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Adaptive fractal dynamics: a 
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markets
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We propose a dynamic fractional volatility model that incorporates a time-
varying Hurst exponent estimated via Daubechies-4 wavelet analysis on 252-day 
rolling windows to capture evolving market memory effects in equity markets. 
This approach overcomes the limitations of traditional GARCH-type and static 
fractional volatility models, which assume a constant memory parameter and 
struggle during regime shifts and market stress. The model is applied to daily 
closing prices of the S&P 500 Index over 1,258 trading days from January 1, 2015 
to December 31, 2019, yielding statistically significant improvements in forecasting 
performance. Empirical results indicate a 12.3 % reduction in RMSE and a 9.8 % 
improvement in MAPE, with an out-of-sample R-squared exceeding 0.72 compared 
to benchmark models. Maximum likelihood estimation with Fisher scoring is used 
for daily parameter updates, ensuring the model remains responsive to rapidly 
changing market conditions. Additionally, the model achieves an average absolute 
option pricing error of 1.8 %, markedly lower than that of traditional specifications. 
These enhancements are further corroborated by pairwise Diebold–Mariano tests, 
which confirm the statistical significance of the forecast improvements. Overall, 
this framework offers a rigorous and computationally efficient method for real-
time volatility forecasting that delivers substantial benefits for risk management, 
derivative pricing, and automated trading strategies, grounded in robust statistical 
methodology.
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Introduction

Volatility modeling stands as a cornerstone of modern financial mathematics, playing a 
crucial role in asset pricing, portfolio optimization, and risk management strategies (1). The 
evolution of volatility models has witnessed significant progression from simple historical 
measures to sophisticated stochastic processes that capture both short-term clustering and 
long-range dependence observed in empirical financial data. Traditional GARCH-type 
models, while effective in representing short-term dynamics, rely on assumptions—such as 
exponentially declining autocorrelation—that fail to account for the hyperbolic decay in the 
autocorrelation structure of absolute returns. Lo’s Adaptive Market Hypothesis (AMH) posits 
that market efficiency is not a static condition but evolves over time as market participants 
adjust their behavior in response to changing economic environments. In line with this 
hypothesis, our dynamic fractional volatility model incorporates a time-varying Hurst 
exponent to capture the evolving memory characteristics of equity markets. Our analysis 
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indicates that during periods of market stress, the Hurst exponent 
declines to approximately 0.38, whereas in more stable periods it rises 
to around.

0.62. These numerical observations underscore the adaptive 
behavior predicted by the AMH and highlight the limitations of static 
models with fixed memory parameters. By dynamically updating the 
memory parameter, our approach reflects the continuous evolution of 
market efficiency. This empirical evidence provides a compelling 
rationale for the adoption of adaptive volatility models in financial 
practice. Moreover, the observed fluctuations in the Hurst exponent 
lend strong support to the view that market efficiency is a dynamic 
phenomenon. In summary, the integration of a time-varying memory 
parameter is both theoretically justified and practically advantageous 
in modeling financial market volatility. For a complete mathematical 
formulation of the canonical GARCH (1,1) model, the FIGARCH 
(1,d,1) specification, and the wavelet-based estimation of the Hurst 
exponent, please refer to the Materials and Methods section. Recent 
studies have provided updated evidence that market memory, as 
measured by the Hurst exponent, is not static but evolves over time. 
While earlier works [e.g., (2)] laid the foundation for fractal analysis in 
finance, more recent investigations have refined these insights. For 
instance, Corsi (13) demonstrated that dynamic volatility models 
incorporating wavelet-based methods can achieve a 13.5% 
improvement in RMSE relative to traditional models, Bollerslev et al. 
(14) reported an 18.2% reduction in Value-at-Risk (VaR) exceedances, 
and Chen et  al. (3) found a 2.1% improvement in option pricing 
accuracy when allowing for time-varying long-memory parameters. 
These numerical findings underscore the importance of adopting a 
dynamic approach to capture evolving market memory, especially 
during periods of regime shifts and market stress. Our primary 
contribution is the development of a dynamic fractional volatility 
model that continuously updates the Hurst exponent using a 
Daubechies-4 wavelet analysis over 252-day rolling windows. By 
integrating this dynamic memory parameter within a stochastic 
volatility framework—and leveraging MATLAB’s parallel processing 
capabilities—the proposed model delivers substantial improvements 
in forecasting performance and practical applications such as risk 
management and derivative pricing. This paper is organized as follows: 
the Materials and Methods section details the mathematical 
formulations and estimation procedures (with full definitions for every 
variable), and the Results and Discussion sections present our empirical 
findings and the performance benefits of the dynamic approach.

Materials and methods

The empirical analysis utilizes daily closing prices of the S&P 500 
Index spanning from January 1, 2015, to December 31, 2019, 
comprising 1,258 trading days obtained from the Thomson Reuters 
Datastream database. The selection of this specific time period allows 
us to capture various market regimes, including both periods of relative 
stability and significant volatility clustering, while avoiding the extreme 
market conditions of the 2008 financial crisis that could potentially 
distort our model’s parameter estimates. Following standard financial 
econometric practice (4), we compute logarithmic returns as rt. = ln 
(Pt/Pt-1), where Pt represents the index level at time t. The resulting 
return series undergoes rigorous preprocessing to ensure its suitability 
for subsequent analysis. The Augmented Dickey-Fuller test, 

implemented with lag order selection based on the Schwarz 
Information Criterion, confirms the stationarity of the return series at 
the 5% significance level (test statistic = −3.847, p-value = 0.003). 
Furthermore, the Ljung-Box Q-test with 20 lags (Q = 18.234, 
p-value = 0.572) fails to reject the null hypothesis of no serial 
correlation in the raw returns, although significant autocorrelation is 
detected in squared returns (Q = 45.678, p-value < 0.001), indicating 
the presence of volatility clustering. Additional diagnostic tests reveal 
significant deviation from normality in the return distribution, with 
excess kurtosis of 4.32 and skewness of −0.18, characteristics that our 
modeling framework explicitly accounts for through its flexible 
specification of the conditional variance process. Table 1 presents the 
summary statistics and preliminary tests of the dataset.

To verify the presence of regime switches in the data, we conducted 
statistical tests including the Markov-Switching Model and the 
Bai-Perron structural break tests. These tests were applied to the full 
dataset covering the period from January 1, 2015 to December 31, 
2019. The Markov-Switching Model identified distinct volatility 
regimes, with transition probabilities exceeding 95% at the detected 
breakpoints. Additionally, the Bai-Perron test confirmed the presence 
of three significant structural breaks (p < 0.01) within the time series. 
The detection of these regime switches provides robust quantitative 
support for the claim that the market experienced various distinct 
phases during the sample period. This empirical evidence reinforces 
the need for a dynamic modeling framework that can adapt to such 
shifts. The results of these tests underscore the non-stationary nature 
of the market dynamics observed in our data. Consequently, these 
findings justify the adoption of a dynamic fractional volatility model 
that is capable of capturing regime-dependent behavior.

In order to provide a clear and precise specification of our 
dynamic fractional volatility model, we now present the core equation 
in a more readable format. The model is defined as follows:

σ( t ) α̂  = ( )κ λ −+ ∫ − 2 2
.

uHt
uo t u dW

In this equation, σ7 represents the instantaneous volatility at time t, 
α is the power transformation parameter, κ denotes the baseline volatility 
level, λ is the scale parameter for the fractional integration component, 

TABLE 1 Summary statistics and diagnostic tests of S&P 500 returns 
(2015–2019).

Statistic Value p-value

Number of observations 1,258 –

Mean (annualized) 9.34% –

Std. Dev. (annualized) 14.82% –

Skewness −0.18 0.003

Excess Kurtosis 4.32 <0.001

Jarque-Bera 892.45 <0.001

ADF Test −3.847 0.003

Ljung Box Q(20) 18.234 0.572

Ljung-Box 2Q (20)
45.678 <0.001

ARCH LM Test(10) 67.234 <0.001

The Augmented Dickey-Fuller (ADF) test includes an intercept and trend. Ljung-Box Q(20) 
and Q2(20) test for serial correlation in returns and squared returns, respectively. The ARCH 
LM test examines heteroskedasticity up to order 10.
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Hᵤ is the time-varying Hurst exponent, and Wᵤ is a standard Brownian 
motion. This formulation generalizes the traditional Mandelbrot-van 
Ness representation by permitting Hᵤ to vary over time.

One of the key innovations in our approach is the use of a time-
variant Hurst exponent, Hᵤ, to capture the evolving memory 
characteristics of financial markets. Empirical evidence indicates that 
market memory is not static but undergoes significant fluctuations in 
response to regime changes and external shocks. This dynamic 
behavior cannot be adequately modeled using a constant H value, 
which would obscure important transitions in market conditions.

Therefore, incorporating a time-varying H allows for a more precise 
and responsive estimation of volatility. The choice of Daubechies-4 
wavelets for the estimation of Hᵤ is motivated by their optimal balance 
between time and frequency localization, which is essential for analyzing 
non-stationary financial time series. Although alternative wavelet 
families exist, Daubechies-4 has consistently demonstrated superior 
performance in terms of noise reduction and accurate scaling estimation 
in our preliminary analyses. This choice is further supported by the 
literature, where Daubechies-4 has been successfully applied in similar 
contexts to extract reliable fractal characteristics from financial data. In 
conclusion, the adoption of a time-variant H and the specific use of 
Daubechies-4 wavelets are critical to the robustness and adaptability of 
our volatility model, ensuring that it can effectively capture the complex 
dynamics of financial markets.

To ensure a comprehensive evaluation of volatility dynamics, 
we consider three modeling frameworks. We begin with the canonical 
GARCH (1,1) model, defined as:

 σ ω αε βσ− −= + +2 2 2
1 1t tt

Where σ2𝑡 is the conditional variance at time t, ε2
t − 1 is the squared 

return from time t − 1, ω𝑡−1
is the constant term, α is the coefficient for the lagged squared 

return, and β is the coefficient for the lagged variance (1). To 
incorporate long-memory effects, we also implement the FIGARCH 
(1,d,1) model, specified as:

 ( )( )( ) ( )ϕ ε ω β − − = + − 
21 1 1d
t tL L L v

where L is the lag operator, d is the fractional differencing 
parameter, and φ(L) and β(L) are lag polynomials. However, the 
fundamental assumption of a static long-memory parameter in these 
models presents a significant limitation, as it fails to account for the 
dynamic nature of market memory across different regimes and 
economic conditions. The empirical evidence increasingly suggests 
that market memory, as quantified by the Hurst exponent, exhibits 
substantial temporal variation that cannot be captured by models with 
fixed fractional parameters (5). This disconnect between theoretical 
frameworks and empirical observations represents a critical gap in our 
understanding and modeling of financial market dynamics.

Our dynamic fractional volatility model builds upon the theoretical 
foundations of stochastic volatility while incorporating time-varying 
long-memory characteristics. The core specification of the model takes 
the form σtα = κ + λ∫0 t |t-u|^(2Hu - 2) dWu, where σt represents the 
instantaneous volatility at time t, α is a power transformation parameter 
that enhances the model’s flexibility in capturing leverage effects, κ 

serves as a baseline volatility level, and λ controls the scale of the 
fractional integration component. The innovative aspect of our 
approach lies in the specification of Hu, the time-varying Hurst 
exponent, which evolves continuously to reflect changes in market 
memory characteristics. This formulation extends the traditional 
Mandelbrot-van Ness representation of fractional Brownian motion by 
allowing for temporal variation in the memory parameter, thereby 
accommodating regime shifts and evolving market conditions. The 
power transformation parameter α is estimated jointly with other 
model parameters rather than being fixed a priori, following the 
recommendation of Andersen et  al. (6) who demonstrated the 
importance of flexible functional forms in volatility modeling. The 
integral term in our specification captures the cumulative impact of 
past innovations on current volatility, with the kernel function

|t-u|^(2Hu - 2) determining the rate at which this impact decays. 
This specification nests several important special cases: when Hu is 
constant and equal to 0.5, we recover the classical stochastic volatility 
model; when Hu > 0.5, the process exhibits long memory with 
persistence increasing in Hu; and when Hu < 0.5, the process displays 
anti-persistence, capturing mean-reverting behavior in volatility.

The estimation of the time-varying Hurst exponent Hu employs a 
wavelet-based approach implemented through Daubechies-4 wavelets, 
chosen for their optimal balance between frequency localization and 
computational efficiency. The wavelet decomposition is performed on 
rolling windows of 252 trading days, corresponding to one calendar 
year, with daily updates to capture evolving market conditions. For 
each window [t-251, t], we compute the wavelet coefficients d(j, k) at 
scales j = 1,.., J, where J = log2(252), using the pyramid algorithm 
described in Mallat (7). The local scaling behavior is analyzed using 
the relation:

 

( ) ( )( ) ( )( )= β+ β ≈

β +

2H t 1/ 2 2 ,where is derived from log Ed j,·

·j constant

₂

and the Hurst exponent is computed as Hu = (β + 2)/2. This 
procedure is implemented using MATLAB R2023b’s Wavelet Toolbox, 
with parallel processing across 12 CPU cores to optimize 
computational efficiency. The statistical properties of this estimator 
have been thoroughly analyzed by Veitch and Abry (8), who 
demonstrated its consistency and asymptotic normality under general 
conditions. Our implementation includes robust error estimation 
through bootstrapping with 1,000 resamples for each window, 
providing confidence intervals for the Hurst exponent estimates that 
inform the subsequent parameter updating process.

The model parameters are estimated through maximum likelihood 
estimation using Fisher scoring, with the likelihood function 
incorporating both the parametric specification of the volatility process 
and the empirical estimates of the time-varying Hurst exponent. The 
log-likelihood function takes the form L(Θ) = Σt = 1 T[−0.5log(2π) - 
0.5log(σt2) - 0.5rt2/σt2], where Θ = {α, κ, λ} represents the parameter 
vector, and σt2 is the conditional variance implied by our model 
specification. The Fisher scoring algorithm updates the parameter 
estimates according to Θk + 1 = Θk + I(Θk)^(−1)s(Θk), where I(Θ) 
represents the Fisher information matrix and s(Θ) denotes the score 
vector. Initial parameter values are obtained using the method of 
moments applied to the first 252 observations, with convergence 
declared when the relative change in parameter values falls below 
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10^(−6) for three consecutive iterations. The performance of 
alternative models, including GARCH (1,1), FIGARCH (1,d,1), and a 
static fractional model with fixed Hurst exponent, is evaluated using 
consistent methodology to ensure fair comparison. All estimation 
procedures are implemented in MATLAB R2023b, with results stored 
in a PostgreSQL database to facilitate subsequent analysis and 
reproducibility. The robustness of our results is verified through 
extensive simulation studies, where we generate 10,000 sample paths 
using the estimated parameters and confirm that our estimation 
procedure successfully recovers the true parameter values within 
statistical confidence bounds. Table 2 summarizes the initialization 
parameters and convergence criteria used in the estimation process.

To provide a clear explanation of our approach, we describe our 
methodology as a continuous process that integrates data collection, 
preprocessing, regime detection, Hurst exponent estimation, model 
parameter estimation, and model validation into a single cohesive 
framework. The process begins with the acquisition of daily closing 
prices for the S&P 500 Index for the period 2015–2019, from which 
logarithmic returns are computed. These returns are then subjected to 
rigorous diagnostic tests—such as the Augmented Dickey-Fuller, 
Ljung-Box, and ARCH tests—to ensure stationarity and to detect 
volatility clustering. Following this, regime detection is performed using 
the Markov-Switching Model and Bai-Perron structural break tests, 
which identify significant volatility regimes and structural breakpoints, 
thereby justifying the need for a dynamic modeling framework.

Once the data have been appropriately preprocessed and regimes 
identified, the next stage involves estimating the time-varying Hurst 
exponent. This is achieved by applying Daubechies-4 wavelet 
decomposition on a rolling window of 252 trading days. The wavelet 
coefficients obtained from this decomposition are analyzed through 
the linear relationship log₂(E[d(j,k)2]) = α_w + β · j, from which the 
local Hurst exponent is derived as H(u) = (β + 2)/2. This step captures 
the evolving memory characteristics of the market and is critical for 
allowing the volatility model to adapt over time. Subsequently, the 
dynamic fractional volatility model is specified as σ7^α = κ + λ 
∫₀ᵗ|t − u|^(2H(u) − 2)dW(u), where σ7 represents the instantaneous 

volatility at time t, α is a power transformation parameter, κ is the 
baseline volatility level, λ is the scale parameter, H(u) is the time-
varying Hurst exponent, and W(u) is a standard Brownian motion. 
The model parameters are initially estimated using the method of 
moments and are then refined through an iterative maximum 
likelihood estimation procedure via Fisher scoring. In each iteration, 
the log-likelihood L(Θ) = Σ7 [−0.5 log(2π) − 0.5 log(σ72) − 0.5 (r72/
σ72)] is computed, and parameters are updated using the formula 
Θ7₊₁ = Θ7 + I(Θ7)−1 s(Θ7), where I(Θ7) is the Fisher Information 
Matrix and s(Θ7) is the score vector.

For clarity, the entire methodology can be conceptualized in a 
pseudocode-like narrative: first, load the S&P 500 data and compute 
the logarithmic returns; second, perform diagnostic tests and detect 
volatility regimes; third, apply Daubechies-4 wavelet decomposition on 
a rolling window to estimate the time-varying Hurst exponent; fourth, 
specify the dynamic fractional volatility model and initialize its 
parameters; fifth, iteratively update the parameters using Fisher scoring 
until convergence; and finally, validate the model by simulating 10,000 
sample paths and computing a comprehensive set of performance 
metrics. This integrated flow not only details every step of the model 
development but also ensures that the dynamic characteristics of 
financial market volatility are rigorously captured and validated.

Results

The empirical analysis of our dynamic fractional volatility model 
reveals substantial improvements in both in-sample fit and out-of-
sample predictive accuracy compared to established benchmarks. The 
in-sample performance metrics, presented in Table 1, demonstrate the 
superior fit of our dynamic approach across different information 
criteria. The dynamic fractional model achieves an Akaike Information 
Criterion (AIC) of 19,723.11 and a Bayesian Information Criterion 
(BIC) of 19,804.56, representing improvements of 422.66 and 405.78 
points, respectively, over the standard GARCH (1,1) specification. 
These improvements are particularly noteworthy given that 
information criteria penalize additional model parameters, suggesting 
that the enhanced fit more than compensates for the increased model 
complexity. The FIGARCH (1,d,1) model, while performing better 
than GARCH (1,1), still exhibits significantly higher AIC (19,998.23) 
and BIC (20,081.45) values than our dynamic approach. The static 
fractional model, despite incorporating long-memory characteristics, 
shows inferior fit with AIC and BIC values of 20,041.52 and 20,125.67, 
respectively. The statistical significance of these differences is 
confirmed through Vuong’s closeness test (9), which yields test 
statistics of 3.45 (p-value < 0.001) for the comparison with GARCH 
(1,1), 2.87 (p-value = 0.004) for FIGARCH (1,d,1), and 3.12 (p-
value = 0.002) for the static fractional model. These results strongly 
support the hypothesis that allowing for time variation in the memory 
parameter captures important features of the volatility process that are 
missed by models with fixed memory characteristics.

The out-of-sample analysis, conducted over the period from 
January 2, 2017, to December 31, 2019, comprising 756 one-day-
ahead forecasts, further validates the superior performance of our 
dynamic fractional approach. As shown in Table 2, our model achieves 
the lowest Root Mean Square Error (RMSE) of 0.0041, representing 
improvements of 12.8, 4.7, and 8.9% relative to GARCH (1,1), 
FIGARCH (1,d,1), and static fractional models, respectively. The 

TABLE 2 Model estimation parameters and convergence criteria.

Parameter/Criterion Value/Setting

Initial window size 252 trading days

Wavelet type Daubechies-4

Decomposition levels ( ) ≈252 82log

Bootstrap iterations 1,000

Convergence tolerance 1e-6

Maximum iterations 1,000

Initial α estimate 2.0

Initial 𝐾 estimate 0.0001

Initial λ estimate 0.1

Parallel processing cores 12

Memory allocation per core 8 GB

Estimation time per window ~3.2 s

Initial parameter estimates are derived using the method of moments on the first 252 
observations. Parallel processing implementation uses MATLAB’s Parallel Computing 
Toolbox with optimized memory allocation.
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Mean Absolute Percentage Error (MAPE) tells a similar story, with our 
model’s 7.5% error rate substantially outperforming the 11.2% of 
GARCH (1,1), 9.8% of FIGARCH (1,d,1), and 10.5% of the static 
fractional model. Perhaps most notably, the out-of-sample R-squared 
value of 0.72 achieved by our dynamic model indicates superior 
explanatory power compared to the alternatives, which achieve values 
between 0.65 and 0.68. The statistical significance of these forecast 
improvements is confirmed through pairwise Diebold-Mariano tests 
(10), which yield test statistics of 2.56 (p-value = 0.011) versus 
GARCH (1,1), 2.13 (p-value = 0.034) versus FIGARCH (1,d,1), and 
2.44 (p-value = 0.015) versus the static fractional model. These results 
demonstrate that the dynamic fractional model’s superior in-sample 
fit translates into meaningful improvements in forecast accuracy, 
suggesting that the time-varying memory parameter captures 
persistent features of the volatility process.

For the purpose of benchmarking, we selected the GARCH (1,1) 
specification because it is the most widely used and parsimonious 
model in empirical finance, making it an ideal baseline for comparison. 
Although higher-order models such as GARCH (2,1) were considered 
during preliminary analyses, our tests showed that the additional 
parameters did not yield statistically significant improvements in fit 
or forecast accuracy, while introducing a higher risk of overfitting and 
increased computational complexity. This decision was driven by our 
focus on isolating the impact of a dynamic memory parameter rather 
than refining the ARCH family specification. In parallel, for the static 
fractional model, the constant Hurst exponent was fixed at H = 0.55, 
a value determined through preliminary calibration to provide an 
optimal balance between model parsimony and performance. This 
fixed H value is consistent with prior studies that typically assume a 
constant memory parameter in the vicinity of 0.5–0.6 for Brownian 
motion-based processes. By holding the Hurst exponent constant at 
this level, we  ensure that the only variable factor in our dynamic 
model is the time variation in market memory, thus allowing for a 
clear comparison. The subsequent statistical tests confirm that the 
dynamic model, which allows H to vary, significantly outperforms 
both the GARCH (1,1) benchmark and the static fractional model 
with H = 0.55. Therefore, this carefully controlled experimental design 
reinforces our conclusion that incorporating a time-varying Hurst 
exponent is essential for accurately capturing the evolving dynamics 
of financial market volatility.

To assess the practical implications of our model’s improved 
forecasting performance, we examine its ability to price a hypothetical 
portfolio of at-the-money S&P  500 caLL options with 30 days to 
maturity. The analysis covers the same out-of-sample period and 
compares model-implied volatilities with market-observed option 
prices. As detailed in Table 3, our dynamic fractional model achieves 
an average absolute pricing error of 1.8%, substantially lower than the 
2.7% error of GARCH (1,1), 2.3% error of FIGARCH (1,d,1), and 
2.5% error of the static fractional model. The superior pricing 
performance is particularly evident during periods of market stress, 
where the dynamic adjustment of the memory parameter allows for 
more rapid adaptation to changing market conditions. The statistical 
significance of these improvements is again confirmed through 
Diebold-Mariano tests applied to the absolute pricing errors, with test 
statistics of 3.12 (p-value = 0.002) versus GARCH (1,1), 2.45 (p-
value = 0.015) versus FIGARCH (1,d,1), and 2.78 (p-value = 0.006) 
versus the static fractional model. The consistency of these results 
across different evaluation metrics and application contexts provides 

strong evidence for the practical value of incorporating time-varying 
memory parameters in volatility modeling (Tables 4, 5).

Table 6 summarizes the comprehensive performance metrics used 
to evaluate our model’s applicability and robustness. In addition to 
conventional measures such as RMSE, MAPE, and R-squared, 
we computed the Jaccard Index and True Positive Rate to assess the 
model’s ability to classify volatility regimes. Furthermore, ROI and 
Mean Directional Accuracy were calculated to validate the practical 
utility of the forecasts in trading applications. The dynamic fractional 
model outperforms the benchmark models on all metrics, 
demonstrating a lower RMSE (0.0041 vs. 0.0047 for GARCH (1,1)), a 
lower MAPE (7.5% vs. 11.2%), a higher

R-squared (0.72 vs. 0.65), a superior Jaccard Index (0.67 vs. 0.55), 
a higher TPR (78% vs. 65%), better ROI (15.2% vs. 11.8%), and higher 
directional accuracy (68.3% vs. 62.1%). These results confirm the 
superior predictive performance and practical applicability of our 
dynamic volatility model.

Discussion

The empirical success of our dynamic fractional volatility model 
provides strong support for the theoretical premise that market memory 
exhibits significant temporal variation. This finding aligns with the 
Adaptive Market Hypothesis proposed by Lo (11), which suggests that 
market efficiency—and by extension, market memory—evolves over 
time in response to changing economic conditions. The time-varying 
nature of the Hurst exponent, as captured by our wavelet-based 
estimation approach, reveals a more nuanced picture of market 
dynamics than that suggested by traditional efficient market frameworks 
or static fractal market hypotheses. During our sample period, 

TABLE 3 In-sample fit metrics.

Model AIC BIC

Dynamic fractional 19,723.11 19,804.56

GARCH (1,1) 20,145.77 20,210.34

FIGARCH (1,d,1) 19,998.23 20,081.45

Static fractional (1-H) 20,041.52 20,125.67

TABLE 4 Out-of-sample forecast metrics.

Model RMSE MAPE R-squared

Dynamic fractional 0.0041 7.5% 0.72

GARCH (1,1) 0.0047 11.2% 0.65

FIGARCH (1,d,1) 0.0043 9.8% 0.68

Static fractional (1-H) 0.0045 10.5% 0.66

TABLE 5 Option pricing error.

Model Avg. Abs. pricing error

Dynamic fractional 1.8%

GARCH (1,1) 2.7%

FIGARCH (1,d,1) 2.3%

Static fractional (1-H) 2.5%
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TABLE 6 Comprehensive performance metrics.

Performance metric Dynamic fractional GARCH (1,1) FIGARCH (1,d,1) Static fractional

RMSE 0.0041 0.0047 0.0043 0.0045

MAPE 7.5% 11.2% 9.8% 10.5%

R-squared 0.72 0.65 0.68 0.66

Jaccard index 0.67 0.55 0.60 0.57

True positive rate (TPR) 78% 65% 70% 68%

ROI 15.2% 11.8% 12.5% 11.0%

Mean directional accuracy (MDA) 68.3% 62.1% 65.4% 63.7%

we observe that the estimated Hurst exponent fluctuates between 0.38 
and 0.62, with lower values typically corresponding to periods of market 
stress and higher values associated with more stable market conditions. 
This pattern is consistent with the theoretical work of Mandelbrot and 
Hudson (2) on the fractal nature of financial markets, while adding the 
crucial insight that fractal characteristics themselves are not immutable 
but rather adapt to market conditions. The wavelet-based analysis 
proves particularly robust to the presence of market microstructure 
noise and seasonality effects, as demonstrated by Gençay et al. (12) in 
their seminal work on wavelet methods in economics. The integration 
of a dynamic memory parameter into a continuous-time stochastic 
volatility framework represents a significant theoretical advance, 
bridging the gap between the discrete-time ARCH family of models and 
continuous-time approaches based on fractional Brownian motion.

Within the context of our empirical results, the dynamic variation 
in the Hurst exponent provides clear evidence supporting Lo’s Adaptive 
Market Hypothesis. The observed fluctuations, ranging from 
approximately 0.38 during volatile market phases to around 0.62  in 
calmer periods, directly mirror the adaptive behavior predicted by the 
AMH. This alignment reinforces the view that market efficiency evolves 
continuously as investors adjust their strategies in response to shifting 
market conditions. The enhanced performance of our model, particularly 
in terms of reduced forecast errors and improved pricing accuracy, 
further corroborates the need for adaptive volatility models. In effect, the 
model’s ability to capture such temporal variations validates the 
theoretical underpinnings of the AMH. Moreover, our findings suggest 
that the integration of dynamic parameters not only improves statistical 
fit but also offers practical advantages in risk management. By 
dynamically updating the memory parameter, our model is able to 
respond more effectively to market shocks and regime shifts. 
Consequently, this empirical evidence underscores the importance of 
considering market adaptiveness in volatility modeling and provides 
strong support for the relevance of the AMH in modern financial analysis.

Additionally, the application of the Vector Autoregression (VAR) 
model to our dynamic volatility measures offers further insight into the 
interdependencies among market variables. In our analysis, 
incorporating dynamic volatility estimates into a VAR framework led to 
a statistically significant improvement in forecast performance, as 
evidenced by a reduction in the average out-of-sample RMSE from 
0.0053 to 0.0048, representing an improvement of 8.5%. This 
enhancement suggests that dynamic volatility measures capture 
additional information about market interrelations that static measures 
fail to detect. Furthermore, the VAR model facilitates the examination 
of impulse response functions, which reveal how shocks to volatility 
propagate through the system. The statistical significance of these 
improvements was confirmed by t-tests, with p-values consistently below 
0.05 across the analyzed lags. This result underscores the added value of 

employing a VAR approach in the context of multivariate market 
analysis. By capturing the dynamic interactions between volatility and 
other market variables, the VAR model provides a more comprehensive 
framework for understanding financial market behavior. In summary, 
these findings advocate for the integration of dynamic volatility measures 
within a VAR framework as a means to enhance both predictive 
accuracy and theoretical understanding of market dynamics.

The practical implications of our model’s superior performance 
extend across multiple domains of financial practice. In the context of 
risk management, the dynamic adjustment of the memory parameter 
enables more accurate Value-at-Risk (VaR) calculations, with our 
model reducing VaR exceedances by 23% compared to static 
approaches during the out-of-sample period. The model’s ability to 
detect regime changes through variations in the Hurst exponent 
provides early warning signals for shifts in market volatility, with an 
average lead time of 3.7 trading days before significant volatility events. 
These improvements in risk assessment are particularly valuable for 
institutional investors managing large portfolios, where even small 
improvements in risk estimation can translate into substantial capital 
savings. In the domain of derivative pricing, the reduction in option 
pricing errors documented in our results has immediate practical value 
for options traders and market makers. The model’s superior 
performance during periods of market stress, where pricing errors for 
competing models typically increase by 50–70%, suggests that the 
dynamic memory framework better captures the changing nature of 
market risk premiums. For algorithmic trading applications, the daily 
updates to volatility forecasts provide a more reliable basis for signal 
generation, with back-testing showing a Sharpe ratio improvement of 
0.31 over strategies based on traditional volatility models.

The implementation of our dynamic fractional volatility model does 
face certain practical limitations that warrant acknowledgment. The 
computational intensity of the wavelet-based Hurst exponent estimation, 
while feasible for daily updates, presents challenges for higher-frequency 
applications. Our current implementation, utilizing 12 CPU cores, 
requires approximately 3.2 s to process each daily update, suggesting that 
intraday applications would likely require GPU acceleration or 
substantial computational infrastructure. The choice of a 252-day rolling 
window for Hurst exponent estimation reflects a careful balance between 
the need to capture long-memory characteristics and the desire for 
responsiveness to changing market conditions. Alternative window 
lengths were tested, ranging from 126 to 504 trading days, but the chosen 
window length provided the optimal trade-off between these competing 
objectives as measured by out-of-sample forecast accuracy. Our model 
also makes several simplifying assumptions, notably ignoring the 
potential impact of interest rate changes on volatility dynamics and not 
explicitly modeling jump processes in returns. While these 
simplifications facilitate estimation and implementation, they may limit 
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the model’s accuracy during periods of extreme market stress or 
significant macroeconomic shifts.

Looking forward, several promising directions for future research 
emerge from our findings. The integration of machine learning 
techniques, particularly Long Short-Term Memory (LSTM) networks, 
could potentially improve the prediction of the Hurst exponent by 
incorporating a broader range of market indicators and alternative data 
sources. Preliminary experiments with LSTM networks trained on a 
combination of technical indicators and market sentiment metrics have 
shown promising results, with a 15% reduction in Hurst exponent 
prediction error compared to our current wavelet-based approach. The 
extension of our framework to a multivariate setting represents another 
important avenue for future research, as the ability to model cross-asset 
correlations with time-varying fractal exponents could provide valuable 
insights for portfolio management and systemic risk assessment.

Testing the model’s performance across alternative asset classes, 
including foreign exchange markets, commodities, and 
cryptocurrencies, would help establish the generalizability of our 
findings and potentially reveal asset-specific patterns in memory 
dynamics. The incorporation of high-frequency data and market 
microstructure effects represents another promising direction, though 
this would require significant modifications to the estimation 
framework to handle the computational challenges and noise 
characteristics inherent in such data.

Conclusion

This study presents a novel dynamic fractional volatility model that 
explicitly captures time-varying market memory via a continuously 
updated Hurst exponent. The model leverages a rigorous wavelet-based 
approach using Daubechies-4 wavelets on 252-day rolling windows to 
estimate the Hurst exponent in real time. Its in-sample performance is 
demonstrated by an Akaike Information Criterion (AIC) of 19,723.11 
and a Bayesian Information Criterion (BIC) of 19,804.56, figures that 
substantially outperform those of traditional models such as GARCH 
(1,1), FIGARCH (1,d,1), and static fractional models.

Robust statistical tests, including Vuong’s closeness test, confirm 
that these differences in performance are statistically significant. The 
integration of a time-varying memory parameter allows the model to 
adapt dynamically to regime shifts and long-range dependence 
observed in equity markets. This adaptability is particularly critical in 
contexts characterized by persistent volatility clustering and 
non-linear dynamics. The empirical evidence firmly establishes that 
the dynamic model is more adept at capturing the inherent 
complexities of financial time series than its conventional 
counterparts. Consequently, these results substantiate the model’s 
theoretical soundness and its superior practical performance.

The out-of-sample evaluation further substantiates the model’s 
predictive capabilities, as evidenced by an RMSE of 0.0041—a 12.3% 
reduction relative to benchmark models. In addition, the Mean Absolute 
Percentage Error (MAPE) is reduced to 7.5%, representing an 
improvement of approximately 9.8% over alternative specifications. The 
model achieves an R-squared value of 0.72, indicating robust explanatory 
power compared to the competing models whose R-squared values range 
between 0.65 and 0.68. Moreover, the dynamic fractional model exhibits 
superior derivative pricing performance, as demonstrated by an average 
absolute option pricing error of 1.8%, which is significantly lower than 
the 2.7, 2.3, and 2.5% errors observed for the GARCH (1,1), FIGARCH 

(1,d,1), and static fractional models, respectively. These empirical 
observations confirm that incorporating a time-varying Hurst exponent 
not only enhances volatility forecasting but also improves derivative 
pricing accuracy in practical applications. The convergence of the 
in-sample and out-of-sample performance metrics underscores the 
robustness and practical applicability of the proposed framework. 
Collectively, these findings validate the dynamic model’s capability to 
accurately capture evolving market memory and offer a superior basis 
for risk management, derivative pricing, and algorithmic trading 
strategies. Ultimately, the results provide compelling evidence that the 
proposed approach represents a significant advancement in the modeling 
of financial market volatility.
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