
TYPE Original Research

PUBLISHED 19 August 2025

DOI 10.3389/fams.2025.1562636

OPEN ACCESS

EDITED BY

Stephen E. Moore,

University of Cape Coast, Ghana

REVIEWED BY

Pankaj Tiwari,

University of Kalyani, India

Anibal Coronel,

University of Bío-Bío, Chile

*CORRESPONDENCE

Mostafa Bachar

mbachar@ksu.edu.sa

RECEIVED 17 January 2025

ACCEPTED 24 July 2025

PUBLISHED 19 August 2025

CITATION

Bachar M (2025) Sensitivity analysis for a delay

mathematical model: the glucose-insulin

model. Front. Appl. Math. Stat. 11:1562636.

doi: 10.3389/fams.2025.1562636

COPYRIGHT

© 2025 Bachar. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Sensitivity analysis for a delay
mathematical model: the
glucose-insulin model

Mostafa Bachar*

Department of Mathematics, College of Science, King Saud University, Riyadh, Saudi Arabia

We investigate glucose-insulin regulation through a delay di�erential equation

model formulated in Sobolev spaces. A physiologically motivated time delay

is incorporated into an advanced modeling framework that builds upon the

classical ordinary di�erential equation based model proposed by Bergman

and Cobelli. The resulting system is formulated within a semigroup-theoretical

setting that ensures well-posedness. Sensitivity analysis based on Fréchet

derivatives is employed to quantify parameter influence, while optimal design

criteria derived from the Fisher InformationMatrix are used to improve parameter

estimation. The findings highlight the e�ectiveness of Sobolev-space and

semigroup techniques in providing a rigorous and adaptable foundation for

modeling delayed physiological processes.
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1 Introduction

Over the past half-century, a substantial amount of data on glucose and insulin

levels has been collected, and mathematical modeling has been extensively applied in

diabetes research. Numerous studies have explored various aspects of the disease, including

glucose–insulin dynamics; the pharmacokinetics of insulin injections, as presented in

Lauritzen et al. [1], Binder et al. [2], and Heinemann [3]; and the signaling pathways

involved in insulin production and glucose uptake, as described in Bergman [4], Edgerton

et al. [5], Norton et al. [6], and Rosenstock et al. [7]. The study of these dynamics often

reveals feedback loops and regulatory mechanisms governing the glucose-insulin system.

For instance, the balance between insulin secretion and glucose absorption plays a crucial

role in maintaining homeostasis in healthy individuals.

This paper addresses a significant gap in the mathematical modeling of diabetes

by providing a rigorous framework for parameter estimation and sensitivity analysis in

glucose insulin dynamics, formulated within infinite-dimensional abstract spaces using

semigroup theory. Although numerous models have been proposed since the development

of the classical minimal model [8–11], the challenges of ill-posedness and sensitivity in

parameter estimation, particularly in models incorporating physiological time delays, have

not been systematically studied. These issues are especially critical when fitting models

to clinical data, as highlighted in recent simulation-based studies [12, 13], which often

overlook the underlying instability of the inverse problem.

The novelty of this work lies in its dual contribution: (i) the integration of sensitivity

analysis based on Fréchet derivatives and semigroup methods as a diagnostic tool for

guiding parameter estimation in delay differential models; and (ii) the explicit treatment

of the ill-conditioned nature of the associated inverse problems, which remains largely

unexamined even in advanced semigroup-based formulations [14, 15]. By revisiting the

minimal model and extending the analysis to delayed systems within a Sobolev-space
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framework, we offer a new perspective that unifies biological

relevance with mathematical rigor and provides a foundation for

more robust estimation strategies in diabetes modeling.

A mathematical model in diabetes or other biological fields

is a simplified representation of complex phenomena, capturing

only the most essential aspects of the underlying system. Given the

inherent complexity and variability found in biological processes,

these models necessarily provide highly abstracted views of reality.

Typically, the process of developing a physiological mathematical

model begins by formulating key research questions based on

physiological insights. Researchers then construct mathematical

equations that reflect the biological processes involved, explicitly

stating all assumptions. Subsequently, they solve these equations

and thoroughly analyze the model’s behavior. This is followed by

estimating model parameters based on available data or empirical

observations. Finally, results are interpreted, the model is validated,

and its accuracy is rigorously assessed.

Mathematical modeling follows an iterative process, beginning

with encoding a real-world phenomenon into mathematical

equations, followed by a decoding phase where the model’s

accuracy is evaluated. Assumptions made during the encoding

phase simplify the complexity of the system, while the decoding

phase ensures themodel remains a reliable representation of reality.

Some diabetes models gain widespread acceptance due to their

simplicity and ease of use. However, it is crucial to acknowledge

their limitations, particularly when important factors, such as

exercise or stress are excluded [16–18].

Mathematical modeling plays a critical role in understanding

complex biological systems, particularly in glucose-insulin

dynamics. The regulation of blood glucose levels is a fundamental

physiological process, and its disruption can lead to serious

metabolic disorders such as diabetes. Delay differential equations

(DDEs) have been widely used to model this system, as they

effectively capture the inherent time delays in glucose metabolism

and insulin response. While classical models provide valuable

insights, they often rely on simplifications that overlook important

dynamical properties.

This work aims to advance the mathematical analysis

of glucose-insulin interaction by employing semigroup theory

and Fréchet derivatives in abstract functional spaces. Unlike

previous studies that primarily focus on numerical simulations or

empirical parameter estimation, we establish a rigorous theoretical

framework that enables a deeper understanding of the systems

sensitivity to parameter variations. The novelty of our approach

lies in the integration of semigroup theory with sensitivity analysis,

providing a systematic way to assess the stability and robustness

of delay models. Moreover, by leveraging optimization techniques

such as the Fisher Information Matrix, we improve parameter

estimation strategies, refining the accuracy and reliability of

these models.

By bridging abstract mathematical theory with real-life

physiological processes, this study offers a new perspective on

the mathematical foundations of insulin-glucose regulation. The

results contribute not only to the theoretical development of delay

models but also to practical applications in improving model-

based predictions for medical and biological studies. With this

foundation, we can gain deeper insights into the complexities of

mathematical modeling in diabetes research.

2 Overview of diabetes mellitus

Diabetes mellitus encompasses a group of disorders

characterized by elevated blood glucose levels. Chronic high

blood glucose, if left unmanaged, can lead to complications

affecting both large blood vessels, known as macroangiopathy,

which can result in conditions such as coronary artery disease,

peripheral artery disease, and cerebrovascular disease, and

small blood vessels, known as microangiopathy, which can lead

to diabetic retinopathy, nephropathy, and neuropathy. These

complications can result in serious health issues such as blindness,

cardiovascular and cerebrovascular diseases, kidney failure,

sensory and autonomic neuropathy, and an increased susceptibility

to infections [19].

Glucose is the primary energy source for the body, serving

as essential fuel for cellular functions. Carbohydrates from

food are broken down by enzymes in the intestinal mucosa

into simpler sugars, such as glucose and galactose, which

are then absorbed into the bloodstream. The blood from

the intestines is transported to the liver via the portal vein.

After processing in the liver, the blood re-enters the general

circulation through the hepatic veins and the inferior vena cava

[20].

In the microcirculation, glucose diffuses into the interstitial

fluid, where it is available for uptake by cells. Insulin, a hormone

produced by the pancreas, facilitates the uptake of glucose from

the interstitial fluid into insulin-sensitive tissues, such as muscle

and adipose tissue. In the absence of adequate insulin, or if the

body’s cells become resistant to insulin’s effects, blood glucose levels

can rise above the normal fasting level of 6.4mmol/L, leading to

hyperglycemia [21, 22].

Diabetes mellitus affects millions worldwide, and its incidence

is steadily increasing. According to the International Diabetes

Federations 11th Edition Diabetes Atlas (2024), approximately 589

million adults aged 20–79 were living with diabetes about 1 in 9

of the global adult population. This number is projected to rise to

853 million by 2050 approximately 1 in 8 [23]. Over 90% of these

cases are type 2 diabetes, driven by socio-economic, demographic,

environmental, and genetic factors [23]. The growing prevalence of

diabetes imposes a significant burden on public health systems and

economies worldwide, making it one of the top ten causes of death

and disability [17, 24].

Efforts to improve diabetes management and outcomes are

critical. These include preventive measures for type 2 diabetes,

early diagnosis, and proper care for all types of diabetes. These

efforts are supported by mathematical modeling and system-based

approaches [12, 25, 26], emphasizing the need for continuous

research in diabetes care. In 2022, the WHO launched global

targets for diabetes coverage as part of its Global Diabetes Compact,

aiming for 80% glycemic control among diagnosed individuals by

2030 [27].

Improved therapies and interventions are essential to enhance

the quality of life for diabetics and reduce the long-term burden of

the disease. These statistics underscore the urgent need for effective

strategies to combat the global diabetes epidemic, emphasizing the

importance of continuous research and innovation in diabetes care,

as demonstrated by novel approaches to treatment adherence in

type 1 diabetes [28].
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Insulin secretion is primarily regulated by the feedback

effect of blood glucose levels on pancreatic beta cells. Glucose

enters the islets at a rate dependent on plasma glucose

concentration, unaffected by insulin. Elevated blood glucose

levels increase insulin secretion into pancreatic venous

blood. Autonomic influences also contribute to insulin

regulation: vagal stimulation increases insulin secretion, while

sympathetic stimulation inhibits it. Gastric inhibitory peptide

(GLP-1) from the gastrointestinal mucosa stimulates insulin

secretion, explaining why orally administered glucose has a

greater insulin-stimulating effect than intravenous glucose

[16, 29].

There are several diagnostic methods for diabetes. Historically,

physicians diagnosed diabetes by tasting the patient’s urine

for sweetness. Modern diagnostics rely on biochemical criteria,

including fasting plasma glucose, the oral glucose tolerance

test (OGTT), and glycated hemoglobin (HbA1c). According to

Harreiter and Roden [30], the World Health Organization defines

type 2 diabetes as fasting plasma glucose levels ≥ 126mg/dL

(7.0mmol/L), 2-hour plasma glucose levels ≥ 200mg/dL

(11.1mmol/L) after a 75 g OGTT, or HbA1c values ≥ 6.5%

(48mmol/mol), each confirmed on at least two occasions in the

absence of classical hyperglycemic symptoms. These thresholds

are established to reflect the increased risk for complications

such as diabetic retinopathy. When test results are borderline or

discordant, confirmation using a different method or a repeated

test is recommended. For further details and clinical guidance, see

Table 2 and the associated discussion in Harreiter and Roden [30],

with references therein.

The glucose-insulin regulatorymechanism operates as a closed-

loop feedback system.When plasma glucose levels rise, such as after

food intake, a sequence of physiological responses occurs to reduce

blood glucose levels. Initially, beta cells in the pancreas detect

elevated glucose and respond by producing insulin. Although

some glucose uptake into cells occurs independently of insulin,

the majority is facilitated after insulin is distributed from the

bloodstream into a distal compartment, becoming interstitial

insulin. This interstitial insulin interacts with cell membranes,

facilitating glucose uptake, particularly in skeletal muscles and

peripheral tissues. Consequently, cells utilize this glucose for energy

production, while insulin simultaneously promotes the storage of

glucose in the liver [5, 10, 31].

Conversely, when blood glucose levels fall below an acceptable

threshold, the body initiates mechanisms to restore glucose to

homeostasis. In this scenario, alpha cells in the pancreas respond

by secreting glucagon, which travels via the circulation to the

liver. There, glucagon binds to hepatocyte receptors and stimulates

the breakdown of glycogen stores (glycogenolysis) and promotes

gluconeogenesis, releasing glucose into the bloodstream and thus

raising blood glucose levels [32, 33].

Importantly, these physiological processes inherently involve

delays, such as the time between an increase in blood glucose

and insulin secretion by pancreatic beta cells, or between a

drop in blood glucose and the subsequent release of glucose

from glycogen stores. Furthermore, tissue glucose uptake involves

intricate signaling pathways. Insulin production itself is pulsatile,

characterized by rapid oscillations every 5–15 min and broader

ultradian oscillations occurring approximately every 50–150 min

[34–36].

One of the earliest attempts to measure insulin effectiveness

was in 1932 by Himsworth [37], termed insulin sensitivity [38,

39]. Insulin sensitivity refers to insulin’s ability to reduce blood

glucose by promoting uptake by muscle and fat cells and increasing

hepatic glycogen storage. Insulin resistance [40–42], a key feature

of diabetes mellitus, occurs when insulin sensitivity is reduced.

Tests such as the euglycemic hyperinsulinemic clamp (EHC),

frequently sampled intravenous glucose tolerance test (FSIGT), and

intravenous glucose tolerance test (IVGTT) help quantify insulin

sensitivity [43, 44].

The minimal model, developed by Bergman and colleagues,

leverages intravenous glucose tolerance test (IVGTT) data and

insights into postprandial insulin and glucose dynamics to provide

a comprehensive framework for understanding glucose-insulin

interactions. This model is particularly valuable because it offers

a method to independently assess insulin production and insulin

sensitivity, which is often challenging due to the complex interplay

between these two factors. Mathematical modeling, in this context,

plays a crucial role in elucidating the dynamics of glucose and

insulin in both diabetic and non-diabetic populations.

The minimal model’s ability to quantify insulin sensitivity

and pancreatic responsivity has made it a cornerstone in diabetes

research. By simulating how insulin and glucose interact within

the body, researchers can better understand the underlying

mechanisms of diabetes and the effectiveness of various treatment

strategies. This approach is not only useful for identifying the

degree of insulin resistance but also for determining how different

interventions may improve insulin sensitivity.

Furthermore, the development and application of

mathematical models extend beyond just the minimal model.

These models incorporate various physiological parameters

and simulate different scenarios, providing insights into the

progression of diabetes and the potential impact of lifestyle

changes, medications, and other therapeutic interventions. By

predicting outcomes and optimizing treatment plans, these models

are indispensable tools in diabetes research, helping to unravel

the complexities of the disease and leading to more effective

treatments. With this foundation, we can deeply understand the

complexity of the mathematical modeling of diabetes.

3 Hormonal regulation of glucose
metabolism

The hormones insulin and glucagon are secreted by beta cells

and alpha cells, respectively, in the islets of Langerhans in the

pancreas. These hormones play a crucial role in regulating the

metabolism of carbohydrates, proteins, and fats. Insulin promotes

anabolic processes, increasing the storage of glucose, fatty acids,

and amino acids, while glucagon promotes catabolic processes,

mobilizing these substances from storage into the bloodstream.

Specifically, glucagon stimulates the liver to release glucose, thereby

raising blood sugar levels. The antagonistic actions of these

hormones are typically reciprocally regulated [6, 22, 36].
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Research indicates that an excess of insulin can cause

hypoglycemia, whereas insulin deficiency, whether absolute or

relative, leads to diabetes mellitus. Conversely, glucagon deficiency

can also result in hypoglycemia, while an excess of glucagon

raises blood glucose levels. Glucagon primarily acts on the liver,

stimulating glycogen breakdown and the formation of glucose from

non-carbohydrate sources, and also stimulates insulin secretion by

the beta cells [32, 33, 36, 40].

Insulin exerts its effects on glucose uptake primarily at the cell

membrane and liver. Binding of insulin to specific receptors on the

cell membrane is necessary for efficient glucose transport into the

cell. The number and affinity of insulin receptors are influenced by

factors such as hormone levels, physical activity, and diet. Increased

insulin levels lead to down-regulation of receptor concentration,

while decreased insulin levels increase receptor affinity. Conditions

such as obesity and acromegaly decrease the number of insulin

receptors per cell, while excess glucocorticoids reduce receptor

affinity [5]. Insulin has a half-life of about 5 minutes in the human

circulation, with the liver and kidneys metabolizing over 80% of

secreted insulin [5].

Without insulin, glucose uptake by skeletal, cardiac, and

smooth muscle, as well as by the liver, is significantly diminished,

although intestinal and renal glucose absorption remain unaffected.

Notably, glucose uptake by most brain cells and red blood cells

occurs independently of insulin. The liver has a dual function:

storing glucose as glycogen under insulin stimulation and releasing

glucose into the bloodstream when glucagon levels rise during

hypoglycemia. Elevated blood glucose levels stimulate insulin

secretion, thereby reducing hepatic gluconeogenesis. The liver,

exposed to higher concentrations of naturally secreted insulin via

the portal vein, captures approximately half of the administered

insulin dose [5, 25, 38].

Exercise notably increases glucose uptake in skeletal muscle

cells, primarily due to anaerobic metabolic conditions and

enhanced affinity of insulin receptors in muscle tissue during

physical activity. However, it is essential to acknowledge the

limitations of these physiological models, especially when

significant factors such as exercise or stress are omitted [16–18].

4 The minimal model and its
limitations

One of the first modeling attempts in the literature was

provided by Bolie [45]. The model assumes a single compartment

for insulin and glucose, i.e., insulin/glucose associated with the liver,

pancreas, and peripheral tissues are not separated. The equations

are of the following form in this model, which has been sometimes

referred to as the minimal model as in Bergman et al. [10, 11]

dI(t)

dt
= p− aI + bG, (1)

dG(t)

dt
= q− cI − dG. (2)

Here I and G are deviations of insulin and glucose values

from their physiological mean values. The main purpose of the

Bergman model was to use control systems theory to determine

optimal values of the parameters a, b, c, and d. in Bergman et al.

[8, 9], methods for determining these parameter values of the above

equations are given.

The start of mathematical modeling for the insulin-glucose

dynamics can really be attributed to Bergman et al. [9, 31]. The

Model given in Bergman [46] is now typically referred to in

the literature as the minimal model. Their starting point was

measurements in dogs of plasma glucose and insulin after an

IVGTT type test. The goal in Bergman model to mathematically

model the resulting insulin-glucose dynamics, with the specific aim

of arriving at insulin sensitivity and glucose effectiveness. In Bergman

[46], we see the time evolution of plasma glucose and insulin at one-

minute intervals, after glucose injection in a dog. The glucose data

exhibits an exponential decay, while the insulin data shows a peak

at first followed by a slower decline and secondary peaks.

It is tempting to model plasma glucose simply as an exponential

decay. Since we know that there is a lower threshold (baseline

glucose level Gb) in plasma, we could propose the following

equation, where G(t) denotes plasma glucose

dG(t)

dt
= −p1(G(t)− Gb), (3)

where G(t) is measured in mg/dL or in mmol/L (1 mg/dL = 18

mmol/L). This model can be fit to the available IVGTT data for

an individual to obtain values of p1, which represents glucose

effectiveness. In Bergman et al. [9], this model is presented as

an initial attempt. The authors also modify the exponential term

to a Michaelis-Menten type function and subsequently explore

glucose uptake within a two-compartment model. However,

without accounting for insulin-dependent behavior, these models

lack realism. When the influence of insulin on glucose uptake in

peripheral tissues is introduced through a mass action term, the

dynamic equations in Bergman et al. [9] are updated accordingly

to reflect this interaction in this form

dG(t)

dt
= −p1

(
G(t)− Gb

)
− X(t)G(t), G(0) = p0, (4)

dX(t)

dt
= −p2X(t)+ p3

(
I(t)− Ib

)
, X(0) = 0. (5)

The assumptions in this model are that glucose exists in a single

compartment, which is essentially the blood plasma. Since this is

a model for dynamics after a glucose injection in an IVGTT, the

rate of change of glucose corresponds only to glucose uptake, as

it can be assumed that the liver will not release any glucose under

these circumstances. The rate of change of blood glucose uptake is

assumed to depend linearly on the level of glucose in the blood,

independent of insulin. The uptake also depends on insulin in

a distal compartment corresponding to interstitial insulin, X(t).

This remote insulin is responsible for glucose disappearance in a

mass action form. The rate of change of interstitial insulin in turn

depends linearly on both the existing levels of interstitial insulin

and on the insulin in blood plasma, I(t).

Note that the role of glucose in insulin production is not

accounted for in this model. When Bergman et al. [9] first

formulated this model, they partitioned the glucose kinetics from

the insulin kinetics. Thus, in the above equations, I(t) is considered

to be an input. The baseline glucose value of Gb determines the

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2025.1562636
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Bachar 10.3389/fams.2025.1562636

sign of the first term in Equation 4. If glucose falls below this value,

the first term becomes positive, effectively increasing blood glucose

plasma, which would correspond to the release of glucose stored

in the form of glycogen from the liver. This action is not explicitly

modeled. A glucose injection at time t = 0 is the starting point

of the model. We can also assume that X(t) has a rate parameter

embedded in it. That is, X(t) = α
dI(t)
dt

where dI(t)
dt

is remote insulin.

The equation for I(t) dynamics in the presence of glucose is

considered separately as follows. HereG(t) is considered as an input

dI(t)

dt
= p4

(
G(t)− p5

)+
t − p6

(
I(t)− Ib

)
,

I(0) = p7 + Ib. (6)

Using the notation
(
G(t)− p5

)+
, the mathematical expression

can be written as

(
G(t)− p5

)+
= max

(
G(t)− p5, 0

)
.

In Equation 6, the authors [43] use the notation
(
G(t) − p5

)+

to represent that only the positive part of
(
G(t) − p5

)
is taken,

meaning the value is
(
G(t)− p5

)
when G(t) > p5, and 0 otherwise.

This term plays a crucial role in influencing insulin production

by the pancreas as long as the glucose level exceeds a certain

target glycemia rate, p5. The term
(
G(t) − p5

)+
dominates the

initial growth of the insulin response due to its exponential decay,

causing an initial increase for small t values. Over time, this effect

reaches a peak before decreasing. Simultaneously, the term
(
I(t)−

Ib

)
serves to reduce blood insulin after an initial peak. Although

Bergman et al. [10] did not originally intend for this to be a coupled

model, simulating it over a finite time period reveals dynamics that

closely match physiological observations. Decoupling the equations

would overlook the critical feedbackmechanisms in insulin-glucose

dynamics, which are thoroughly discussed in Toffolo et al. [47] and

De Gaetano et al. [43].

Several critical limitations have been identified in the minimal

model of the glucose-insulin system, particularly when attempting

to describe the system comprehensively [43]. The minimal model

often fails to admit an equilibrium when its two compartments

are coupled, resulting in unrealistic predictions such as unbounded

insulin concentrations. It also exhibits pathological behavior under

certain conditions, notably when baseline glycemia exceeds the

pancreatic target glycemia. Additionally, the model incorporates

non-autonomous elements and unrealistic assumptions about

linear insulin secretion over time, which do not accurately reflect

physiological processes. Furthermore, the delay in insulin action

is oversimplified, failing to capture the biphasic nature of insulin

responses. The model’s two-step parameter fitting process can also

produce inconsistencies, and its sensitivity to parameter variations

further undermines its reliability. Collectively, these limitations

highlight the need for a more integrated and stable model capable

of accurately representing glucose-insulin dynamics.

The role of parameters in a model is crucial. Without

parameters, a model only provides information about the

functional form that approximates the physical phenomenon being

modeled. The use of parameters allows the model to be trained on

sample data, determine the ranges of valid behavior, and quantify

meaningful physiological information. In the case of the minimal

model, determining parameters by fitting to patient data enables us

to model the IVGTT dynamics at an individual level, specifically by

determining insulin sensitivity and glucose effectiveness.

A crucial question in the coupled system is the relationship

between the target glycemia p5 and the baseline glucose level

Gb, a measured quantity. According to Pacini [39], parameter

estimates often show Gb > p5. However, De Gaetano et al. [43]

demonstrated that if Gb > p5, the system of equations does not

exhibit an equilibrium point. Even if Gb = p5, the solution G(t)

does not converge to Gb. This highlights an important modeling

consideration: models that appear to behave reasonably may not be

mathematically sound. Therefore, it is more meaningful to have an

equilibrium point in the system that corresponds to baseline values

for glucose and insulin.

5 Advanced modeling approaches:
delay models and limitations

In recent decades, numerous models have been developed

to describe the insulin-glucose regulatory system. Among these,

Bergmans minimal model [38, 46] is one of the simplest and

most widely employed, appreciated for its practicality and ease

of use. However, this model and its variants often oversimplify

the physiological complexity by combining two distinct insulin

functions, namely the promotion of glucose uptake and the

suppression of hepatic glucose production, into a single parameter

called insulin sensitivity. To overcome these limitations, several

extended models have been proposed [21, 22, 24, 26, 43,

48], incorporating more detailed representations of patient-

specific dynamics, particularly with respect to insulin sensitivity.

Comprehensive reviews of mathematical models of the glucose-

insulin system, including surveys of available computational tools

and parameter values, are provided in Polonsky et al. [49], Radziuk

[50], Bonner-Weir et al. [51], and Weir [52]; these sources serve

as benchmarks for the parameter estimation methods employed in

this study. Additionally, models accounting for oscillatory insulin

secretion, described by delay differential equations, are based on

foundational studies by Sturis [34] and Tolić et al. [35].

The delay model proposed in Wang et al. [53] ensures that all

solutions to the model equations

dG(t)

dt
= Gin − f2(G(t))− f3(G(t))f4(I(t − τ2))

+ f5(I(t − τ1)), t ≥ 0, (7)

dI(t)

dt
= Iin(t)− diI(t), t ≥ 0, (8)

exist for all t ≥ 0, and remain positive and bounded, as

demonstrated in Lemma 3.1 and Figure 4.5 of Wang et al. [53].

The authors also provide a comprehensive qualitative analysis of

the system, where the parameters employed in the model, along

with their respective units, are detailed explicitly inWang et al. [53].

The initial conditions are given by G(0) = G0 and I(θ) = I0 for

θ ∈ [−max(τ1, τ2), 0], with delay parameters τ1, τ2 > 0. Where

G(0) = G0 and I(θ) = I0, θ ∈ [−max(τ1, τ2), 0], τ1, τ2 > 0.
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In this delaymodel, the non-linear function f2(G) represents the

insulin-independent component of glucose utilization, primarily

capturing glucose uptake by tissues that do not require insulin, such

as the brain and nerve cells. This function is defined as

f2(G) = Ub

(
1− exp

(
−G

C2Vg

))
,

with parameters (Ub,C2,Vg). It describes how glucose uptake

increases with concentration but eventually levels off as the

concentration continues to rise.

The function f3(G), a linear expression, represents the insulin-

dependent component of plasma glucose uptake and is given by

f3(G) =
G

C3Vg
,

with parameters (C3,Vg). This function suggests that glucose

uptake by insulin-sensitive tissues, such as muscle and fat,

is directly proportional to the glucose concentration in the

bloodstream.

Next, f4(I) represents the insulin-dependent component of

glucose uptake, modeled as

f4(I) = U0 +
Um − U0

1+ exp

(
−β ln

(
I

C4

(
1
Vi
+ 1

0.2ti

)

)) ,

with parameters (U0,Um,β ,C4,Vi, ti). This function captures how

insulin stimulates glucose uptake, with the uptake rate increasing

rapidly once insulin levels exceed a certain threshold, which is a

critical aspect of blood glucose regulation during insulin therapy.

Finally, f5(I) characterizes the effect of insulin on glucose

production by the liver

f5(I) =
Rg

1+ exp
(
α̂
(

I
Vp

− C5

)) ,

with parameters (Rg , α̂,Vp,C5). This function illustrates how

insulin suppresses hepatic glucose production, an essential

mechanism for maintaining glucose homeostasis. The delay terms

τ1 and τ2 introduce a symmetry in the time-delayed responses

of glucose uptake that is both dependent and independent of

insulin. As insulin levels rise, the rate of glucose production by the

liver decreases, aiding in the stabilization of blood glucose levels.

The corresponding parameter values are detailed extensively in

Stur [34] and Wang et al. [53]. In their analysis [53], they use

the following step functions for glucose intake Gin and insulin

infusion Iin

Gin(t) =





0.05+ 5t
15 , if 0 ≤ t < 15,

0.05+ 5 45−t
30 , if 15 ≤ t < 45,

0.05, if 45 ≤ t < 240.

(9)

Similarly, the insulin infusion rate is defined as

Iin(t) =





0.25, if 0 ≤ t < 5,

0.25+
(
1+ t−30

25

)
, if 5 ≤ t < 30,

0.25+
(
1− t−30

90

)
, if 30 ≤ t < 120,

0.25, if 120 ≤ t < 240.

(10)

6 Solutions and approximations

We begin by summarizing key well-posedness and abstract

computational results that have been recently established in the

literature, particularly in the works of Banks [14, 15, 54]. Our

focus is on nonlinear, non-autonomous dynamical systems with

delays, represented by general forms of delay differential equations.

Specifically, we address the well-posedness and computational

aspects of the solutions for these systems using semigroup theory,

drawing on the abstract formulation provided by the glucose-

insulin delay model Equations 7, 8. These systems can be described

by the following differential equation

dx(t)

dt
= F(t, x(t), x(t − τ1), x(t − τ2), p), 0 ≤ t ≤ tmax, (11)

where x(t) =

(
G(t)

I(t)

)
∈ R

2 and p =

(
Ub,C2,Vg ,C3,U0,Um,β ,C4,Vi, ti,Rg , α̂,Vp,C5

)T
. The function

F(x(t), x(t − τ1), x(t − τ2), p) is defined as

F(t, x(t), x(t − τ1), x(t − τ2), p) = (12)(
−f2(G(t))− f3(G(t))f4(I(t − τ2))+ f5(I(t − τ1))+ Gin(t)

−diI(t)+ Iin(t)

)
,

where the non-linear function F is formally defined as

F = F(t, η, x1, x2, p) :[0,T]× R
2 × R

4 × R
15 → R

2,

and the initial condition x(θ) = φ(θ) for −τ = max(τ1, τ2) ≤

θ ≤ 0, where θ represents the past state of the system, and

the time-dependent perturbations or control inputs described by

Equations 9, 10. Throughout this work, we adopt the standard

notation for delay systems, where xt(θ) = x(t + θ) for −τ ≤ θ ≤

0. We denote by H1(a, b;R2) the Sobolev space W1,2((a, b);R2),

which consists of function x :(a, b) → R
2 such that both x

and its derivative ẋ belong to L2((a, b);R2) where ẋ(t) = dx(t)
dt

.

Additionally, we define the spaces

H = R
2 × L2(−τ , 0;R2),

X =
{
(φ(0),φ) | φ ∈ C(−τ , 0;R2)

}
,

and

W =
{
(φ(0),φ) | φ satisfies a Lipschitz condition on [−τ , 0]

}
.

The norms on H,X andW are defined as follows

‖(η,φ)‖H = ‖η‖22 + ‖φ‖L2(−τ ,0;R2),

‖(φ(0),φ)‖X = ‖φ‖C(−τ ,0;R2),

‖(φ(0),φ)‖W = max
(
‖φ(0)‖R2 , ‖φ̇‖L∞(−τ ,0;R2)

)
.
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Where ‖ · ‖2 is the Euclidean norm onR
2, ‖φ̇‖L∞(−τ ,0;R2) is the

L∞ (essential supremum) norm on L∞(−τ , 0;R2) of φ̇(θ) = dφ(θ)
dθ

,

‖φ‖L2(−τ ,0;R2) is the L2 (Lebesgue) norm on L2(−τ , 0;R2), and

‖φ‖C(−τ ,0;R2) is the supremum (uniform) norm on C(−τ , 0;R2).

The initial condition is given by φ = (G0, I0)
T , and its clear

that φ satisfies a Lipschitz condition on [−τ , 0] and belongs to

φ ∈ C(−τ , 0;R2) and L2(−τ , 0;R2). Furthermore, we observe

that the embeddingsW↪X↪H are dense and continuous. We can

now define the function F, where the pair of functions (φ(0),φ) is

defined in eitherW, X, or H as follows

F(t,φ, p) = F(t,φ(0),φ(−τ1),φ(−τ2), p),

φ ∈ X, 0 ≤ t ≤ tmax. (13)

We now turn to the mathematical framework underlying these

nonlinear delay functional differential systems and provide an

overview of the essential foundations. We begin by describing

the transformation of the nonlinear delay functional differential

equations into an abstract evolution equation, along with the

corresponding existence and uniqueness results. Building upon

concepts from the linear semigroup theory, originally developed

for approximating linear delay systems, this approach serves

as a foundation for addressing a broader class of nonlinear

delay functional differential systems. The semigroup approach not

only ensures the well-posedness of the system but also reveals

inherent symmetries in the behavior of the solution over time,

particularly in the invariance of specific solution structures under

parameter transformations. Further details and advancements on

these methods are provided in recent works [14, 15, 54–59].

Following the discussion by Kappel [60, 61] and Hale [62, 63],

the choice of working in H versus X has significant implications.

Kappel highlights that in H, certain growth restrictions can be

imposed, providing a more structured and systematic approach

to solving delay differential equations. By contrast, working

within the space X requires the use of the pointwise variation

of parameters formula, which is both tedious and technically

demanding. This makes the analysis more complex and less

convenient, as emphasized in the discussion of the decomposition

of the nonhomogeneous equation [see [63] for more details]. In X,

the solution must be expressed in terms of two components that

depend on both t and θ . If F = 0, neither component can be

written as a function of t + θ for θ ∈ [−r, 0], meaning that neither

satisfies the delay differential equations independently. Only their

sum, representing the entire solution, satisfies the delay differential

equations. This limitation underscores the challenges of working in

X, where the individual components cannot easily be interpreted in

terms of the delayed variable t+θ . In contrast, working inH allows

for a more straightforward and practical formulation, avoiding

these complications. Next, we have to choose the appropriate

C0-semigroup T(·) on H, where Equation 11 corresponds to the

Cauchy problem

u̇(t) = A0u(t)+ Bu(t), 0 ≤ t ≤ tmax. (14)

where A0 is the infinitesimal generator of the C0-semigroup T

corresponding to the delay equation u̇(t) = 0, given by

domA0 =
{
(φ(0),φ) | φ ∈ H1(−τ , 0;R2)

}
, (15)

A0(φ(0),φ) = (0, φ̇), (16)

T(t)(η,φ) = (η, gt), (17)

where the function g :[−τ ,∞) → R
2 is defined by

g(s) =

{
φ(s), s ∈ [−τ , 0],

η, s > 0.

and

B(η,φ) = (F(t,φ, p), 0). (18)

Now, we can investigate the integrated form of the delay

differential equations using the following equivalent form

u(t) = T(t)φ +

∫ t

0
T(t − s)Bu(s) ds, 0 ≤ t ≤ tmax, φ ∈ H.

(19)

Now, we are ready to apply Proposition 11.7 [64], where

we establish the connection between the solutions of the delay

differential Equation 11 and the corresponding abstract problem

(Equation 14) defined by Equations 15–18. For now its clear that:

(a) If u(·) = (v(·)(0), v(·)) is a solution of Equation 19, for some

tmax > 0, then x(·) =

(
G(·)

I(·)

)
defined by

x(t) =

{
v(t)(0) for 0 ≤ t ≤ tmax,

φ(t) for − τ ≤ θ ≤ 0,
(20)

is a Lipschitz-continuous function on [−τ , tmax] and satisfies

x(t) = φ(0)+

∫ t

0
F(s, x(s), x(s− τ1), x(s− τ2), p) ds,

0 ≤ t ≤ tmax, (21)

and v(t) = xt , t > 0, where

F(t, x(t), x(t − τ1), x(t − τ2), p) =
(
−f2(G(t))− f3(G(t))f4(I(t − τ2))+ f5(I(t − τ1))+ Gin(t)

−diI(t)+ Iin(t)

)
, (22)

(b) Conversely, if x =

(
G

I

)
is a Lipschitz-continuous function

on [−τ , tmax] and solves (Equation 21), then

u(t) = (x(t), xt), t ∈ [0, tmax],

defines a solution of Equation 19.
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To approximate the solutions of these systems, the dynamical

system is reformulated as an abstract evolution equation,

which is then solved using a Galerkin approach. This method,

analogous to the linear finite element approximation for partial

differential equations, enables the numerical computation of

generalized Fourier coefficients for approximate solutions using

splines. Through this process, an approximation of the original

system’s solutions is reconstructed, and the theoretical results are

computationally validated. The mathematical foundations for this

approach were developed extensively between the 1970s and 1990s,

as documented in key works such as [61, 65–74].

Based on the theory developed in this section, we construct

a concrete approximation scheme for delay systems of the form

(Equation 11) as considered in Ito and Kappel [61, 64]. For N =

1, 2, . . . , let

XN = R
(N+1)2 and UN = R

2.

We choose the mesh points tj = −jτ/N, j = 0, . . . ,N, N =

1, 2, . . . . Corresponding to ξ = (ξ0, ξ1, . . . , ξN)
T ∈ XN , where ξj ∈

R
n, j = 0, . . . ,N, we define the injective operator EN :XN → X

such that

ENξ = (φN(0),φN),

with φN =
∑N

j=0 Bjξj, where Bj denotes the first-order spline with

Bj(ti) = δij, i, j = 0, . . . ,N (where δij is the Kronecker-delta).

In other words, ϕN is the first-order spline with ϕN(tj) = ξj,

j = 0, . . . ,N. The projections PN :X → XN are defined by

PN(φ(0),φ) = (φ(t0),φ(t1), . . . ,φ(tN))
T , φ ∈ C(−τ , 0;R2).

The norms ‖ξ‖XN = ‖ENξ‖X and ‖ξ‖WN = ‖ENξ‖W on XN ,

are given by

‖ξ‖XN = max
j=0,...,N

‖ξj‖2,

‖ξ‖WN = max

(
‖ξ0‖2, max

j=0,...,N−1

‖ξj+1 − ξj‖n

τ/N

)
, ξ ∈ XN .

In the following, XN always denotes the space (XN , ‖ · ‖XN ),

whereasWN denotes the space (WN , ‖ · ‖WN ). The simplest choice

for BN is

BNu = (u, 0, . . . , 0)T ∈ R
(N+1)2, u ∈ R

2,

i.e.,

BN =




I2
0
...

0




∈ R
(N+1)2×2,

where In is the n × n identity matrix. The motivation for the

definition of AN is as follows: In view of (11.25), AENξ , ξ ∈ XN ,

is given by (0,
∑N

j=1 Fj(ξj−1 − ξj)Bj), which is not generally in X.

Therefore, we cannot take the projection PNAENξ . But it turns

out to be reasonable to take left-hand limits at the mesh points

t1, . . . , tN instead of the non-existent values at these points. This

leads to the definition

ANξ =

(
0,

ξ1 − ξ0

τ
, . . . ,

ξN − ξN−1

τ

)T

, ξ ∈ XN ,

which gives

AN =
1

h0




0 0 0 . . . 0

I2 0 0 . . . 0

0 I2 0 . . . 0
...

...
. . .

. . . 0

0 0 . . . I2 0




∈ R
(N+1)2×(N+1)2.

Following the steps in Ito and Kappel [61, 64],

consider the approximating equations in XN , we have

uN(t) = (uN0 (t), . . . , u
N
N(t))

T is the solution of

d

dt
uN(t) = ANuN(t)+ BNF(t, u0(t), (ENuN(t))(−τ )), (23)

uN(0) = PN(φ(0),φ), φ ∈ W1,∞(−τ , 0;R2). (24)

Its clear that the condition (B1) − (B3) in Ito and Kappel [64]

are satisfied on any interval [0, tmax]. As a consequence of we have

lim
N→∞

‖ENuN(t)− u(t)‖X = 0

uniformly for t ∈ [0, tmax], where φ ∈ W1,∞(−τ , 0;R2).

The convergence established in Theorem 3 enables state

approximation techniques for nonlinear delay differential systems,

incorporating both spline methods and a variant of the Trotter-

Kato theorem, as outlined in Kato [75] and Ito and Kappel [76].

These results are directly applicable to control and identification

challenges, as examined in Banks [14, 15, 55, 57, 65, 66, 69,

74]. For special classes of these systems, similar results can be

derived from the arguments for nonautonomous nonlinear delay

systems in Banks [71]. In this approach, discrete delays appear in

the linear part of the system dynamics, while continuous delays

are in the nonlinear part. The system is then expressed as a

linear semigroup generated by the autonomous linear part, plus a

nonlinear perturbation. The Trotter-Kato theorem and Gronwall

inequalities are used in conjunction with Picard iterates to establish

the existence of solutions for the nonlinear system.

7 Sensitivity analysis

In parameter estimation, error functions quantify the

discrepancy between experimentally measured and model-

predicted response data. Classical sensitivity analysis (CSA)

evaluates how each model output (which could be model states

but need not be) changes with respect to small changes in each

of the model parameters. This analysis helps track the influence

of each parameter on output variables that can be compared

with measured data, such as interstitial subcutaneous glucose

concentration or insulin levels. If an output is highly sensitive to

a parameter, that parameter can be estimated from corresponding

data, provided there are no functional dependencies with other
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FIGURE 1

Sensitivity of glucose G with respect to the model parameters of the Bergman model (Equations 4–6).

parameters. The results of CSA can be used to rank model

parameters from most to least influential. Parameters are then

categorized into “sensitive” and “insensitive” groups. Sensitive

parameters undergo parameter identification using available data

and chosen estimation techniques, while insensitive parameters

are estimated based on subject-specific characteristics such as

age, height, body mass index, and literature values. This approach

reduces the dimensionality of the parameter identification problem

significantly. Despite its widespread application in structural

optimization [e.g., [77–79]], sensitivity analysis has yet to make

a significant impact on modeling biological systems or adapting

models of the insulin-glucose system in humans.

To calculate the various sensitivities, assume a model is given as

a system of differential equations

dx(t

dt
= f (t, x(t), p), x(0) = x0, (25)

with state variables x = (x1, x2, . . . , xn) and parameters p =

(p1, p2, . . . , pm). We assume for simplicity that the states are

model outputs for which data can be acquired. To compute the

sensitivities of the state variables with respect to the parameters,

we calculate the derivatives ∂xi(t)/∂pj, for i = 1, . . . , n and j =

1, . . . ,m, at baseline values p0 = (p1,0, . . . , pm,0). Let S(t) =(
∂xi(t)/∂pj

)
i=1,...,n, j=1,...,m

. These derivatives indicate how small

changes in a model parameter induce changes in a specific model

output, providing a measure of the sensitivities of model states to

the model parameters at fixed time points t. The term “sensitivity”

usually refers to normalized derivatives (relative to the baseline

state and parameter values). To calculate S(·), we solve the following

augmented system of equations

dx(t)

dt
= f (t, x(t), p), (26)

dS(t)

dt
=

∂f

∂x
(t, x(t), p)S(t)+

∂f

∂λ
f (t, x(t), p), (27)

x(0) = x0, (28)

S(0) =
∂x0

∂p
. (29)

This set of equations includes the model equations. Taking

partial derivatives of the model equations with respect to the

parameters and changing the order of differentiation leads to

the differential equations for the sensitivities (Equation 29). The

feasibility of this strategy for sensitivity analysis will be tested

using the minimal model (Equations 4–6) and the delay model

(Equations 7, 8).

In Figures 1, 2, we present the sensitivities of G and I

with respect to the parameters of the Bergman model system

(Equations 4–6). We observe two groups of parameters: G is less

sensitive with respect to p4, p5, and p7 than with respect to p1, p2,

p3, and p6. Similarly, I is less sensitive with respect to p1, p2, p3, p5,

and p7 than with respect to p4 and p6. Note that as the system

approaches the steady state, all parameters become insensitive, as

there is minimal change in the model output. Therefore, data near

the steady state in this model will make it difficult to use sensitivity

analysis to reduce the number of parameters.

To study the sensitivity of delay differential equations, we will

follow the theory developed by Brewer [80], which is thoroughly

described by Robbins in his dissertation [14, 15, 81]. Brewers work

on Fréchet derivatives in the context of linear abstract Cauchy

problems is foundational for sensitivity analysis. He developed

a theory for the differentiability of solutions with respect to

parameters, particularly for linear autonomous systems where the

operator may be unbounded [80]. Brewer extended earlier results

by Gibson and Clark [82], which focused on parameter-dependent

bounded operators, by incorporating unbounded operators into

the analysis. Using semigroup theory, he proved the existence of

Fréchet derivatives with respect to parameters, including delays,

and applied this to linear discrete delay systems. This theory is

framed within Banach spaces but can be extended to Hilbert spaces.

Later, Brewer, Burns, and Cliff applied this theory to parameter

identification problems using quasilinearization [83]. Their goal

was to establish the convergence of gradient-based parameter

estimation algorithms for problems defined by an unbounded,

parameter-dependent evolution operator. This work further

emphasizes the importance of Fréchet derivatives for sensitivity

analysis and parameter identification.
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FIGURE 2

Sensitivity of insulin I with respect to the Bergman model parameters (Equations 4–6).

However, Brewers methods are primarily suited to linear

autonomous systems and face limitations when applied to

more complex, non-autonomous, or nonlinear cases. In such

scenarios, alternative approaches, such as those introduced by

Banks [72, 74], are more appropriate. Banks work, which

utilizes spline methods and other analytical tools, addresses the

sensitivity to delay parameters in nonlinear systems.While Brewers

results [80, 83] offer valuable insights, Banks methods rely on

different mathematical frameworks, such as fixed-point theory

and classical tools from differential equations, to manage more

complex dynamics.

In the case of delay differential equations, we demonstrate the

sensitivity analysis method for the Wang model (Equations 7, 8).

This model can also be formally written as

dx(t)

dt
= F(t, x(t), x(t − τ1), x(t − τ2), p), 0 ≤ t ≤ T, (30)

x(s) = φ(s) ∈ C(−r, 0,R2), −τ ≤ s ≤ 0,

τ = max(τ1, τ2), (31)

where x(t) =
(
G(t), I(t)

)T
∈ R

2 is the solution of the Wang

model (Equations 7, 8). To compute the sensitivities of the delay

differential model (Equations 7, 8), we utilize the properties of

the nonlinear function F(t, x(t), x(t − τ1), x(t − τ2), p) given in

Equation 12. This function is composed of standard functions that

have continuous Fréchet derivatives with respect to the state x

and the parameter p, and are uniformly bounded over bounded

intervals; see Wang et al. [53] for more details. Furthermore,

F(t, η, x1, x2, p) possesses continuous Fréchet derivatives with

respect to its arguments, specifically Fη , Fx1 , Fx2 , and Fp, subject

to the following bounds

|Fη| ≤ M0, |Fx1 | ≤ M1, |Fx2 | ≤ M2, |Fp| ≤ M3,

where Mj are constants for j = 0, 1, 2, 3. By applying Theorem 5

from [84], we establish that the Fréchet derivative S(t) = ∂x(t)
∂p

∈

R
n×m exists and is the unique solution to the following system

of equations

dS(t)

dt
= Fx(t, x(t), x(t − τ1), x(t − τ2), p)S(t)

+Fx1 (t, x(t), x(t − τ1), x(t − τ2), p)S(t − τ1)

+Fx2 (t, x(t), x(t − τ1), x(t − τ2), p)S(t − τ2)

+Fp(t, x(t), x(t − τ1), x(t − τ2), p), 0 ≤ t ≤ T,(32)

with the initial condition

S(ξ ) = 0, −τ ≤ ξ ≤ 0. (33)

We apply sensitivity analysis to the Wang model. If certain

parameters of the model show insensitivity to the available data,

these parameters may be fixed based on general considerations,

or the model can be simplified by eliminating them. For the

sensitive parameters, we apply the singular value decomposition

method to the Fisher information matrix STS to refine the set

of parameters for estimation. We rank the eigenvalues of the

Fisher Information Matrix (FIM) to assess parameter sensitivity.

The availability of derivatives of the state variables with respect

to parameters also improves the performance of optimization

algorithms that utilize gradient information [85, 86]. Sensitivities

of the states to parameters for the Wang model are illustrated

in Figure 3.

A Standard approach to estimate the unknown parameters is in

terms of the least-square error criterion

J(p) =
∫ T
t0
(G(t, p)− Ĝ(t))2dt (34)

where Ĝ(t) is the data fitted by model output G(t, p) by optimum

choice of p. We proposed to use Gauss-Newton method for

optimization,

To rank the sensitivities (normalized derivatives) of the

various states with respect to parameters we define a global
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FIGURE 3

Sensitivities of all model parameters for the model output glucose G of the Wang et al. model (Equations 8, 9).

TABLE 1 Eigenvlaues (EV) and GTIS sensitivity norms for the Wang et al.

model.

Parameters EV GTIS Parameters EV GTIS

Vp 2931.4965 1.66 Um 0.000 0.00

Rg 119.8024 1.8 α 0.000 0.002

di 44.1609 1.7 Vg 0.000 0.005

β 44.1609 0.4 C3 0.000 0.04

C5 2.7283 1.92 Vi 0.000 0.0014

Ub 0.5688 0.73 ti 0.000 0.0007

C2 0.0550 0.007

U0 0.0202 0.0342

C4 0.0006 0.217

time-invariant normalized sensitivity measure (GTIS) using a

weighted 2-norm

zij =
pj

(tend − t0)maxt0≤t≤t0 |xi(t, p)|
(

∫ tend

t0

|
∂xi

∂pj
|2dt)1/2; (35)

Table 1 provides the GTIS sensitivity measure of the model

Equation 7 and the eigenvalues of the FIM for glucose data while

Figure 3 illustrates the sensitivities of glucose with respect to all

parameters for the Wang model.

Illustrated in Figure 4 is an attempt to perform a full parameter

estimation using simulated data generated with the model’s chosen

parameter values, with 30% noise superimposed on the simulated

glucose output. This estimation was not successful, as the norm

of the error was too high, with Norm(Error) = 2.8877e + 003.

However, by estimating only the sensitive parameters, we achieved

a better fit, with a significantly smaller error, Norm(Error) =

7.6993e − 003, as shown in the left panel of Figure 5. In this case,

we selected the nine parameters with the largest eigenvalues, as

presented in Table 1, which also generally correspond to higher

GTIS sensitivities. Moreover, when we applied this method to

noisy data using the same set of parameters, we were able to

produce a good fit to the data, as illustrated in the right panel

of Figure 5.

8 Conclusion

Mathematical models are indispensable tools for understanding

the complex dynamics of biological systems such as insulin glucose

regulation. However, their effectiveness depends on integration

with high-quality experimental data. A major challenge in this

integration is the presence of measurement noise, which can

obscure accurate predictions of system behavior. Therefore,

detailed sensitivity analyses are essential for enhancing model

validation and ensuring reliability.

This study addresses a fundamental gap in diabetes modeling

by presenting a rigorous framework for parameter estimation
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FIGURE 4

Estimation attempt using all parameters and glucose data.

FIGURE 5

A parameters estimation of sensitive parameters p̂ = (Vp,Rg,β,di,C5,C2,C4,Ub,U0) and also the parameter estimation of the more sensitive

parameters using noisy data.

and sensitivity analysis within the context of glucose insulin

dynamics, formulated in infinite-dimensional Sobolev spaces

using semigroup theory. We identified key parameters that

significantly influence system dynamics, particularly during

transient phases, under the assumption of parameter independence.

Our analysis revealed the ill-posedness and sensitivity challenges

inherent in parameter estimation for models that include

time delays. These difficulties become especially evident when

applying such models to clinical data, a point that is often

underemphasized in simulation-based studies such as [12, 13],
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which do not fully consider the instability of the underlying

inverse problems.

For parameters with low sensitivity, rough estimates from

existing literature [9, 43, 53] are generally sufficient, since their

influence onmodel outputs is minimal outside critical periods. This

finding is consistent with previous results in Banks [14, 15, 84, 85,

87], where accurate estimation was shown to depend strongly on

the timing and structure of the data used.

Although several previous studies have examined to some

extent the sensitivity analysis in insulin glucose models [25, 88, 89],

they have not systematically addressed the mathematical challenges

posed by models with time delays. In particular, the impact

of transient dynamics on parameter identifiability has not been

comprehensively investigated. Our study extends this body of work

by introducing a structured sensitivity analysis framework based

on Fréchet derivatives and semigroup theory, allowing for a more

detailed assessment of parameter influence in delayed systems.

We also emphasized the issue of parameter interdependence,

such as when parameters appear as ratios, which further

complicates estimation during periods of high variability. To

address this, we adapted subset selection techniques based on

variations of the Fisher information matrix, building on earlier

work in the sensitivity analysis literature [54, 66, 80, 83]. Unlike

previous studies, our analysis applies these tools specifically to delay

differential models in the context of diabetes, filling an important

methodological gap.

In conclusion, this study contributes a mathematically

rigorous and practically relevant framework that enhances the

modeling of glucose–insulin dynamics. Compared to earlier works,

our approach provides a deeper treatment of sensitivity, ill-

posedness, and parameter interaction in models with delays. These

developments support more accurate parameter identification and

model calibration. Future research should focus on developing

optimal experimental designs tailored to transient dynamics,

strengthening the link between theoretical modeling and real-world

applications in diabetes research.
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