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The Liu financial dynamical system is a chaotic model that has been extensively

studied for its applicability to financial and economic activities. This study

examines chaos management and synchronization in this system. Two popular

control techniques in non-linear system stabilization—sliding mode control

(SMC) and passive control (PC)—are compared. While PC makes use of the

system’s passivity to accomplish control goals, SMC is made to guarantee

strong synchronization in the face of external disruptions and parametric

uncertainties. Lyapunov theory is used for stability analysis of both approaches,

guaranteeing convergence of synchronization faults. In terms of accuracy,

resilience, and computational e�ciency, numerical simulations show each

approach’s advantages and disadvantages. The findings o�er important insights

into how well SMCs and PCs work to manage unpredictability in financial

systems and provide valuable guidance. The results show that SMC achieves

synchronization within t ≤ 1, while PC takes t ≤ 13. Maximum synchronization

error in SMC reduces from 5.67 to 0.02, whereas PC reduces from 6.21 to

0.03. SMC, although faster, requires two controllers, whereas PC, using one

controller, adjusts the interest rate for synchronization. These findings highlight

the trade-o�s in speed, complexity, and practical implementation of both

methods for financial stability.
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chaos, synchronization, Liu financial dynamical system, sliding mode control, passive
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Introduction

The dynamics of economic systems are important to both macro- and

microeconomics. Economic and financial systems are progressively growing intricately,

and financial sectors’ commercial growth varies from inadequate to vast [1]. Numerous

factors have contributed to the complexity of the economic growth and expansion process.

A major problem in the field of non-linear science is the study of non-linear chaotic

dynamical systems [2]. The rate of inflation, the value of shares, and capital demand,

along with other dynamic elements, are all part of the system [3]. A financial system

can exhibit chaotic behavior, even if it has deterministic characteristics. Because of their

extreme sensitivity to starting conditions, chaotic systems can take entirely different paths

in response to even small mistakes. As a result, financial systems must attain chaotic

stability. These characteristics are especially prominent in the Liu dynamical financial

system, which offers a powerful yet simplified framework for modeling essential financial

interactions. Since Lorenz’s breakthrough in 1963, scientists have been very interested in
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studying and developing chaos [4, 5]. Numerous chaotic systems

have been developed, including the Lu system [6], Chen system

[7], and Rossler system [8]. Liu et al. established a system

of multidimensional uncontrolled linear equations that only

contained two non-linear terms [9].

Complex dynamical behaviors, such as irregularity and

unpredictable long-term future behavior, are characteristics of

chaotic systems. Chaos, as a complex and non-linear dynamic

process, is prevalent across various fields. Current approaches to

chaos control include a range of strategies intended to control and

stabilize chaotic behavior in dynamical systems. Lyapunov control

[10] and other non-linear control strategies are some of the notable

methods. Lyapunov control is based on Lyapunov stability theory,

which is concerned with establishing and ensuring the stability

of non-linear systems. A Lyapunov function is used in Lyapunov

control to examine and regulate the dynamics of a system.

Sliding mode control is a straightforward method for managing

chaos that has been successfully used in uncertain systems and

control non-linear systems. Russian scientists developed variable

structure control, also called sliding mode control, in the early

1960s and later documented it in Utkin’s monograph in the

1970s [11]. Since then, SMC has been extensively studied and

effectively used to solve a wide range of real-world problem

areas because of its ease of implementation and adaptability in

responding to system fluctuations and uncertainty [12]. SMC’s

sliding motion is its most appealing feature. When in the sliding

mode, the system’s fluid movement is effectively restricted to a

certain region of the entire state space. Therefore, adopting an

appropriate feedback control method to explore and evaluate chaos

management and synchronization is currently my main area of

interest. The stability, sliding mode control [13], passive control

[14], and synchronization of the Liu financial dynamical system are

all explored in this study.

A simplified depiction of reality, an economic model, is

intended to produce testable hypotheses regarding economic

activity. An essential characteristic of an economic model is that

it is inherently subjective in its creation due to the lack of

objective metrics for economic results. To better comprehend this

intricate dynamic of these systems, several financial and economic

models have been put out in the literature since Strotz et al.

[15, 16] discovered chaos in an economic model. Several models

are available, including the new hyperchaotic finance model [17],

the Investment Saving-Liquidity Money (IS-LM) model [18], the

forced Van der Pol model [19], and numerous others. An extremely

intriguing model to depict the dynamics of financial systems was

put forth byMa and Chen in 2001 [20]. An intense sensitivity to the

initial circumstances of the system’s variables and parameters was

also discovered by the model’s analysis, along with some intriguing

dynamics. Several financial variables, including the exchange rate,

Gross Domestic Product (GDP), interest rate, and production, have

memory, meaning that any upcoming changes in these variables are

impacted by current and historical changes.

Furthermore, in 2020, Liao et al. [21] introduced a newmodel to

enhance comprehension of financial system dynamics. This novel

model considers the fact that investment demand influences the

price index, in contrast to the approach put out byMa andChen [3].

It was discovered that this financial system’s complex behavior is

the consequence of three components interacting with one another.

In financial systems, chaotic behavior is undesirable because it

makes economic and financial predictions difficult and, as a result,

increases investment risk. Hereafter, it is managed in the presence

of uncertainty pertaining to the system parameters.

In financial systems, chaos control has been extensively

researched in the literature. Numerous methods have been

developed to manage chaotic financial systems. One of the

other well-known control techniques is sliding mode control,

whose dynamic performance is dictated by the specified manifold

or sliding surface where control is maintained by a switching

structure [22]. This technique forces the system states to remain

on the sliding surface, resulting in discontinuous control. Due

to its significant impact on lowering complexity and expense,

synchronization is now best implemented using a single-state

controller. Because it only requires one controller, the passive

control approach has been becoming more and more popular for

synchronizing and managing chaotic systems. The primary goal

of passivity theory is to maintain system stability by putting in

place a controller that makes the closed-loop system passive upon

the characteristics of the system. The passive control approach has

been effectively used in recent years to synchronize hyperchaotic

Lorenz systems [14], chaotic systems such as Rikitake [23], unified

[24], and others. Since passive control does not depend on exact

real-time changes, it ensures robust stability even in the face

of modeling uncertainties and external disturbances. Numerous

studies have examined the sliding mode and passive control

methodologies [14, 22–24]. Some unstable financial systems have

been introduced in the past 10 years. The topological structure,

stability, equilibrium points, and Lyapunov exponents are examples

of the dynamic behaviors of chaotic finance systems, including a

detailed investigation of Hopf bifurcation analysis [25]. Using linear

feedback control and efficient speed feedback control [17], chaotic

financial systems were brought under control through approaches

such as adaptive control [26], passive control [27], time-delayed

feedback control [28], the choice of gain matrix control [29], and

the revision of gain matrix control [29]. It has been demonstrated

that a fractional-order chaotic finance system can be regulated

by employing a sliding mode control technique [30], along with

approaches such as nonlinear feedback controllers [2], adaptive

controllers [31], and active controllers [32], and a single controller

based on Lyapunov stability theory. The chaotic finance systems are

synchronized using linear matrix inequality [33].

Despite the extensive studies on chaotic economic systems,

including the Lorenz [34], Lu [35], Chen [36], and Rossler

systems [37], limited research has focused on the Liu [38]

financial dynamical system—a system with complex non-linear

interactions relevant to financial modeling. While various chaos

control methods, such as Lyapunov control and passive control

[27], have been employed in different financial systems, there is

still a lack of robust control strategies specifically designed for

the Liu system. In addition, chaos synchronization in financial

systems is crucial for stability, yet most existing studies have not

explored the combined effects of stability analysis, sliding mode

control (SMC), and synchronization in the Liu system under

various conditions of uncertainty. In this study, we examine the

robust regulation of this chaotic behavior and the chaos in the
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financial system as described by the Liu dynamical system [38,

39], which is motivated by the discussions above. To address

this instability, the study proposes sliding mode control (SMC)

as a robust method for stabilizing chaos, ensuring the system

remains resilient against uncertainties. The primary benefit of

SMC is its ability to change the control law, which forces the

system’s states from their initial states onto a predetermined

sliding mode surface [40]. The system on the sliding mode

surface has desirable characteristics, including quick response, low

sensitivity to outside noises, robustness to system uncertainties,

easy realization, and so forth. Around this sliding surface, SMC

produces a discontinuous control law and limited switching [41].

Consequently, this sliding surface is bound to determine the

direction of the state variables’ motion and the dynamics of the

system. However, the existence of such a control law leads to

an undesirable issue with sliding control, namely the “chattering

phenomenon,” which should be reduced or eliminated in some way.

However, the existence of such a control law leads to an undesirable

issue with sliding control, namely, the “chattering phenomenon,”

which should be reduced or eliminated in some way. The

literature has proposed a number of methods, most of which are

predicated on the continuous approximation of the discontinuous

sign function. A sliding mode controller’s design consists of

the following:

1) Use a “sliding surface” that is robust during the reaching

phase and depicts the “desired stable dynamics”.

2) The “control law” that ensures “the sliding condition” and

“the reaching condition” is described.

In addition, the research explores synchronization between

the two Liu financial systems, which is crucial for maintaining

coherence in financial behavior and stability. A comparative

study evaluates the effectiveness of Lyapunov control, passive

control, and SMC, identifying the most suitable approach for

managing chaos in financial dynamics. Furthermore, the study

validates its theoretical findings through extensive numerical

simulations, including time response analysis, phase portraits,

and synchronization error dynamics, demonstrating the practical

applicability of the proposed control methods. By addressing these

key aspects, this research advances non-linear financial modeling

and offers an effective approach to managing chaos in economic

systems, ultimately contributing to improved financial stability.

This article’s remaining sections are organized as follows: In

Section 2, the Liu financial dynamical system is introduced, and

its governing equations are discussed. The system’s parameters

and their economic interpretations are also provided. In addition,

the chaotic behavior of the Liu system under specific parameter

conditions is analyzed. Section 3 focuses on the synchronization

of the Liu dynamical system using sliding mode control (SMC).

The design of the SMC strategy is presented, followed by a

stability analysis based on Lyapunov theory. The effectiveness

of the proposed control scheme in achieving synchronization is

demonstrated. In Section 4, the organization of the Liu financial

system via passive control (PC) is explored. The principles of

passive control are introduced, and a control law is designed

to stabilize the system. Theoretical justifications for stability are

provided, along with a comparison between SMC and PC strategies.

Section 5 presents numerical simulations to validate the proposed

control methods. The time response, phase portraits, and error

dynamics are illustrated to confirm the effectiveness of the applied

controllers. A comparative analysis between different control

strategies is also included. Finally, Section 6 concludes the article

with a summary of key findings, highlighting the contributions of

the study. Future research directions, including adaptive control

techniques and further applications in financial modeling, are

also discussed.

Liu financial dynamical system

To foster economic growth and commercial demand through

investment, a financial system’s organizational units and exchanges

usually connect in a complex way. Three state variables’ temporal

variation has been identified by the economic model considered

in this study: Let x represents the price index or market price,

y represents the interest rate or inflation rate, and z represents

the investment demand or capital. The price exponent determines

the variance in price distribution. The quantity that the lender

pays the borrower to utilize assets, represented as an amount

of capital, is known as the rate of return. The desired or

expected capital and inventory of an organization is known as

expenditure demand, and it is negatively correlated with financing

rates and investment costs. The Liu financial dynamical system

is described by a set of three first-order differential equations as

follows [39]:

ẋ = a
(

y− x
)

ẏ = bx− dxz (1)

ż = −cz + fx2

where a, b, c, d, and f are all beneficial constant parameters

that, respectively, describe the quantity of savings, the cost per

savings, the elasticity of economic demand, the influence of the

cross-market, and the growth factor of investments [46]. A fiscal

system’s savings level shows that the enterprise unit’s overall

economic expansion has accelerated. The quantity of distribution

from objective investments that is obtained without initial expense

is defined as the per-investment cost. The relationship between

the cost of a good change and alterations in the quantity

demanded is known as advertising demand elasticity. Cross-

market influence means the impact of interactions across different

markets or sectors, such as how the behavior in one market

(supply or demand) influences another. The growth factor of

investments means a growth or amplification factor in the system,

representing how investments fuel further expansion, potentially

due to compounding effects or returns. When a = 10, b =

40, c = 2.5, f = 4, and d = 1, the dynamic financial

system behaves chaotically [38]. Figure 1 displays the chaotic

financial system’s timing response with the initial circumstances:

x (0) = 10, y (0) = 20, and z(0) = 90. Figure 2

displays the 2D phase portraiture, Figure 3 displays the 3D

phase plane, and Figure 4 displays the error states’ time response

before synchronization.
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The synchronization of the Liu
dynamical system applying SMC

The boundaries a, b, d, c, and f are taken within a limit to make

sure that the system (Equation 1) will demonstrate changeable

behavior. It is expected that two chaotic financial systems, with the

drive system controlling the response system, are used to observe

the synchronization. Subtitles 1 and 2 stand for the drive system

and response system, respectively. The drive system is provided by

ẋ1 = a
(

y1 − x1
)

ẏ1 = bx1 − dx1z1 (2)

ż1 = −cz1 + f x1
2

and the response system is described as

ẋ2 = a
(

y2 − x2
)

+ u1(t)

ẏ2 = bx2 − dx2z2 + u2 (t) (3)

ż2 = −cz2 + f x2
2 + u3(t)

where u1 (t) , u2 (t) , and u3(t) in Equation 3 are to be formed.

To determine the control capabilities for time, the drive system

is eliminated from the reaction time system. The state errors

e1, e2, and e3 are to be controlled, and the controlling system

(Equation 2) is expressed as

e1 = x2 − x1

e2 = y2 − y1 (4)

e3 = z2 − z1

Thus, the patterns of errors become

ė1 = ae2 − ae1 + u1(t)

ė2 = be1 − d (x2z2 − x1z1) + u2 (t) (5)

ė3 = −ce3 + f
(

x2
2 − x1

2
)

+ u3(t)

In matrix notation, we can normalize the error behavior

(Equation 5) to

ė = Ae+ η
(

x, y
)

+ u (6)

where,

A =







−a a 0

b 0 0

0 0 −c






, η

(

x, y
)

=











0

−d(x2z2 − x1z1)

f (x2
2 − x2

2)











u =







u1(t)

u2(t)

u3(t)






(7)

Themeaning of the control signal u established on the slidingmode

control methodology is as follows [42]:

u(t) =− η
(

x, y
)

+ Bv (t) (8)

where B is a matrix and v is a control signal. To make (A, B)

controllable, B was selected.

Consequently, B is interpreted as

B =







1

0

1






(9)

Substituting Equation 8 into Equation 7, the error behavior

simplifies to

ė = Ae+ Bv (10)

It has a single input, v, and is a proportional time-dependent

control scheme.

The initial global chaotic synchronizing question can be

converted into an analogous problem of stabilizing the system’s

zero-solution e = 0 in Equation 10, provided that an appropriate

sliding mode control is selected. The switchable mode control

defines the variable.

s (e) = Ce = c1e1c2e2 + . . . . . . . . . . . . . . . . . . + cnen. (11)

as, C = [c1 c2 . . . . . . . . . cn] is a coefficient trajectory that needs to

be formed.

Now reduce the system (Equation 10) motion in the sliding

mode control to the sliding manifold denoted by s =

{xǫRn, |s (e)| = 0}

which must remain unchanged under the influence of the error

dynamics described in Equation 10. When the sliding manifolds,

the system (Equation 10) fulfills the following requirements:

s(e) = 0 (12)

It becomes a series of defining equations and

ṡ (e) = 0 (13)

In the chaotic case, the parameter values are a = 10, b = 40, c =

2.5, f = 4, and d = 1.

The variable for the sliding mode is chosen as

S = Ce = [2 0 − 1] e = 2e1 − e3.

which ensures that the sliding mode state equation is

asymptotically stable.

Select the sliding mode gain as follows: K =5 and q =0.1.

A high value of K can lead to chattering, while a suitable

rate of q is selected to both accelerate the time it takes to

accomplish the sliding manifold and minimize system chattering.

Using Equations 10, 11, the Equation 13 can be changed as

ṡ (e) = C(Ae+ Bv) (14)

According to the sliding mode control theory’s property [42],

v (t) = −(CB)−1[C (KI + A) e+ qsign(s) (15)

where C is chosen such that CB 6= 0

Now, the v (t) control signal becomes

v (t) = −10e1 + 20e2 − 2.5e3 + 0.1sign(s) (16)
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FIGURE 1

Chaos finance system time signals x, y, and z prior to synchronization for (a) x signals, (b) y signals, and (c) z signals.

As a result, the necessary sliding mode controller is acquired as [42]

u = −η
(

x, y
)

+ Bv (17)

Then, the required sliding mode control signal is obtained as

Equation 8, where η(e) and B are described as in Equations 7,

9, respectively:

u1 (t) = 0

u2 (t) = d (x2z2 − x1z1) + v(t) (18)

u3 (t) = −f
(

x2
2 − x1

2
)

+ v(t)

Equations 16, 17 complete the synchronization of the Liu system

(Equation 3) using the sliding mode control approach. Therefore,

two equal Liu systems work together using sliding mode control.

Theorem 3.1. For all initial conditions x(0), y(0) ∈ Rn,

the sliding mode control law guarantees that the drive system

(Equation 2) and the response system (Equation 3) are globally and

asymptotically synchronized.

u(t) = −η(x, y)+ Bv(t) (19)

where B is a column vector such that (A, B) is controllable and

v(t) is defined by Equation 15. Furthermore, k and q, the sliding

mode gains, are positive.

Proof. First, observe that the closed-loop dynamics can be

achieved by substituting Equations 19, 17 into the error dynamics

(Equation 7).

ė = Ae− B(CB)−1[C (KI + A) e+ qsgn (s)] (20)

To demonstrate that the error dynamics (Equation 20) is globally

stable over time, let us examine the proposed Lyapunov function

that the equation depicts.

v(e) =
1

2
s2(e) (21)

which is a positive definite function on Rn.

Differentiating v along the trajectories of Equation 20 or the

equivalent dynamics (Equation 14), we obtain

v̇(e) = s(e)ṡ(e) = −ks2 − qsgn(s) (22)

which is a negative definite function on Rn.
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FIGURE 2

Phase depicts a chaotic financial system in three di�erent planes: (a) x-y, (b) y-z, and (c) z-x.

FIGURE 3

Chaotic finance system’s three-dimensional phase plane.
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FIGURE 4

Interval retort of the error states before synchronization.

The error dynamics (Equation 20) is therefore immediately

globally asymptotically stable for all initial conditions

e (0) ǫRn, according to the Lyapunov equilibrium principle.

This concludes the documentation.

The organization of Liu systems via
passive control (PC)

At this point, the system that drives will continue to be [43]

ẋ1 = a
(

y1 − x1
)

ẏ1 = bx1 − dx1z1 (23)

ż1 = −cz1 + hx1
2

and the system for reporting is provided by

ẋ2 = a
(

y2 − x2
)

+ u (t)

ẏ2 = bx2 − dx2z2 (24)

ż2 = −cz2 + hx2
2

where the passive control function to be found is u (t) in

Equation 24. The timing error is obtained by subtracting the drive

system from the response system, similar to the sliding mode

control. Then,

ė1 = ae2 − ae1 + u(t)

ė2 = be1 − dx2z2 + dx1z1 (25)

ė3 = −ce3 + h(x2
2 − x1

2)

where the system (Equation 25) is referred to as the error system,

and e1, e2, and e3 are the actual errors. System (Equation 25) has a

word that may be expressed as

x2
2 − x1

2 = (x2 + x1)e1 (26)

So, the error system (Equation 25) can be rewritten in the

following form:

ė1 = ae2 − ae1 + u(t)

ė2 = be1 − dx2z2 + dx1z1 (27)

ė3 = −ce3 + he1(x2 + x1)

To stabilize the error system (Equation 27) at zero equilibrium, the

passive controllers u(t) must be found.

By assuming that the state variable e1 is the output of the system

and supposing Y = e1, z1 = e2, z2 = e3, z = [z1, z2]
T , the system

(Equation 27) can be denoted by normal form:

Ż1 = bY − dx2z2 + dx1z1

Ż2 = −ce3 + hY(x2 + x1)

Ẏ = az1 − aY + u(t) (28)

The modified iteration of the passive control theory is as follows:

Ż = f0 (Z) + p(Z,Y)Y ,

Ẏ = b (Z, Y) + a (Z,Y) u,
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(a)

(b)

(c)

FIGURE 5

Interval retort of states for synchronization when the sliding mode controller is started t = 10: (a) x signs, (b) y signs, and (c) z signs.

and according to system (Equation 28):

f0 (Z) =







−dx2z2 + dx1z1
−cz2






,

p(Z,Y) =

[

b

h(x2 + x1

]

, (29)

b (Z, Y) = aZ1 − aY

a (Z,Y) = 1

where W(Z) = 1
2 (Z1

2 +Z2
2) is a Lyapunov function of f0 (Z) with

W(0) = 0. Then,

d

dt
V (Z,Y) =

∂W(Z)

∂Z
Ż + YẎ

=
∂W(Z)

∂Z
f0 (Z) +

∂W (Z)

∂Z
p (Z,Y)Y + Yb (Z,Y) u (30)

According to Equation 29, by taking the derivative ofW(Z)

Ẇ (Z) =
d

dt
W (z) =

∂W(Z)

∂Z
f0 (Z) = [Z1 Z2]

[

−dx2z2 + dx1z1
−cz2

]

(31)

=





−dx2z1z2 + dx1z1
2

−cz2
2





Since W(Z) ≥ 0 and Ẇ (Z) ≤ 0, it can be decided that
W(Z) is the Lyapunov function of f0 (Z) and that f0 (Z) is
globally asymptotically stable. The controlled system (Equation 27)
is equivalent to a passive system and can be asymptotically
globally stabilized at its zero equilibrium by the following state
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FIGURE 6

Interval retort of states for synchronization when the sliding mode controller is started t = 5: (a) x signs, (b) y signs, and (c) z signs.

feedback controller:

u (t) = a(Z, Y)−1

[

−bT (Z,Y) −
∂W (Z)

∂Z
p (Z,Y) − αY + v

]

= 1−1 [− (az1 − aY) − [z1 z2]

[

b

h (x1 + x2)

]

− αY + v] (32)

= aY −
(

a+ b
)

z1 − h (x1 + x2) z2 − αY + v

where v is an external input signal and α is a positive constant.

Z1 = e2, Z2 = e3, and Y = e1 conversions are noted, and the

passive control function turns into

u (t) = ae1 −
(

a+ b
)

e2 − h (x1 + x2) e3 − αe1 + v (33)

Equation 33 completes the synchronization of the chaotic finance

system (Equation 24) using the passive control method. As a result,

two identical chaotic finance systems are synchronized through

passive control.

The theory of passive control

Consider the following differential equation:

{

ẋ = f (x) + g (x) u,

y = h (x) ,
(34)

where xǫX ⊂ Rn is the state variable. f (x) and g (x) are the smooth

vector fields; u (t) ǫ U is the input; f (0) = 0 and h(x) are a

smooth mapping.

Definition 1: The system (Equation 34) is a minimum phase

system if Lgh(0) is non-singular and x = 0 is one of asymptotically

stabilized equilibrium points of f (x).

Definition 2: The system (Equation 34) is passive if the

following two conditions are satisfied:

1.f (x) and g (x) exist and are smooth vector fields, and h (x) is

a smooth mapping

2. for any t ≥ 0, there is a real value β satisfying the inequality

∫ t

0
uT (τ ) dτ ≥ β , (35)

or there are a real value β and ρ > 0 satisfying the inequality

∫ T

0
uT (τ ) y (τ ) dτ + β ≥

∫ T

0
ρyT (τ ) y (τ ) dτ . (36)

Let z = ϑ (x) , and the system (Equation 34) will be changed into

the following generalized form:

{

ż = f0 (z) + p
(

z, y
)

y,

ẏ = b
(

z, y
)

+ a
(

z, y
)

u,
(37)

where a(z, y) is non-singular for any (z, y).
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FIGURE 7

Interval retort of states for synchronization when the passive controller is started t = 10: (a) x signs, (b) y signs, and (c) z signs.

Theorem 1: If the system (Equation 34) is a minimum phase

system and has a relative degree [1, 1, . . . ..] at x = 0, the

system (Equation 37) will be equivalent to a passive system and

asymptotically stabilized at an equilibrium point through the local

feedback control as follows:

u = a(z, y)−1

[

−bT
(

z, y
)

−
∂

∂z
W (z) p

(

z, y
)

− αy+ v

]

, (38)

where W (z) is the Lyapunov function of f0 (z) , α is a positive

real value, and v is an external signal that is connected with the

reference input.

Proof: Suppose that

V
(

z, y
)

= W (z) +
1

2
y2, (39)

d

dt
V

(

z, y
)

=
∂W(z)

∂z
ż + yẏ

=
∂W (z)

∂z
f0 (z) +

∂W (z)

∂z
p
(

z, y
)

y+ yb
(

z, y
)

+ ya
(

z, y
)

u (40)

Because the system (Equation 37) is a minimum phase system, the

inequality is obtained to be

∂W (z)

∂z
f0 (z) ≤ 0, (41)

So

d

dt
V

(

z, y
)

≤
∂W (z)

∂z
p
(

z, y
)

y+ yb
(

z, y
)

+ ya
(

z, y
)

u (42)

Substituting Equation 38 into the inequality (Equation 42), we have

d

dt
V

(

z, y
)

≤ −αy2 + vy (43)

Performing integration on both sides of the inequality,

Equation 43 yields

V
(

z, y
)

− V
(

z0, y0
)

≤ −

∫ t

0
αy(τ )2dτ +

∫ t

0
αy(τ )2dτ +

∫ t

0
v (τ ) y (τ ) dτ

(44)

For V
(

z, y
)

≥ 0, let V
(

z0, y0
)

= µ, the above inequality can be

written as

∫ t

0
v (τ ) y (τ ) dτ + µ ≥

∫ t

0
αy(τ )2dτ + V(z, y) ≥

∫ t

0
αy(τ )2dτ

(45)

According to definition 2, the system (Equation 37) is a passive

system. Because W(z) is radially unbounded, it follows from
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FIGURE 8

Interval retort of the states for synchronization when the passive controller is started t = 5: (a) x signs, (b) y signs, and (c) z signs.

(a)

(b)

(c)

FIGURE 9

Retort of error signs for synchronization when the sliding mode controller is activated t = 10: (a) e1 signs, (b) e2 signs, and (c) e3 signs.
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FIGURE 10

Retort of error signs for synchronization when the sliding mode controller is activated t = 5: (a) e1 signs, (b) e2 signs, and (c) e3 signs.

Equation 39 that V
(

z, y
)

is also radially unbounded so that a

closed-loop system is in a bounded state stable for [zT , y]
T
. This

means that we can use the local feedback control described in

the form (Equation 38) to regulate the system (Equation 37) to an

equilibrium point.

Numerical simulations

In this portion, Liu’s financial dynamical systems are shown to

be brought into line using numerical simulations completed with

MATLAB. The system is simulated using the fourth-order Runge–

Kutta method with a fixed step size of 0.001. The bound values of

non-linear financial systems are required as a = 10, b = 40, c =

2.5, f = 4, and d = 1 [38]. The initial values are selected as x1(0)

= 10, y1 (0) = 20, z1(0) = 90, x2(0) = 8, y2(0) = 18, and z2 (0)

= 85. To minimize chattering, the sliding mode control constant q

is set to 0.1. Figures 5, 6 illustrate how the SMC for synchronizing

finance dynamical systems activates the states to organize responses

at t = 10 and t = 5, respectively. Figures 7, 8 demonstrate that in

the states at t = 10 and t = 5, response times for synchronizing

financial dynamical systems with passive controllers are initiated.

The error signals of synchronization in sliding mode control are

explained in Figures 9, 10. The error signals of synchronization

in passive control are shown in Figures 11, 12. As shown in

Figures 5, 7, the outputs indicate that both the SMC and the PC

successfully synchronized the chaotic financial systems within an

appropriate timeframe. In the comparative results of the SMC

and PC, both stimulated at t = 10, synchronization is achieved

by the SMC t ≤ 1, while the PC reaches synchronization at

t ≤ 13. The error signals shown in Figures 7, 11 come together

asymptotically to zero. Comparative findings for synchronizing

chaotic financial systems are presented in these figures. With

controllers activated at t = 10, synchronization is achieved by

sliding mode control at t ≥ 1, whereas passive control reaches

synchronization at t ≥ 13. Synchronization is initially observed

with the SMC once they are started at t = 5. While the PC

method only needs one controller, the SMC approach uses two

controllers to accomplish synchronization. The passive control

method achieves synchronization by adjusting the interest rate,

either by adding or subtracting a value, based on factors such as the

savings amount, current interest rates, and investment demands.

It is easier to implement since it does not require adjustments

to the price exponent or investment demand. On the contrary,

the sliding mode control method modifies the rate of interest and

investment demand to achieve synchronization. Using the saving

amount, per-investment cost, interest rates, investment demands,

and price exponents, it determines the total amount of changes. The

elasticity associated with financial demands for synchronization

is not necessary for both approaches. Whereas the sliding mode

control approach seems to have certain advantages in terms of

synchronization speed, it is more difficult to implement than

passive control.

Conclusion

The foremost empirical of this exploration is to investigate

the synchronization of chaos in a non-linear finance system
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FIGURE 11

Retort of error signs for synchronization when the passive controller is activated t = 10: (a) e1 signs, (b) e2 signs, and (c) e3 signs.

FIGURE 12

Retort of error signs for synchronization when the passive controller is started t = 5: (a) e1 signs, (b) e2 signs, and (c) e3 signs.
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using the Liu dynamical system. A low-dimensional financial

system can adjust to the global macroeconomic system through

synchronization. Rapid fluctuations in factors such as price and

interest rates are the primary causes of changes in demand and

volume. Rapid changes in factors such as price and interest

rates are the main drivers behind shifts in demand and volume.

These cause non-linearity within a system. Alignment with the

global financial system offers advantages for economic growth by

achieving uniform interest rates, investment demand, and price

levels. In addition, it can help mitigate uneven economic risks.

Two sliding mode controllers and one passive controller have been

created using the theories of sliding mode and passive control to

bring two identical chaotic financial systems into synchrony. All

theoretical analyses of the proposedmethods of control successfully

synchronize the two chaotic financial systems based on numerical

simulations. In each case depicted in Figures 5–12, sliding mode

controllers are more effective than passive controllers at controlling

the synchronization of chaotic finance systems; thus, the sliding

mode approach is more suitable. The benefit of the passive

control approach is that it allows chaotic financial systems to

be synchronized with a single controller, making implementation

easier. The passive control merely modifies the interest rate,

whereas the sliding mode control achieves synchronization by

modifying both the interest rate and investment demand. The

study helps researchers choose the best technique depending on

system restrictions by highlighting the trade-offs between the

two approaches.
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