴ9

dt
= −

∂H

∂Im
= D3 + (Ŵ2 − Ŵ1) (1− u1) qβmh − Ŵ9η

With transversality conditions Ŵ1
(

tf
)

= Ŵ2
(

tf
)

= Ŵ3
(

tf
)

=

Ŵ4
(

tf
)

= Ŵ5
(

tf
)

= Ŵ6
(

tf
)

= Ŵ7
(

tf
)

= Ŵ8
(

tf
)

= Ŵ9
(

tf
)

= 0.

Then, from the optimality condition, we have:

∂H

∂ui
= 0, at u1 = u∗i for i = 1, 2, 3

Using [51], we get, u1 =
(Ŵ2−Ŵ1)λhSh+(Ŵ8−Ŵ7)λmSm

w1
, u2 =

(Ŵ3−Ŵ4)τ1Ih
w2

, u3 =
(Ŵ5−Ŵ3)τ2Ih

w3
and solving for u∗1 , u

∗
2 and u∗3 we get:

u1
∗ = max

{

0, min

{

(Ŵ2 − Ŵ1) λhSh + (Ŵ8 − Ŵ7)λmSm

w1
, 1

}}

,

u∗2 = max

{

0, min

{

(Ŵ3 − Ŵ4) τ1Ih

w2
, 1

}}

and u∗3 = max

{

0, min

{

(Ŵ5 − Ŵ3) τ2Ih

w3
, 1

}}

Additionally, the sufficient condition (the second derivative of

the Hamilton function with respect to u1, u2 and u3). i.e.
∂2H

∂u21
=

0 H⇒ ∂2H

∂u21
= w1,

∂2H

∂u22
= 0 H⇒ ∂2H

∂u22
= w2 and

∂2H

∂u23
= 0 H⇒

∂2H

∂u23
= w3.

This shows that the optimal problem goes minimization at

u1, u2 and u3.

6.1 Numerical simulations of optimal
control

The optimality system consists of the state system in the system

(Equation 1), optimal control set in Equation 19, adjoint system

in Equation 24, boundary conditions in Equation 25, and initial

conditions Sh (0) = 85, Eh (0) = 20, Ih (0) = 20, Th (0) =

5, Ts (0) = 10, Rh (0) = 5, Sm (0) = 1, 000, Em (0) = 20,

and Im (0) = 30, [16], while the parameter values are given in

Table 2. We carried out the numerical simulation with MATLAB

R2023a by using the forward-backward fourth-order Runge-Kutta

iterative method to solve the optimality system [46]. The state

(Equation 19) is solved with the initial values of state variables using

the fourth-order forward Runge–Kutta method and then we used

backward fourth-order Runge-Kutta to solve the adjoint equations

[45, 46, 51]. To determine the impact of control measures on

the reduction of malaria infection, we have the following cases of

optimal control strategies:

Intervention I: Optimal use of ITNs, treatment, and awareness

creation toward avoiding inappropriate traditional medicines

Figures 7a–c depicts when the three control mechanisms,

namely ITNs (u1 6= 0), antimalarial drug treatment (u2 6=

0), and awareness creation toward avoiding un-prescribed TM

(u3 6= 0) are implemented to optimize the objective function J.

The results show that the number of exposed humans, infectious

humans, andmosquitoes are decreased more rapidly when controls

are in use than the case without controls. We found that while

ITN use, treatment, and raising awareness against the use of un-

prescribed traditional medicines can all contribute to a reduction

in the malaria burden. Combining these interventions is the most

effective way to get improved outcomes

Intervention II: Optimal use of ITNs and antimalarial

drug treatment

In this case, simulation is done for infectious humans and

mosquitoes when there is no control strategy in place and

when there are protective efforts using ITNs and treatment

for infectious individuals. As Figures 8a, b illustrates, when

controls are in place, the number of infectious humans and

infectious mosquitoes decline more quickly than the case without

controls, respectively.

Intervention III: Optimal use of ITNs and awareness creation

toward inappropriate use of traditionalmedicines

In this case, simulation is done for infectious humans

and mosquitoes when there is a control strategy in place and

when there are combined protective efforts using ITNs and

using media campaigns for awareness creation of avoiding

unprescribed traditional medicines. As Figures 9a, b illustrate,

when controls are in place, the number of infectious humans

and mosquitoes declines more quickly than in the case

without controls.

Intervention IV: Optimal use of treatment of Infectious

Humans and Awareness creation toward inappropriate use of

traditional medicines

In this case, simulation is done for infectious humans and

mosquitoes when there is no control strategy in place and when

there are combined effects of protective efforts using treatment

for infectious individuals and using media campaigns to raise
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FIGURE 7

E�ect of intervention –I on Ih and Im over time. (a) Simulation of optimal use of u1, u2 and u3 on infectious humans. (b) Simulation of optimal use of

all interventions on infectious humans when TM is not used. (c) Simulation of optimal use of u1, u2 and u3 on infectious mosquitoes.

awareness of avoiding clinically not valid traditional medicines. As

shown in Figures 10a, b, when controls are in place, the number of

infectious humans and mosquitoes declines more rapidly than in

the case without controls. Here, on comparison, we find that using

strategy IV is the powerful one to mitigate malaria compared to

the strategy III because it reduces the infectious individuals and

mosquitoes to zero after 100 months.

Intervention V: Optimal use of ITNs

Figures 11a, b illustrates how the adoption of personal

protective measures using ITNs alone has a positive effect on

curbing the prevalence of malaria within the community, but it is

not sufficient to eliminate the disease.

Intervention VI: Optimal use of antimalarial drug treatment

The implementation of treatment alone can effectively slow the

transmission of malaria within a community, but it is insufficient to

eradicate the illness, as shown by Figures 12a, b.

Intervention VII: Optimal use of awareness creation toward

inappropriate use of TMs

The implementation of awareness creation toward

unprescribed traditional medicines alone can reduce

the spread of malaria within a community, though

it is insufficient to eradicate the illness, as shown by

Figures 13a, b.

Moreover, when there is no treatment with inappropriate TMs

(τ2 = 0), the three control mechanisms strictly decrease the

infected humans initially from 30 to 0 at 20 months, and when

there is use of inappropriate TMs (τ2 > 0), the three control

mechanisms decrease the infectious humans initially from 30

to 0 after 100 months, as shown in Figures 9a, b, respectively.

Although the three strategies do lower the prevalence of malaria,

when traditional medicines are used for treatment, the disease

is still endemic in the community. Therefore, using the three

control mechanisms at the same time, avoiding treatment with

inappropriate traditional medicines, and seeking treatment by

health professionals at health facilities are the best strategies to

mitigate malaria.
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FIGURE 8

E�ect of intervention II on Ih and Im over time. (a) Simulation of optimal use of u1 and u2 on infectious humans. (b) Simulation of optimal use of u1

and u2 on infectious mosquitoes.

FIGURE 9

E�ect of intervention III on Ih and Im over time. (a) Simulation of optimal use of u1 and u3 on infectious humans. (b) Simulation of optimal use of u1

and u3 on infectious mosquitoes.

7 Discussion and conclusion

This study presents a comprehensive mathematical model to

analyze the impact of treatment-seeking behaviors using optimal

control on the transmission dynamics of malaria. The model

incorporates distinct groups of individuals seeking treatment at

health facilities and those relying on traditional remedies, which

lack clinical validation. By employing a new deterministic model,

the study explores the effects of various control measures, including

antimalarial drug treatment, personal protective measures like

insecticide-treated bed nets (ITNs), and awareness campaigns to

discourage the inappropriate use of traditional medicine. The

findings highlight that the utilization of health facilities for malaria

treatment significantly reduces the basic reproduction number,

underscoring the importance of effective healthcare interventions

in malaria-endemic regions. Sensitivity analysis reveals that

parameters such as the biting rate of mosquitoes and the probability

of transmission from individuals undergoing traditional medicine

treatment to susceptible mosquitoes are highly sensitive to changes

in reproduction number. This suggests that interventions targeting

these parameters could be particularly effective in reducing malaria

transmission. Moreover, from our sensitivity results, we can

observe that the value of the transmission of infection from Ih
to Sm(α1m = 0.0990734), transmission of infection from Ts to

Sm(α2m = 0.359975) and transmission of infection from Im
to Sh (βmh = 0.5) implies that they increase the reproduction
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FIGURE 10

E�ect of intervention IV on Ih and Im over time. (a) Simulation of optimal use of u2 and u3 on infectious humans. (b) Simulation of optimal use of u2

and u3 on infectious mosquitoes.

FIGURE 11

E�ect of intervention V on Ih and Im over time. (a) Simulation of optimal use of u1 on infectious humans. (b) Simulation of optimal use of u1 on

infectious mosquitoes.

number. This means that the positive parameter values increase the

reproduction number when they are increased, while the negative

parameter values decrease the reproduction number when they

are increased.

Numerical simulations demonstrate that increasing the

treatment rate at health facilities leads to a rapid decline in the

infectious human population, potentially eliminating the disease.

In contrast, reliance on traditional medicine without proper

clinical validation can prolong the disease’s persistence and can

take a long time to eradicate. The study also explores the role

of awareness campaigns in reducing the use of inappropriate

traditional medicines. Increasing the progression rate from

traditional medicine treatment to health facility treatment

significantly reduces the population relying on traditional

remedies, thereby decreasing the infectious human population.

This highlights the importance of public health campaigns

in guiding individuals toward clinically validated treatments.

Optimal control analysis further emphasizes that a combination

of control strategies—ITNs, antimalarial drug treatment, and

awareness campaigns—is the most effective approach to combating

malaria. The simulations show that implementing all three

controls simultaneously leads to a faster reduction in the number

of infected individuals and mosquitoes compared to using

any single control measure. This finding aligns with previous
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FIGURE 12

E�ect of intervention VI on Ih and Im over time. (a) Simulation of optimal use of u3 on infectious humans. (b) Simulation of Optimal use of u3 on

infectious mosquitoes.

FIGURE 13

E�ect of intervention VII on Ih and Im over time. (a) Simulation of optimal use of u3 on infectious humans. (b) Simulation of optimal use of u3 on

infectious mosquitoes.

studies that advocate for integrated control strategies to achieve

malaria eradication.

The study highlights the importance of healthcare facilities

in malaria control, highlighting the need for increased treatment

rates to reduce the basic reproduction number and accelerate

the decline in the infectious human population. Traditional

medicine, widely used in malaria-endemic regions, faces

challenges due to its lack of clinical validation and standardized

dosage. Relying on traditional remedies can prolong malaria’s

persistence, emphasizing the need for consultation with healthcare

professionals. Public health campaigns to discourage inappropriate

use of traditional medicine and promote clinically validated

treatments are crucial. Integrated control strategies, including

the use of insecticide-treated bed nets (ITNs), antimalarial

drug treatment, and awareness campaigns, are the most

effective approach to malaria control. Implementing these

strategies simultaneously leads to a faster and more substantial

reduction in malaria transmission compared to using any

single intervention.

The study suggests that public health policies in malaria-

endemic regions should focus on strengthening healthcare

infrastructure, regulating traditional medicine, intensifying public

health campaigns, and adopting integrated malaria control

programs. These include expanding healthcare facilities, ensuring

access to antimalarial treatments, and promoting collaboration

between traditional practitioners andmodern healthcare providers.

This holistic approach is more likely to achieve sustainable

malaria eradication.
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8 Limitations of the study

While this Study provides valuable insights, it has some

limitations. The model assumes homogeneous mixing within the

population, which may not fully capture the complexities of

real-world malaria transmission. Additionally, the study relies on

parameter values from existing literature, which may not fully

reflect the specific conditions of all malaria-endemic regions.

Finally, this study is considered deterministic and governed

by a system of integer-order ordinary differential equations.

Considering the dynamics of malaria transmission with fractional-

order approaches to investigate the memory effect and cost-

effectiveness analysis is our future study.
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