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Spiking neural networks (SNNs) have significant potential for a power-e�cient

neuromorphic AI. However, their training is challenging since most of the

learning principles known from artificial neural networks are hardly applicable.

Recently, the concept of “blessing of dimensionality" has successfully been used

to treat high-dimensional data and representations of reality. It exploits the

fundamental trade-o� between the complexity and simplicity of statistical sets

in high-dimensional spaces without relying on global optimization techniques.

We show that the frequency encoding of memories in SNNs can leverage this

paradigm. It enables detecting and learning arbitrary information items, given

that they operate in high dimensions. To illustrate the hypothesis, we develop

a minimalist model of information processing in layered brain structures and

study the emergence of extreme selectivity to multiple stimuli and associative

memories. Our results suggest that global optimization of cost functions may be

circumvented at di�erent levels of information processing in SNNs, and replaced

by chance learning, greatly simplifying the design of AI devices.

KEYWORDS

spiking neural network (SNN), local learning, blessing of dimensionality, Hebbian

plasticity, non-linear dynamics

1 Introduction

The exponentially growing demand for computer power in AI already exceeds the

progress in developing cutting-edge CMOS technologies [1], which pushes the search

for alternative solutions. On the other side, the mammalian brain exhibits unmatched

cognitive abilities, consuming only around 20watts [2]. Thus, a shift of AI to neuromorphic

approaches is becoming increasingly imminent [3]. In this context, spiking neural

networks (SNNs) may significantly boost the energy efficiency and performance of AI,

which is especially relevant for autonomous robotic agents and low-power solutions

required, e.g., by the Internet of Things.

One of the most significant issues in developing cognitive, power-efficient SNNs is

the problem of their training. It is inextricably linked with choosing one or another

specific network architecture and learning paradigm. It turns out that most of the

solutions known from artificial neural networks are hardly applicable or simply unfeasible

in SNNs [3]. Thus, exploring novel concepts and bioinspired solutions is a significant

challenge in the development of SNNs. In this work, we examine two basic frameworks:

(1) a simple feedforward architecture equipped with local synaptic plasticity and (2)

the blessing of dimensionality in high-dimensional neurons [4]. We show that taking

them together can be sufficient for the emergence of by-chance functional selective
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learning of arbitrary (correlated or not) information items. The by-

chance learning relies on a random establishment of links between

stimuli and neurons, which are further reinforced through local

plasticity (Figure 1). It is effective only when the information items

are high-dimensional.

The anatomy and connectivity of neural networks influence

learning processes. In turn, learning experiences alter neural

architecture [5–8]. This dynamic relationship highlights the

brain’s capacity for neuroplasticity, suggesting that the anatomical

framework provides a substrate for learning while the latter

induces structural and functional modifications in neural pathways.

It creates a continuous feedback loop between structure and

experience. Thus, the first steps that will allow model neural

networks to approach natural ones should include transitioning

from super-deep architectures to shallow ones containing a few

layers of high-dimensional neurons (framework 1, Figure 1A).

Subsequent steps can involve implementing models of structural

plasticity that provide rewiring, consolidating the results of training

into long-term memory [8–11].

Following Tyukin et al. [12], we call a neuron high-dimensional

if it receives and processes high-dimensional information, i.e., it

operates in a multidimensional space (framework 2). Note that a

high number of synaptic contacts is a necessary but not sufficient

condition. We better refer to the number of “channels" or bundles

of axons transmitting statistically independent information. A

remarkable brain feature is the ability to learn over a few or

even single examples, the so-called one-shot learning [13]. Recent

progress in studies of the concentration of measure [14, 15] and

stochastic separation theorems [16–19] has laid the theoretical

basis for explaining mathematical mechanisms behind this ability.

However, the blessing of dimensionality has not been studied in

biologically relevant neuronal models. Here, we make a step in

closing this gap.

The choice of the learning rule is also important. There is

a need to move from global algorithms based on minimizing a

loss function to local ones based on the mutual correlation of

the activity of interacting neurons. This type of learning, known

as Hebbian plasticity [20], implements experimentally discovered

effects, such as LTP, LTD, and STDP [for a comprehensive review,

see, e.g., [21]]. The application of this approach to the problem of

“classical" classification loses to global supervised methods such as

gradient descent [3] or to hybrid approaches combining local and

global learning [22]. However, Hebbian learning can work in the

absence of a large labeled database, implementing the principles

of associative learning and self-organizing cognitive neural maps,

which has been used, e.g., in neuro-robotics [23–27]. Here, we

also stick to biologically justified local learning in the form of

synaptic plasticity.

Depending on the specific formulation, Hebbian learning can

provide either rate or temporal information coding. Rate coding

relies on the spike frequencies, while temporal one focuses on the

spike timings. Both strategies have advantages and disadvantages

[29]: rate coding is characterized by its simplicity and robustness

to noise, making it well-suited for analysis within the framework

of local learning in SNNs. Conversely, since temporal coding,

implemented, e.g., through the classical STDP rule, can convey

information through patterns of timings, it risks being less stable

but potentially more reach. Other novel model approaches allow a

smooth transition between both types of coding [30, 31]. However,

for the sake of simplicity, we restrict ourselves to considering the

case of rate-dependent Hebbian plasticity.

2 The problem

2.1 Typical functional organization of an
SNN

Figure 2A shows the functional organization of a multilayer

neural network typical for the CNS. For example, in the

hippocampus, under certain simplifications, single pyramidal

neurons in the CA1 layer receive input from different excitatory

upstream populations (e.g., ipsi- and contra-lateral CA3, Dentate

Gyrus, etc.) and also an inhibitory high-frequency tonic activity

from interneurons (e.g., the lacunosum-moleculare layer) [32].

Then, single pyramidal neurons in the target populations (only

one is shown in Figure 2A) receive excitatory spike trains from

several upstream populations, which conduct information. Besides,

the target neurons also receive an inhibitory high-frequency

input from local interneurons. The target pyramidal neurons

process the external and local information and generate an output.

Experimental findings suggest that ongoing learning leads to the

formation of spatial modules of coherent activity in the target

population [33–35]. In this work, we aim to study learning and

the formation of memories in the target population and also

understand the role of inhibitory input in this process.

2.2 Rate coding of information

The upstream populations (Figure 2A) transmit information to

target neurons over n channels, which anatomically correspond to

bunches of projecting axons. Information is coded in a sequence of

discrete time windows of length 1: [(k − 1)1, k1), k = 1, 2, . . .

(Figure 2B). According to the frequency or spiking rate coding

concept [28, 29, 36], the number of spikes Njk represents the

information contained in the j-th channel and k-th time window.

We model the spiking activity in each channel as an independent

Poisson point process.

It is convenient to introduce the spiking frequency fjk = Njk/1

and define the information vector:

xk =
(

f1k

fmax
,
f2k

fmax
, . . . ,

fnk

fmax

)T

∈ [0, 1]n, (1)

where fmax is the maximal frequency of spikes in a channel (i.e., the

joint frequency of spikes over all axons in the channel). Following

Tyukin et al. [12], we call the target cells, receiving information

through n channels, n-dimensional neurons. If n≫1, then neurons

are high-dimensional.

We introduce the set of all unique stimuli (information items)

for the given target subpopulation (a brain layer may contain

many subpopulations):

� = {xi}Mi=1, (2)
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FIGURE 1

The concept of the by-chance functional learning in a layer of uncoupled spiking neurons operating without global optimization. (A) Shallow

network architecture. Stimuli (vectors in a state space) arrive at L≫ 1 neurons. Each neuron has its own intrinsic characteristic (a vector in “neuronal"

space). (B) Sketch of neuron responses to M≫ 1 sequential stimuli. The neuron response depends on the similarity between the stimulus and

neuronal vectors. Stimuli excite random neurons, which in turn learn them locally through Hebbian plasticity. Low-dimensional neurons (left)

respond massively and show no specificity to stimuli. High-dimensional neurons (right) become selective, i.e., tied to single stimuli. In the simplest

scenario, each neuron responds exclusively to a single stimulus after learning.

whereM≫ 1 is the number of stimuli, which can be large but finite

(from above, it is restricted by M ≤ f nmax but in real applications

could be much lower).

2.3 Functional learning of information
items

As mentioned in the Introduction, learning is a wide concept.

We thus restrict the problem to a narrow case. Functional learning

occurs if a population of L ≫ 1 pyramidal cells can learn M ≫ 1

arbitrary items of information. We say that an item xi ∈ [0, 1]n has

been learned if there is a group of neurons exclusively firing to the

stimulus xj and not to all others xi ∈ � \ {xj} (Figure 1B, right).
Let sim(xi,w) be the similarity operator between the input and

some intrinsic features of a neuron (in Section 4.1 we define it for a

particular case). Then functional learning assumes:

sim(xi,w) ∼ 1, sim(xj,w) ∼ 0, ∀j 6= i. (3)

Moreover, sim(xi + xj,w) ∼ sim(xi,w) ∼ 1, which is the basis

for associative learning. If a neuron receives a learned stimulus

together with an unknown one, its intrinsic feature w can change

to w̃ in such a way that

sim(xi, w̃) ∼ sim(xj, w̃) ∼ 1. (4)

For functional population learning, we require:

1. Adequate response to a novel stimulus (i.e. ∀x ∈ � ∃j ∈
{1, . . . ,M} s.t. sim(x,wj) ∼ 1).

2. Reliable learning of a stimulus [i.e., sim(x, w̃j) ∼ 1, where w̃j =
F(wj, x) and F(·, ·) is a learning operator].

3. Selective learning of a stimulus (i.e., sim(y, w̃j) ∼ 0 ∀y ∈ �\{x}).

Below, we develop a mathematical model of the population

dynamics and the learning process satisfying these conditions.

3 The model

To study the above-formulated problem (Section 2.3), we

introduce a mathematical model describing the dynamics of the

target pyramidal neurons and the learning mechanism.

3.1 Dynamics of target pyramidal neurons

To simulate pyramidal neurons, we use the Izhikevich model

[37]:

dv

dt
= 0.04v2 + 5v+ 140− u− Iinh(t)+ Iexc(t)

du

dt
= a

(

bv− u
)

if v(t) ≥ 30 then v(t) ֋ c, u(t) ֋ u(t)+ d,

(5)

where v is the membrane potential (measured in mV and t is given

inms), u is an auxiliary variable, Iinh(t) and Iexc(t) are the inhibitory

and excitatory synaptic currents, respectively. The parameters are

set to a = 0.02, b = 0.2, c = −65, and d = 8, corresponding to the

“regular spiking” mode.

A tonic high-frequency activity of local interneurons

(Figure 2A) produces strongly overlapping inhibitory postsynaptic

potentials (IPSPs). Due to the dynamic smoothing, IPSPs, on

average, contribute to approximately constant current. Thus, we

can set Iinh(t) = γ .

The excitatory current Iexc(t) describes the spiking activity of

projecting neurons from the upstream populations (Figure 2A).

Assume that information, encoded as spike trains, comes

over n channels or bunches of axons (Figure 2B). We use a

phenomenological model of a chemical synapse [25, 38]. Let yj be

the synaptic trace for channel j. Then

dyj

dt
= −

1

τs
yj +

∑

i

δ(t − tji), j = 1, . . . , n, (6)
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FIGURE 2

(A) Typical organization of neural networks in the CNS. Upstream populations send spikes through n channels organized in bits of information. (B)

Rate coding of information received by a pyramidal neuron in the target population. Vector x defines the frequency pattern, i.e., the frequencies of

spikes sent through n channels (bundles of axons). The synaptic weights w define the neuron’s responsiveness to the incoming stimuli. It can change

over time due to Hebbian plasticity. (C) Response of three pyramidal neurons to three di�erent patterns codifying 20× 20 px gray-scale images of a

tower, a face, and a cat. The raster plot shows spikes in 400 channels (each dot is a spike). The pixel’s intensity defines the spiking frequency in the

corresponding channel. Traces of the membrane potentials illustrate the spiking activity of the neurons, and colored curves show similarities

(Equation 9) of the neurons to three patterns x1,2,3.

where τs = 10 ms is the synaptic relaxation time,
{

tji
}

are the

time instants of spikes arriving from this channel, and δ(·) is

the delta function. Denoting by y = (y1, . . . , yn)
⊺ and by w =

(w1, . . . ,wn)
⊺ ∈ [0, 1]n the vector of coupling weights for all

synaptic channels, we have:

Iexc(t) =
β

n
〈w(t), y(t)〉, (7)

where β is the scaling constant and 〈·, ·〉 stands for the standard

inner product.

3.2 Synaptic plasticity in target neurons

The dynamics of the synaptic weights follow the Hebbian type

of synaptic plasticity:

dw

dt
= µyps

(

ηy ◦ (1− w)− w
)

, (8)

where µ is the time-scaling constant, the symbol ◦ stands for the

Hadamard (element-wise) product, yps(t) ∈ R is the synaptic trace

describing the activity of the pyramidal (postsynaptic) neuron. It

obeys the same equation as Equation 6 but with the output spike

train {tpsi }.
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Equation 8 is a simplified version of the classical Oja rule [39]

and the learning rule used for describing the so-called Concept

cells [4]. The first term in the brackets represents learning, while

the second implements forgetting. Thus, η is the relative learning-

forgetting rate. We note that both learning and forgetting occur

only when the pyramidal neuron is active, i.e., yps > 0.

4 Decoding and learning information
items

4.1 Simple example of functional learning

Figure 2C shows the response of three pyramidal neurons in

the target population to a sequence of three stimuli codifying

20 × 20 pixel images of a tower, a face, and a cat. The pixel’s

brightness corresponds to the frequency of spikes sent by the

upstream populations through a channel (raster plot of spikes in

Figure 2C). Each stimulus lasts for 1 s, and each neuron either fires

spikes to a stimulus or not. Firing a spike means that a neuron

detects (recognizes) a stimulus.

Initially, the pyramidal neurons have arbitrary synaptic weights

wi (i = 1, 2, . . . , L; in Figure 2C, L = 3). Since the synaptic current

(7) depends on the inner product, it is convenient to define the

similarity operator used in Section 2.3 between the neuron’s weights

wi(t) and the stimulus pattern xj as:

sim(xj,wi(t)) : =
〈xj,wi(t)〉
‖xj‖‖wi(t)‖

∈ [0, 1]. (9)

If sim(xj,wi(t)) = 1 then the stimulus and the neuron are collinear,

whereas for sim(xj,wi(t)) = 0 they are orthogonal.

Consider the dynamics of the membrane potential of neuron

1, v1(t) (Figure 2C). We observe that the neuron stays inactive

for the first two patterns (the tower and face), but it detects the

cat’s image by generating spikes. Such a behavior can be explained

by checking the similarities between w1(t) and the patterns

x1,2,3 (Figure 2C, neuron-stimulus similarity). The similarities

sim(x1,w1) and sim(x2,w1) are low, while sim(x3,w1) is higher.

Therefore, the neuron “skips" the first two stimuli but detects the

third one. Note that once the neuron generates postsynaptic spikes,

its synaptic trace becomes positive, yps > 0, and learning occurs

(Equation 8). The synaptic weights are tuned so that the similarity

to the cat’s image becomes even higher (in a series of exponential

steps) while the similarity to the tower and the face becomes lower.

Thus, after learning, the neuron becomes even more prone to firing

in response to the cat’s image and ignoring the tower and face.

Similar situations occur with neurons 2 and 3 (Figure 2C). They

also tune in to their stimuli. Thus, we have a basic example of

functional learning.

4.2 Replication of frequency patterns at
single synapses

Let us study functional learning in detail. In a single time

window, if a pattern x does not excite a neuron, then no learning

occurs, and the synaptic weights stay unchanged. In this case, the

FIGURE 3

Learning causes synaptic replication of frequency patterns. A

pyramidal neuron with random synaptic weights is activated by a

pattern with spike frequencies in the range [1, 103] Hz. After

learning, synaptic weights replicate the frequencies of spike trains in

the pattern following Equation 11. Parameter values: η = 1,

µ = 0.05, γ = 10, β = 17, τs = 10 ms, fmax = 103 Hz, n = 100.

neuron “waits" for another pattern that will activate it. For example,

in Figure 2C, neuron 1 skips two patterns and only then fires to the

third information item, the cat.

Assume that a neuron fires to pattern x ∈ �, i.e., yps(t) > 0

for t > t∗, and hence learning occurs. Then, the synaptic trace

y(t) is determined by n Poisson point processes with the expected

value (Appendix 1):

E
[

y
]

(t) = fmaxτs

(

1− e−
t
τs

)

x. (10)

Thus, on average, the synaptic signal y is proportional to the input

pattern x.

Approximating the synaptic trace y by its expectation

(Equation 10), for t≫ τs (in simulations τs = 10 ms, 1 = 103 ms),

we can find the mean synaptic weights after learning for a single

target neuron (Appendix 1):

w∗ = x⊘ (α + x), α =
1

ητsfmax
, (11)

where ⊘ stands for the Hadamard division. Thus, the synaptic

weights are uniquely defined by the stimulus pattern, i.e., by the

frequencies of incoming spike trains, and depend on the learning-

forgetting rate η.

To test the theoretical prediction, we simulated the neuronal

response to a pattern codified by n = 100 spike trains with

frequencies ranging from 1 to 103 Hz. The synaptic weights at the

beginning were distributed randomly (w(0) ∼ U100[0, 1]). The

learning protocol lasted 1 s of the model time.

Figure 3 shows the synaptic weights after learning vs. the spike

frequency in the corresponding synaptic channel. As expected, after

a transient process, the synaptic weights stabilize at the values
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provided by Equation 11. Thus, learning leads to replicating the

frequency rates at the synapses. This replication is one-to-one

but nonlinear.

4.3 Functional population learning

The model neuron (5), like most biological ones, has no hard

threshold [37]. At I(t) = Iexc(t)− Iinh(t) ≈ 2.6, it generates a single

spike, and for I(t) ≈ 3.8, the model starts generating a spike train.

We define θ ≈ 2.6 as the “soft" firing threshold for convenience,

although its exact value depends on the model dynamics.

Let us now consider the target population of L pyramidal

neurons (Figure 2A, L ≫ 1). At t = 0, the population stores no a

priori information, i.e., the synaptic weights of all neurons are taken

i.i.d. from a uniform distribution:

wi(t = 0) ∼ Un[0, 1], i = 1, 2, . . . , L. (12)

Then, all neurons receive the same stimuli as a sequence

of frequency patterns, and the target population must exhibit

functional learning (Section 2.3).

4.3.1 Adequate response to a novel stimulus
If L ≫ 1, given a pattern x, some target neurons may fire by

chance (e.g., in Figure 2C, one neuron fires to one pattern). A

neuron fires to the pattern if it consistently has I(t) > θ in the

corresponding time interval. The total synaptic current depends on

the pattern-synaptic match [directly related to the similarity (9)]:

ρi : =
〈x,wi〉

n
∈ [0, 1]. (13)

If the match is high, the likelihood of firing in response to x is

higher. In general, stimulus vectors, i.e., the set �, can follow an

arbitrary distribution. Then, we use the most natural assumption

x ∼ Un[0, 1]. Note that concentration properties apply to such

stimuli, however, other distributions, e.g., defined on a ball, can also

be used [17]. Using Definition (Equation 13), we get the probability

of firing (Appendix 2.1):

Pnew = 8

(

√

9n/7(1− λ)
)

, (14)

where 8(·) is the normal cumulative distribution function and

λ : = 4
θ + γ

βτsfmax
, (15)

is the inhibitory-excitatory ratio of the synaptic currents. The

probability (Equation 14), defines themean ratio of excited neurons

in the target population firing to a novel stimulus.

Figure 4A (black curve) illustrates the firing probability to a

novel stimulus as a function of the inhibitory-excitatory ratio

evaluated numerically and using Equation 14. We observe a tide

correspondence between theory and simulations. As expected,

increasing the inhibition γ (and hence λ) decreases the probability

of the first firing to a novel stimulus in the target population.

For example, for λ = 1, about 50% of the pyramidal neurons

respond to a novel stimulus, while for λ = 1.2 the ratio falls to

1.2%. As discussed below, Equation 14 allows suitable selection of

parameters for functional learning.

4.3.2 Reliable learning of an arbitrary pattern
If a neuron generates spikes in response to stimulus x, learning

occurs, and its synaptic weights converge to the values given by

Equation 11. In general, the neuron becomes even more tied to

the stimulus after learning, i.e., if the same stimulus appears again,

the neuron will fire more strongly. However, such an intuition can

fail, and the neuron can stop firing in response to x. It happens

if the pattern-synaptic match (Equation 13) after learning is too

small and, hence, the total synaptic current falls below the threshold

I(t) < θ .

After learning, the pattern-synaptic match is:

ρlrn(x,α) =
〈x, x⊘ (α + x)〉

n
. (16)

It is a decreasing function of α. Thus, α must be small enough,

which can be achieved by raising the learning-forgetting ratio η

(Equation 11).

The conditional probability of firing to the learned stimulus is

(Appendix 2.2):

Pown : = P(fire to x| learned x) = 8

(

(f1(α)− λ/4)
√

n/f2(α)
)

,

(17)

where

f1(α) =
1

2
− α + α2 ln

(

1+ α−1
)

,

f2(α) =
4

3
− f1(α)(f1(α)+ 4α)−

1

α + 1
,

(18)

are positive decreasing functions of α. Figure 4A (in red)

shows the probability of firing to the learned stimulus.

Reliable learning requires high Pown and hence a moderate

inhibitory-excitatory ratio.

4.3.3 Selective response to stimuli
Learning a pattern also changes the probability of firing to other

stimuli. For selective learning, we require that, after learning item

x, the neuron fires spikes to this item but at the same time will be

silent to other items from � \ {x}.
The probability to fire to stimulus ξ after learning x (ξ 6= x) is

(Appendix 2.3):

Poth : = P(fire to ξ | learned x) = 8

(

(f3(α)− λ/4)
√

n/f4(α)
)

,

(19)

where

f3(α) =
1

2

(

1− α log(1+ α−1)
)

,

f4(α) =
4

3
f3(α)− f 23 (α)−

1

3(α + 1)
,

(20)

are positive decreasing functions of α. Figure 4A (blue curve)

illustrates how the probability (Equation 19) changes with λ. This

probability must be low enough for optimal learning, which can be

achieved by increasing the inhibitory-excitatory ratio.
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FIGURE 4

Optimal learning requires matching main neuronal features. (A) Probabilities of firing of target neurons to stimuli vs the inhibitory-excitatory ratio.

Black, red, and blue colors correspond to novel stimuli, own stimuli after learning, and other stimuli, respectively (symbol markers show the results of

numerical simulations, curves correspond to Equations 14, 17, 19). Parameter values: n = 100, η = 0.2, and µ = 0.4. (B) Areas of the neuronal

parameters suitable for functional learning delimited by inequalities (Equations 23–25). The green area corresponds to optimal functional learning.

Note that Pnew, as the probability of firing to a novel stimulus, imposes conditions on the SNN before learning, while Pown and Poth define the SNN

response after learning. Parameter value: η = 0.25.

4.3.4 Conditions for optimal learning
For meaningful functional learning (Section 2.3), the

probabilities Pnew, Pown, and Poth must be appropriately selected.

For example, for λ = 1, Pnew = 1/2, and half of the neurons in

the target population learn the first incoming stimulus. Then, the

second stimulus will take 25% of the remaining neurons, the third

12.5%, etc. Thus, in a few steps, we run out of neurons. Such a

situation is far from optimal, and hence, we must increase the

inhibitory-excitatory ratio λ.

For λ = 1.2, the probability of firing to a novel stimulus

is 0.01, which may be acceptable. However, for the same λ,

Pown ≈ 0.1 (Figure 4A), and neurons, after learning, will not fire

to the learned stimuli. Thus, the situation shown in Figure 4A

is not optimal for functional population learning. Therefore, the

parameter choice must be compatible with conditions imposed on

all three probabilities Pnew, Pown, and Poth.

To remedy the problem, first, the neuronal population must

have the probability of firing to an arbitrary stimulus within some

range. This range depends on the population size L and the desired

number of stimuli to be learned M. The expected number of

neurons firing to the i-stimulus is LPnew(1 − Pnew)
i−1. Thus, if the

target population must learn up to M items, the population size

must satisfy the condition:

L >
1

Pnew(1− Pnew)M−1
, (21)

which sets the condition for Pnew:

Pnew ∈ (p0, p1). (22)

For example, considering learning of 1,000 items by a population of

5,000 neurons, we get p0 = 2.6× 10−4 and p1 = 2.5× 10−3.

Equation 22 sets a condition on the inhibitory-excitatory

balance λ and the neuronal dimension n:

1−
√
78−1(p1)

3
√
n

< λ < 1−
√
78−1(p0)

3
√
n

. (23)

Note that the available range decreases as 1/
√
n.

Besides, we require that a target neuron, after learning, must fire

to the learned stimulus with a high enough probability Pown > p2.

Then, from Equation 17, we get the condition:

λ < 4f1(α)−
48−1(p2)

√

f2(α)√
n

. (24)

Moreover, the neuronmust be selective, i.e., the probability of firing

to other stimuli must be low enough, Poth < p3:

λ > 4f3(α)−
48−1(p3)

√

f4(α)√
n

. (25)

where the upper bound can be set to p3 = 1/M.

Figure 4B shows the regions satisfying conditions

(Equations 23–25). The intersection of the three regions provides

the optimal choice of the parameters (green area in Figure 4B). We

observe that there is a minimal neuronal dimension n below which

neurons cannot be selective. This result is in qualitative accordance

with the main conclusion of the analysis of formal neurons [4, 12].

However, n must not be too high for relatively small populations.

Otherwise, the inhibitory-excitatory balance must be selected

extremely precisely, which is not biologically plausible. The latter

feature is particular to spiking neurons.
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4.4 Selective decoding of information by
pyramidal neurons

Let us now illustrate how the population of pyramidal neurons

with parameters satisfying the selective criteria (Figure 4B) can

learn to decode the incoming information efficiently. We use the

CIFAR-10 database consisting of 32 × 32 pixel natural images [40]

as a source of the information items. We take photos of cats from

the database (i.e., a single class of images; note that here we are

not interested in the classification problem, but in a highly selective

response of a layer of target neurons). Besides, the original images

are in color, and we converted them into grayscale pictures.

Natural images usually have peaked distributions of pixels

depending on the lighting conditions at the time of the

shot. Figure 5A (left) shows examples of two photos and the

corresponding distributions. The distributions significantly deviate

from uniform, which is used as the standard, while we have

developed the theoretical predictions. Thus, we applied a simple

preprocessing step to homogenize the pixel distributions. Figure 5A

(right) shows the resulting images and their flat distributions. Note

that the normalized images gain contrast and visually exhibit more

details than the original ones. Such a transformation, optimizing

the image contrast, occurs at different levels in the visual system,

from pupil dilation to changes in cortical processing [for details

see, e.g., [41]]. It also applies to computer vision and modern

event-based cameras [3, 42].

To get stimulus vectors, we flatten the images (by aligning

all columns of a matrix representing the image into a single

column vector), thus getting xi ∈ [0, 1]1,024. Such a high

neuronal dimension is expected to guarantee the blessing of

the dimensionality phenomenon (predicted in Section 4.3.4). We

consider a target population of M = 500 pyramidal neurons in

simulations. At t = 0, the neurons have random synaptic weights

(i.e., wi ∼ U[0, 1]n, i = 1, . . . ,M) and, hence, no specific relations

to the stimuli. Then, stimulus vectors have been applied to the

pyramidal neurons in a sequence, and the nonlinear dynamics of

the target population has been simulated (Section 3).

Figure 5B illustrates the population response to the first eight

images. We run the algorithm twice. First, learning has been

switched off by setting µ = 0. It has been used to test how the

population responds to stimuli without learning. As expected, the

neuronal firing is random along the selected neurons and images.

The eleven traces of the membrane potentials shown in Figure 5B

(before learning) correspond only to those neurons that fire spikes

in response to the eight stimuli.

Although before learning, neurons fire arbitrarily and have

no preferences for the stimuli, such a disordered firing plays an

important role. It promotes learning of the patterns by chance.

Neurons with synaptic weights close to a given stimulus will fire

on its presentation. The expected number of such neurons is given

by PnewM, which is relatively small, and hence, the firing frequency

is low in the target population before learning.

Although before learning, neurons fire arbitrarily and have

no preferences for the stimuli, such a disordered firing plays an

important role. It promotes learning of the stimuli by chance.

Neurons with synaptic weights close to a given stimulus (in terms

of Equation 13) will fire on its presentation. The expected number

of such neurons is PnewM, which is relatively small, and hence, the

firing frequency in the target population before learning is low.

To study the learning process, the second run of the model

has been performed with µ = 1.2. Then again, we checked the

firing activity in the population (Figure 5B, after learning). Neurons

that fire to a stimulus learn the stimulus, but only a fraction of

them, given by Pown, will keep firing after learning (Section 4.3).

Thus, after learning, we can have about PownPinitM neurons firing

to the given stimulus. Since Pown is selected to be high, most

neurons will be tied to the stimuli that excited them initially. After

learning, neurons fire tonic spikes to their stimuli (Figure 5B, after

learning). Besides, we can observe a situation that happens with the

seventh image. Although neurons 490 and 485 fire spikes to this

stimulus before learning, these neurons learn stimuli 2 and 5, which

come before the seventh. Thus, they significantly change their

synaptic weights, and the pattern-synaptic matching becomes low

for stimulus 7. Finally, no neuron learns the 7th image. Therefore,

the target population can miss some stimuli.

The next observation is the selectivity of neurons to the learned

stimuli. A neuron that learned a stimulus is selective, i.e., it ignores

all the otherM − 1 stimuli, with the probability:

Pslc = (1− Poth)
M−1. (26)

This probability can be close to 1 if Poth is small enough, which

is ensured by the conditions for optimal learning (Section 4.3.4).

Then, after learning, neurons in the population will fire to single

stimuli and be silent to all other images.

Finally, we tested the number of neurons necessary for learning

a sequence of stimuli (Figure 5C). First, we used images with a

uniform distribution (Figure 5A, right). The number of neurons

fired in response to stimuli (Figure 5C, black curve) increased

almost linearly with a slope of 2.41 neurons per new stimulus. We

then conducted the same calculations with the original images. In

this case, to maintain the excitatory postsynaptic potential (EPSP)

in the target neurons, we adjusted the maximal frequency of spikes

based on the mean image intensity. The resulting curve (Figure 5C,

in red) showed a significantly steeper slope and exhibited strong

oscillations. This finding suggests that the initial relay stations

of the visual system must preprocess raw images before the

corresponding stimuli enter brain layers performing functional

learning. This aligns with experimental findings. Additionally, we

observed that the number of neurons in a processing chunk must

be considerably higher than the number of stimuli for effective

learning, which directly relates to the neuronal dimension.

5 Conclusions

The human brain exhibits an unprecedented ability for power-

efficient cognitive learning that is unreachable for modern AI.

This pushes research in neuromorphic neural networks that can

become a substrate for the next generation of AI. In this work, we

introduced a spiking neural network model and studied functional

learning. The goal was to leverage the simple layered “anatomy"

and local plasticity of the SNN and the phenomenon of blessing

of dimensionality.
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FIGURE 5

Emergence of functional learning in a population of pyramidal cells. (A) Example of normalization of two pictures of cats (32× 32 gray-scale images

from the CIFAR-10 database). After normalization, the pixels’ distribution is flat. (B) Learning the first eight images of cats. Top: Images of cats used

for learning. Middle: Spike trains of 11 neurons firing to the eight stimuli before learning. Bottom: Spike trains of the same neurons but after learning.

The neurons fired to the eight images are ordered according to the image number. (C) The use of neurons for learning stimuli. The black curve

corresponds to normalized images, while the red one shows the number of neurons firing to original images. Vertical bars show standard deviation.

Parameter values: fmax = 103 Hz, τs = 10 ms, γ = 10, η = 0.22, µ = 1.2.

Despite the model’s simplicity, we have shown that it enables

functional learning, given that several crucial features are fulfilled.

The SNN can selectively learn arbitrary information (images of

cats from the CIFAR-10 database have been used in numerical

simulations as examples of information items). This is a crucial step

for associative learning of unrelated items and, more importantly,

breaking associations between related items when needed.

We have shown that the feedforward anatomy can be sufficient

for local learning. Thus, no bulky, biologically questionable

mechanisms of global optimization (e.g., back-propagation with

gradient descent) are required. Instead, target neurons can learn

stimulus items “by chance." In other words, neurons in a chunk

belonging to the target layer have random synaptic weights at the

beginning and fire randomly to the incoming stimuli. If the number

of neurons is high enough and the probability of firing is balanced,

we get a few neurons firing to a stimulus. These neurons learn the

stimulus, and the procedure is repeated for the next novel stimulus.

We have shown that by-chance learning works if the inhibitory-

excitatory balance and the learning-forgetting ratio are within

adequate limits. Thus, local tonic inhibition observed in different

layered brain structures, including the neocortex, is necessary for

learning. The blessing of dimensionality also plays a crucial role.

It is necessary for selective learning, i.e., when a brain structure,

e.g., the medial temporal lobe, must selectively “recognize" different

information items. This is the case of the so-called Jennifer Aniston

neuron [43].

However, we also observed a crucial difference with the earlier

results on artificial neural networks. It turns out that the neuronal

dimension must not be too high. Otherwise, the inhibitory-

excitatory balance and the learning-forgetting rate must be tuned

with high precision. This observation has indirect experimental

support. The CA1 layer in the hippocampus is anatomically

homogeneous but has a functionally modular structure [35],

probably dedicated to processing disjoint blocks of information.
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The modular size varies significantly for different neuronal

pathways. Using theoretical [44] and experimental [35] studies, an

estimate gives 2,000 and 15,000 pyramidal neurons per module for

the MPP entorhinal and Schaffer generators, respectively. It agrees

with our predictions on the optimal number of neurons. Moreover,

the upper bound on the input dimension may explain why neurons

receiving extremely high-dimensional input, such as Purkinje cells

playing a critical role in motor coordination, cannot be selective.

We also found some limitations of the model due to its

simplicity. For example, learning large stimulus sequences requires

an exponentially increasing number of neurons. This can be

mediated either by using chunks of neurons or lateral inhibition.

Both options are known in neuroscience [45]. Besides, learning

can be more stable if the local inhibition can be modulated by

incoming spike trains. It can be remedied by homeostatic plasticity

[46]. These and other questions open new lines for further research.
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