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Value at Risk long memory
volatility models with
heavy-tailed distributions for
cryptocurrencies

Stephanie Danielle Subramoney*, Knowledge Chinhamu and

Retius Chifurira

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban,

South Africa

This paper investigates the volatility dynamics and underlying long memory

features of four major cryptocurrencies—Bitcoin, Ethereum, Litecoin, and

Ripple—which were selected due to their high liquidity, large trading volumes,

and historical significance in the digital asset market. The long-range

dependence exhibited in cryptocurrency markets is often overlooked. However,

based on the strong evidence of persistent dependence in the return series,

we adopt advanced volatility models that are capable of accommodating

high volatility and heavy-tails, as well as the long memory properties of

cryptocurrencies. Specifically, we employ long-memory extensions of the

GAS (Long memory GAS) and GARCH (Fractionally Integrated Asymmetric

Power ARCH) models, integrating heavy-tailed innovation distributions: the

Generalized Hyperbolic Distribution (GHD) and Generalized Lambda Distribution

(GLD). Standard GARCH and GAS models are included as benchmarks. The

performance of the models are assessed using Value-at-Risk (VaR) estimation,

backtesting (in-sample and out-of-sample) and volatility forecasting metrics.

The results indicate that longmemory models, particularly the FIAPARCHmodel,

consistently outperforms the standard GAS and GARCH models in capturing tail

risk and the volatility persistence. These findings emphasize the critical role of

longmemory inmodeling the risk of cryptocurrencies, indicating that accounting

for volatility persistence can significantly enhance the accuracy of risk estimates

and strengthen risk management practices.

KEYWORDS

cryptocurrency, Generalized Autoregressive Conditional Heteroskedasticity (GARCH),

generalized autoregressive score (GAS), long memory (LM), Value-at-Risk (VaR)

1 Introduction

Long memory is a phenomenon that can be described as the persistence of volatility,
suggesting that past observations have an impact on future values. In financial markets, this
behavior is often exhibited in volatility and thus has crucial implications for forecasting and
risk management. The long memory properties of financial assets have been substantially
investigated and studied, with evidence indicating that volatility is indeed a long memory
process [1–4].

Cryptocurrencies share numerous commonalities with traditional financial assets;
however, the volatility dynamics of cryptocurrencies are often found to be higher than
traditional assets like stocks [5] as well as leading fiat currencies [6]. The cryptocurrency
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market is decentralized with no association to a higher authority
and thus making the market structure unique. The significant
development of cryptocurrencies demonstrated by their growing
transaction volume and market capitalization has distinguished
cryptocurrencies as a revolutionary instrument in financial
markets, internationally [7]. Specifically, the cryptocurrency
market has grown significantly over the last decade or so, as
the global market capitalization of cryptocurrencies surged from
under 20 billion USD in early 2017 to over 2.5 trillion USD at its
peak in late 2021, with average daily trading volumes increasing
by more than 1,000% during this period [8]. In comparison to
other emerging markets, this explosive growth and extreme price
fluctuations have introduced new challenges for financial modeling.
Additionally, their decentralized structure, sensitivity to sentiment,
speculative trading behavior and continuous 24/7 trading with no
market closures, contribute to the significant volatility persistence
and clustering, suggesting that the long memory property has
become particularly relevant for cryptocurrency modeling.

The volatility exhibited by cryptocurrencies has been studied
extensively [9–13] and it is apparent that the market is highly
volatile in nature. This extremity may result in distinct trends in
volatility persistence and thus it is imperative to study if there
are long memory influences in the volatility of these markets
similar to that of other financial time series. Rambaccussing and
Mazibas [14] investigated the long memory properties in the
returns and volatility of five cryptocurrencies, Bitcoin, Litecoin,
Ethereum, Bitcoin Cash, and Ripple of which they discovered that
long memory may not explicitly be present in the returns of the
cryptocurrencies, except for that of Ethereum where long memory
does exist, however, long memory appears to be well prominent
in the volatility of these cryptocurrencies. Jiang et al. [15] studied
the impact of the dual long memory and structural break features
of six highly-traded cryptorcurrencies. It was found that these
cryptocurrencies does, in fact, exhibit both structural breaks and
long memory properties in their returns, and are especially present
in the volatility. Soylu et al. [7] explored the long memory
traits of Bitcoin, Ethereum, and Ripple. The cryptocurrencies
were tested for long memory using Rescaled Range Statistics
(R/S), Gaussian Semi Parametric (GSP), and the Geweke and
Porter-Hudak (GPH) Model Method. The squared returns of all
three cryptocurrencies exhibited strong persistence indicating the
presence of long memory.

Since long term dependencies of volatility exist in
cryptocurrencies, the adoption of an appropriate model which
has the capability to adequately capture the long memory traits,
as well as the extreme volatility exhibited, is of significant
importance to analyze and forecast the risks associated with these
cryptocurrencies. The Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model introduced by Bollerslev
[16] is a conventional volatility model which can be extended to
incorporate fractionally integrated models to encapsulate long
memory properties. Although the use of the standard GARCH
model is commonly employed for modeling volatility and long-
memory properties, Davidson [17] established that this model
may not be entirely ideal, as GARCH models do not adequately
cater for outliers and thus may generate biased estimates. The
effect of innovations on the subsequent conditional variance for

a long memory process is generally that of a hyperbolic decay,
and therefore the impact of outliers may be magnified resulting
in a rising biased long memory estimate [18]. The Generalized
Autoregressive Score (GAS) model, introduced by Creal et al.
[19], is another volatility model that caters for the downfall of
the GARCH model discussed above due to its unique robustness
characteristics. The GAS model framework can also be enhanced
to accommodate the presence of long memory in returns [20],
making it a viable candidate to model cryptocurrencies. Chkili
[21] investigated models which would best fit the long memory
present in the volatility dynamics of the Bitcoin returns for the
2013–2020 period of which the Fractionally Integrated GARCH
(FIGARCH) model was found to be the most favorable model. Gao
and Shi [18] studied the long memory and regime switching in
the second comment using GAS models. The robustness against
outliers of the long memory GAS (LMGAS) model and the Markov
switching GAS (MS-GAS) model was investigated utilizing West
Texas Intermediate crude oil spot returns. The findings indicate
that the GAS estimators were more robust when compared to
its GARCH counterparts when catering for outliers. However,
the LMGAS model still produced spurious long memory when a
regular regime-switching process is fitted and thus an MS-LMGAS
model was proposed which catered for both the spurious long
memory and robustness against outliers.

Although some studies have tested long memory GARCH and
GAS-type models for individual cryptocurrencies, comprehensive
evaluations remain limited. In particular, few studies jointly apply
these models across multiple cryptocurrencies while incorporating
flexible innovation distributions. This paper aims to contribute
to the literature in three key aspects. First, we explore the
presence and strength of long memory features of four well
established cryptocurrencies, Bitcoin, Ethereum, Litecoin, and
Ripple. These cryptocurrencies were selected due to their high
liquidity, large trading volumes, and their ability to represent
a diverse variety of the cryptocurrency market in terms of
history, market capitalization and investor profiles. Bitcoin and
Ethereum dominate the market as the most capitalized and
widely adopted coins whereas Litecoin and Ripple offer different
technical foundations and transaction architectures which makes
these cryptocurrencies collectively a robust and representative
sample for assessing market behavior and long memory dynamics.
Second, we conduct a comparative analysis using two long memory
models, FIAPARCH and LMGAS, with standard GARCH and
GAS-type models incorporating both the Generalized Hyperbolic
Distribution (GHD) and the Generalized Lambda Distribution
(GLD) as innovation distributions. The central aim of this
study is to evaluate whether the inclusion of long memory
structures and flexible distributional assumptions significantly
enhances volatility modeling and risk estimation in cryptocurrency
markets and thus, this analysis provides an empirical contribution
by jointly modeling long memory and heavy-tailed behavior
across a diverse set of cryptocurrencies which is an area of
research that is not extensively explored. Third, we evaluate the
performance of the models through a standard statistical fit and
also through a risk perspective in that we conduct Value-at-Risk
(VaR) estimation, in-sample and out-of-sample backtesting and
volatility forecast accuracy. This approach allows us to evaluate
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the models’ ability to capture tail risk and long memory in risk
management frameworks.

Our findings provide valuable insights for investors, risk
managers, regulators, and academics on how long memory
dynamics in different cryptocurrencies can improve their strategies
to monitor and manage financial risk.

2 Methodology

In order to adequately model the persistent volatility dynamics
and extreme behavior of cryptocurrencies, this study employs long
memory volatility models. Standard GARCH andGAS-typemodels
tend to fall short when it comes to effectively capturing both the
extreme and the long term dependencies of volatility, justifying
the applicability of the long memory extensions of the models in
this paper (LMGAS and FIAPARCH). Cryptocurrencies, in line
with other financial assets, also exhibits significant heavy-tails and
skewness. Thus, heavy-tailed distributions are used for modeling
the returns innovations to better facilitate flexibility and capture
any underlying kurtosis and asymmetry.

The aim of this section is to outline the modeling framework
used to capture the volatility and risk dynamics of the four
major cryptocurrencies, Bitcoin, Ethereum, Litecoin, and Ripple.
Specifically, we aim to incorporate long memory features into
volatility modeling using FIAPARCH and LMGAS processes, and
thereafter account for heavy-tailed behavior in return innovations
through the use of a generalized hyperbolic distribution (GHD)
and/or a generalized lambda distribution (GLD). We also detail
how these models are evaluated using Value-at-Risk (VaR) and
backtesting procedures.

This section is structured such that we first introduce the return
framework used throughout this study, followed by a description of
long memory processes. We then discuss the GARCH, FIAPARCH,
GAS, and LMGAS models used to model the cryptocurrency
returns. Finally, we introduce the heavy-tailed distributions used
for the innovation distributions and then conclude with the
approach used for VaR estimation and backtesting.

2.1 Model framework

Let rt represent the return at time t, modeled as,

rt = µt + at , at = σtǫt , ǫt ∼ D(0, 1) (1)

where µt is the conditional mean, at is the innovation term,
σ 2
t is the conditional variance, and D(0, 1) denotes a standardized

distribution such as the GHD or GLD. Throughout this paper,
we assume µt is constant and focus primarily on modeling σ 2

t or
related volatility dynamics.

2.2 Long memory processes

Xt , a weakly stationary time series, is considered an LM process
if the τ th autocorrelation function (ACF), denoted by ρ(τ ) follows:

ρ(τ ) ∝ τ 2d−1, as τ → ∞ (2)

for d ∈ (0, 0.5), where d is the long-range dependence
parameter [22]. This implies the ACF exhibits a slow hyperbolic
decay suggesting that dependencies persists for longer lags as
opposed to a short memory process where the ACF diminishes
exponentially. The rate of growth variances of partial sums can be
defined as,

var

(

T
∑

t=1

Xt

)

= O
(

T2d+1
)

(3)

where T is the time period under consideration [23].
In the following subsections we discuss how the standard

GARCH and GAS models have been adjusted and developed to
incorporate long memory which results in the FIAPARCH and
LMGAS models.

2.2.1 GARCH and FIAPARCH models
The Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) model, proposed by Bollerslev
[16], is a widely used model for capturing volatility exhibited in
financial time series.

The standard GARCH(p, q) model for σ 2
t is,

σ 2
t = ω +

p
∑

i=1

αia
2
t−i +

q
∑

j=1

βjσ
2
t−j (4)

where at = σtǫt with ǫt being a sequence of i.i.d random
variables, α0 > 0, αi ≥ 0, βi ≥ 0, and

∑max(m,s)
i=1 (αi + βi) < 1.

at = rt − µt is the mean corrected returns where µt is the mean of
the return series.

A drawback of the GARCH model is that it assumes that
conditional variance is linearly related to past squared returns
and past variances which does not allow the model to account
for asymmetric volatility or long memory properties. Thus an
extension of the GARCH model, the fractionally integrated
asymmetric power ARCH (FIAPARCH) model, introduced by Tse
[24], permits for an asymmetric response of volatility to both
positive and negative shocks, long range volatility dependence as
well as the ability to allow the power of returns to be determinable
by the data. A basic FIAPARCH (1, d, 1) model is defined as,

(1− φL)(1− L)df (at) = α0 + [1− β(L)]at (5)

where:

• β(L) =
∑

βjL
j is the short-run lag polynomial capturing

persistence, where the βj coefficients are analogous in
interpretation to those in the standard GARCH model, but
appear within a fractional differencing framework.

• f (at) = (|at| − γ at)δ .
• γ is the leverage parameter, where−1 < γ < 1.
• δ is the parameter for the power term, where 0 < δ < 2.
• |φ| is the autoregressive parameter, where |φ| < 1.
• α0 > 0.
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• d is the fractional differencing parameter, where 0 ≤ d ≤ 1.
• L is the lag operator.

This model has the capability to capture the volatile nature
of cryptocurrencies while taking into account their long memory
features. The FIAPARCH process was implemented in this analysis
using the G@RCH [25] package in the econometric software,
OxMetrics [26].

2.2.2 GAS and LMGAS models
The set of generalized autoregressive score (GAS) models

proposed by Creal et al. [19] differs from the conventional
observation-driven models in that it adopts a scaled score of the
likelihood function as the key driving factor which allows for a
framework that easily introduces time-varying parameters across
a range of non-linear models. Let rt denote the observed log-return
at time t, which is the variable modeled in the GAS framework
i.e., rt ∼ D(0, σ 2

t ), with time-varying volatility driven by the
GAS recursion.

The general expression of the GAS (p, q) process is defined
as follows:

ft+1 = ω +
p
∑

i=1

αist−i+1 +
q
∑

j=1

βjft−j+1 (6)

where ft is a vector of time-varying parameters at time t, ω is
a vector of constants, st is the scaled score of the log-likelihood
function, and αi, βj are parameter matrices governing the impact
of past scores and past values of ft , respectively. Furthermore, it
is important to note that ft+1 is influenced by all initial values,
θ , which is a vector of static parameters of the model. The
distinguishing feature of the GAS model lies in the local score
function, ∇t , which is given by,

∇t =
∂ ln p(rt|ft ,Ft−1; θ)

∂ft
, (7)

and the scaled conditional score st is of the form:

st = St · ∇t (8)

where p(rt|ft ,Ft−1; θ) is the conditional likelihood function of
rt and St is the scaling term. Various specifications of St results
in different models, for e.g., when St = [It|t−1]−1, the GAS (1, 1)
model results in the standard GARCHmodel.

Incorporating long memory with the GAS model:

Adopting the methods of Janus et al. [20] and Gao and Shi
[18], integrating long memory into the original GAS process can be
achieved by adjusting ft from the general GAS model of Equation 6
as follows,

(1− βL)(ht − ω∗) = ζ ∗t (9)

where L is the lag operator, β is a scalar persistence parameter
(conceptually related to the βj coefficients in the GAS recursion)
ω∗ = ω

(1−β) measures the unconditional mean of ft and ζ ∗t =

αζt−1. Once the fractional differencing factor is included, we can
rewrite this as,

(1− βL)(1− L)d(ht − ω∗) = ζ ∗t . (10)

Assuming that |β| < 1, the following implications exists for
various values of the long memory parameter, d:

• For d < 0, all autocovariances (excluding lag 0) are negative
indicating anti-persistence, i.e., decaying in a hyperbolic
manner to zero.

• For d = 0, the ACF exponentially decays implying a
demonstration of short memory.

• For 0 < d < 1/2, the ACF decays at a slow hyperbolic rate
and the process exhibits long memory.

• For 1/2 ≤ d < 1, the process is mean reverting, however it is
not covariance stationary.

• For d = 1, ft will follow a unit root process.

The methods of the GAS model used in this analysis were
applied utilizing theGAS [27] package of the statistical software, R.

2.3 Heavy-tailed distributions

Heavy-tailed distributions are commonly used for financial
modeling as it is able to represent empirical traits such as
kurtosis, skewness, extreme events, volatility clustering, etc. which
the Normal distribution is unable to capture. The generalized
hyperbolic and generalized lambda distributions are derived from
different classes of distributions but possess flexible frameworks
that are able to sufficiently capture the distinct characteristics
of cryptocurrencies.

2.3.1 Generalized hyperbolic distributions
The family of generalized hyperbolic distributions (GHD),

introduced by Barndorff-Nielsen [28], encompasses various
distributions which are highly essential when it comes to modeling
financial data. The GHD is achievable through a modification
of the generalized inverse Gaussian (GIG) distribution. The
random variable X follows a generalized inverse Gaussian (GIG)
distribution if its probability density function is given as,

h(x; λ,χ ,ψ) =
χ−λ (√χψ

)λ

2Kλ
(√
χψ

) xλ−1 exp

(

−1

2

(

χx−1 + ψx
)

)

(11)
for x > 0, χψ > 0 and Kλ is a modified Bessel function of the

third kind with index λ.
Thus the distribution is dependent on three real parameters:

χ ,ψ , λ, two parameter vectors: the location parameter (µ) and the
skewness parameter (γ ) inRd, and d×d positive matrix6, i.e.,X ∼
GHd(λ,χ ,ψ ,µ, γ ,6). If λ = 1 in Equation 10, the multivariate
generalized hyperbolic distribution is achieved with univariate
margins that are one dimensional hyperbolic distributions. This
one dimensional distribution is widely used to model univariate
financial data [29].
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The methods applied for the GH distributions in the statistical
software platform R are available within the package ghyp [30].

2.3.2 Generalized lambda distributions
Introduced by Ramberg and Schmeiser [31], the generalized

lambda distribution (GLD) is a four-parameter (location, scale,
kurtosis and skewness) modification of Tukey’s lambda distribution
[32]. The GLD is recognized for it’s flexibility to model a wide
range of data, including financial data, however the complexity
of the parameter estimation process proves to be a shortfall
of this distribution [33]. The traditional parameterizations of
the GLD are known as the RS (Ramberg and Schmeiser) [31]
parameterization and the FMKL (Freimer–Mudholkar–Kollia–Lin)
[34] parameterization.

The FMKL GLD parameterization is given by,

Q(u) = λ1 +
uλ3−1

λ3
− (1−u)λ4−1

λ4

λ2
, (12)

where λ1 is the location parameter, λ2 is the scale parameter,
and, λ3 and λ4 are defined as the shape parameters, i.e., λ3 is a
skewness parameter and λ4 is a kurtosis parameter.

The methods applied for the GLD models in the statistical
software platform R are available within the package GLDEX [35].

2.4 VaR and backtesting

In finance, estimating risk measures is crucial as these measures
are paramount for traders to assess the risks that are tied with
their portfolios’ future values. This permits for the consideration
of potential losses. Value-at-Risk (VaR) is the most commonly used
risk metric in market risk management. It is assessed at long and
short positions. Generally, traders who are selling, i.e., traders at
a short position, will encounter a loss if the price increases and
traders who are buying, i.e., traders who are at a long position, will
face a loss if the price drops. VaR is a summary of the statistical
measures of potential losses and is expressed as a confidence
interval in units of a specific currency over a specific time period.
If Ô(·) represents the cumulative distribution function (cdf) of the
most appropriate distribution then VaR can be defined as

VaR (p) = Ô−1(p), (13)

for 0< p< 1.
Backtesting the adequacy of a model involves the recursive

approach of forecasting [36]. This method is also used to
compare models in terms of VaR predictions. The aim of
backtesting analysis is to evaluate the precision of the forecast by
splitting the estimation and evaluation period. VaR backtesting
processes evaluate the correct coverage of the unconditional and
conditional left-tail of a log returns distribution [37]. The correct
unconditional coverage (UC) was first considered by Kupiec [38]
and the correct conditional coverage (CC) was first considered by
Christoffersen [39].

In the section to follow, the long memory models (FIAPARCH
and LMGAS models) are fitted to the returns of all four
cryptocurrencies. Once this is achieved, the standardized residuals
of the fitted models are extracted. The heavy-tailed distributions
discussed above are then fitted to the residuals to allow for an
enhanced representation of the underlying dynamics in these
cryptocurrency markets. VaR is subsequently investigated and
backtesting is conducted to assess the robustness of the fitted
models in evaluating risks and performing predictions.

3 Empirical results

This section describes the results that are produced by applying
the longmemory volatility models discussed in the previous section
to the returns of Bitcoin, Ethereum, Litecoin, and Ripple. The
analysis highlights each model’s performance in terms of their
ability to represent the cryptocurrencies and the models’ robustness
in assessing risk and making predictions through fitting heavy-
tailed distributions to capture underlying dynamics.

3.1 Data source and description

The daily Bitcoin, Ethereum, Litecoin, and Ripple closing prices
(based on the volume-weighted average price, VWAP) in United
States dollars (USD) are the datasets used in this analysis. All
data sets were obtained from https://www.coingecko.com/en/. Two
thousand five hundred and fifty six daily observations were used
for the Bitcoin, Litecoin, and Ripple closing prices for the period
07/08/2015–31/07/2022 and 2,550 daily observations were used
for the Ethereum closing prices. The time periods for Ethereum
differ from the other cryptocurrencies used in this study due to
availability constraints. This does not impact our results as we focus
on the capabilities of each model to capture the underlying trends
exhibited by each cryptocurrency.

Figure 1 depicts the general trends of the time series plots of the
closing prices (USD) for Bitcoin, Ethereum, Litecoin, and Ripple.
By inspecting the plots, it can be deduced that the daily prices of the
cryptocurrencies may exhibit non-constant means as well as high
variability for the considered periods. This is consistent to what is
expected of financial data, however, investors of cryptocurrencies
are ideally interested in the returns of their investments and thus,
the daily prices are converted to log returns, rt , as follows,

rt = ln
pt

pt−1
(14)

where pt is the closing price of the cryptocurrency at time t, and
pt−1 is the closing price of the cryptocurrency at time t − 1.

Figure 2 displays the time series plots of the log returns of the
daily Bitcoin, Ethereum, Litecoin, and Ripple prices. The plots show
that the log returns of all four cryptocurrencies fluctuate around
zero implying that the means of the returns are now stationary,
however a time-varying variance may still be persistent indicating
volatility clustering.

Descriptive statistics and the results of the formal tests applied
to the cryptocurrencies are presented in Table 1. The mean returns
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FIGURE 1

Time series plots of (a) daily Bitcoin prices (USD) for the period 01/08/2015–31/07/2022, (b) daily Ethereum prices (USD) for the period

07/08/2015–31/07/2022, (c) daily Litecoin prices (USD) for the period 01/08/2015–31/07/2022, and (d) daily Ripple prices (USD) for the period

01/08/2015–31/07/2022.

across all assets are slightly positive, indicating slight upward trends
throughout the period. However, these trends are relatively small
in magnitude, which is typical behavior for daily financial returns.
Asymmetry in the return distributions is revealed by the skewness
statistics. Bitcoin and Ethereum exhibit negative skewness which
suggests that the left tails are heavier than the right tails i.e., a
higher probability of large negative returns (left tail risk), while
Litecoin and Ripple are both positively skewed and thus indicating
more frequent large positive returns. This indicates contrasting
investor behaviors and possibly different degrees of speculative
trading between the cryptocurrencies. For instance, Bitcoin and
Ethereum have been around longer and are more widely held and
thus, may exhibit sharper downside corrections during market
stress when compared to Litecoin and Ripple. All cryptocurrencies’
returns are strongly leptokurtic as indicated by the positive excess
kurtosis. This is also verified by the QQ-plots in Figure 3 as well

as the Jarque-Bera [40] and Shapiro Wilk [41] tests of normality
which suggest the data are not normally distributed. The fat tails
exhibited by the four sets of returns confirm the presence of
extreme events and support the choice of heavy-tailed distributions
like the GHD and GLD in our chosen modeling framework. The
presence of tail risk is especially relevant in cryptocurrency markets
due to their vulnerability to sharp crashes, exchange collapses, as
well as sudden regulatory announcements. The stationarity of the
returns was tested by the three cases of the Augmented Dickey-
Fuller (ADF) [42], Phillips-Perron (PP) [43], and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS tests) [44]. These tests mostly support
the assumption that the returns are stationary at the 5% level of
significance; however for Bitcoin and Ethereum under KPSS, no
trend, the case indicates that these assets may contain weak non-
stationary components which could possibly be driven by structural
changes over time. The Ljung-Box [45] test performed on the
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FIGURE 2

Time series plots of (a) daily Bitcoin log returns for the period 01/08/2015–31/07/2022, (b) daily Ethereum log returns for the period

07/08/2015–31/07/2022, (c) daily Litecoin log returns for the period 01/08/2015–31/07/2022, and (d) daily Ripple log returns for the period

01/08/2015–31/07/2022.

returns suggests a lack of autocorrelation, while the test performed
on the squared returns reveals significant serial correlation. This
is a defining trait of volatility clustering. The ARCH-LM confirms
the presence of conditional heteroskedasticity which validates our
approach to employ GARCH-type volatility models. Lastly, time
variation of the returns is investigated using the Cox-Stuart [46]
test, which fails to detect montonic time trends, validating the
assumption of stationarity in means. The exploratory data analysis
confirms that the Bitcoin, Ethereum, Litecoin and Ripple returns
exhibit stylized facts commonly observed in financial data, like
volatility clustering, heavy tails and non-linear dependence, as
outlined by Cont [47].

Long memory tests were performed to investigate the long
memory properties that may be exhibited by the returns and their
squared counterparts. The Rescaled Range (R/S) statistic proposed
by Hurst [48] and the Geweke and Porter-Hudak (GPH) model

[49] were used for the LM testing approach in this analysis. The
results of the LM tests performed is found in Table 2. The Hurst
exponent of the R/S analysis, H, denotes the measure of the long
memory behavior demonstrated by the time series. The resultingH
values for the returns of all four cryptocurrencies are >0.6 implying
mild persistence, while values above 0.65 in the squared returns
indicate much stronger long memory in volatility. This indicates
that volatility shocks in the cryptocurrency markets gradually
decay over time. This is a characteristic consistent with prolonged
periods of high or low volatility. The GPH estimator offers
supplementary results by estimating the fractional differencing
parameter (d), with values between 0 and 0.5 confirming long
memory. Consistent with the R/S test, the d estimates are higher for
the squared returns, reinforcing that the volatility processes of these
assets exhibit stronger persistence than their returns. It appears
that the relatively high long memory values in squared returns,
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TABLE 1 Descriptive statistics and formal tests of the log returns of daily Bitcoin prices (BTC/USD), Ethereum prices (ETH/USD), Litecoin prices

(LTC/USD), and Ripple prices (XRP/USD).

Bitcoin Ethereum Litecoin Ripple

Distribution
metrics

Test Test
statistic

p-value Test
Statistic

p-value Test
statistic

p-value Statistic p-value

Mean 0.0017 - 0.0025 - 0.0010 - 0.0015 -

Standard
deviation

0.0394 - 0.0631 - 0.0555 - 0.0661 -

Skewness −0.6334 - −1.2025 - 0.2166 - 1.6734 -

Kurtosis 9.7834 - 18.5819 - 11.4391 - 24.9938 -

Stationarity ADF test

Case 1: No drift,
no trend

−18.3000 <0.0100 17.4000 <0.0100 −18.0000 <0.0100 −16.7000 <0.0100

Case 2: Drift, no
trend

−18.4000 <0.0100 17.6000 <0.0100 −19.9000 <0.0100 −16.7000 <0.0100

Case 3: Drift and
trend

−18.4000 <0.0100 17.6000 <0.0100 −18.1000 <0.0100 −16.8000 <0.0100

PP test

Case 1: No drift,
no trend

−2,750.0000 <0.0100 −2,522.0000 <0.0100 −2,763.0000 <0.0100 −2,881.0000 <0.0100

Case 2: Drift, no
trend

−2,739.0000 <0.0100 −2,511.0000 <0.0100 −2,761.0000 <0.0100 −2,879.0000 <0.0100

Case 3: Drift and
trend

−2,735.0000 <0.0100 −2,505.0000 <0.0100 −2,758.0000 <0.0100 −2,878.0000 <0.0100

KPSS test

Case 1: No drift,
no trend

2.6200 0.0132 2.7200 0.0109 0.8270 0.1000 0.7610 0.1000

Case 2: Drift, no
trend

0.2940 0.1000 0.3620 0.0935 0.2030 0.1000 0.1550 0.1000

Case 3: Drift and
trend

0.1090 0.0100 0.0866 0.1000 0.0798 0.1000 0.0663 0.1000

Normality Jarque-Bera test 1.0386
×104

< 0.0001 3.7354
×104

< 0.0001 1.3983
×104

< 0.0001 6.7840
×104

< 0.0001

Shapiro-Wilk 0.9108 < 0.0001 0.8747 < 0.0001 0.8877 < 0.0001 0.7791 < 0.0001

Time variation Cox-Stuart test 614.0000 0.1705 667.0000 0.0983 649.0000 0.5951 644.0000 0.8012

Autocorrelation Ljung-Box test 7.5434 0.3746 8.4898 0.2914 65.6450 0.0680 0.0968 0.7558

ARCH effects Ljung-Box test
(rt2)

19.1620 < 0.0001 558.0200 < 0.0001 43.0870 < 0.0001 165.3900 < 0.0001

ARCH-LM test 18.6550 < 0.0001 910.5800 < 0.0001 42.3910 < 0.0001 165.4600 < 0.0001

especially for Litecoin and Ripple, may reflect the influence of
speculative trading, low liquidity, or fragmented market structure,
which can exacerbate volatility persistence in smaller coins in
the market.

Thus, the results of these tests substantiate the notion that
standard volatility models, which fail to cater for the long memory
component, may not be adequate for cryptocurrencies as these
models could underestimate the persistence of risk over time.
Comprehending how these dynamics work is critical for investors
and risk managers, as it implies that risk does not revert promptly
after a shock. This reinforces the case for adopting long-memory
volatility models, which can better account for the slowly decaying
serial correlations observed in these markets.

3.2 Model specification and estimation

The long memory GAS model and the FIAPARCH model
with normal innovations are fitted to the four sets of returns.
For a comparative benchmark, a standard GAS and GARCH
model with normal innovations are also estimated. The GAS
and LMGAS model are fitted to the returns with various
specifications, based on the Akaike Information Criterion (AIC),
of the parameters for location (µ), scale (φ), skewness (γ ), and
shape (ν) (1 and/or 2) to achieve adequate fits. The parameter
estimates (reported in Appendix A) are statistically significant for
all models across the four cryptocurrencies, with long memory
models (particularly FIAPARCH and LMGAS) exhibiting higher
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FIGURE 3

QQ plots of the daily (a) Bitcoin, (b) Ethereum, (c) Litecoin, and (d) Ripple.

persistence in volatility. These models also tend to assign more
weight to past observations, aligning with the established presence
of long memory in these assets.

The standardized residuals are extracted from the GAS,
LMGAS, GARCH, and FIAPARCH models for further analysis.
Assessing the residuals is an essential step in ensuring that the fitted
models are adequate. Typically, the residuals of financial return
models should behave similar to that of white noise. However, if
the residuals are found to violate normality assumptions, heavy-
tailed distributions may be required to capture any underlying
dynamics of the innovations. The residuals from all four models
display features inconsistent with normality, such as excess kurtosis
and skewness which is confirmed by Jarque-Bera test results, which
reject the null hypothesis of normality for all assets and models
(see Appendix B). These results suggest that Gaussian innovations
may not be adequate to capture the heavy-tailed behavior of
cryptocurrency returns. This warrants the use of the heavy-tailed
innovation distributions, the Generalized Hyperbolic Distribution
(GHD) and the Generalized Lambda Distribution (GLD). The
adequacy of these fits were evaluated using the Anderson-Darling
(AD) [50] test (Appendix C). The results imply that the GHD and

GLD provide significantly better fits to the residual distributions in
the GAS, LMGAS, and FIAPARCH models, however the GARCH
model remains inadequate. This could be due to the GARCH
model’s limited robustness in capturing complex dynamics.

Overall, this two-step approach of fitting the models under
Gaussian assumptions and thereafter refining them to adopt
heavy-tailed innovations ensures that the chosen models are
both conceptually valid and empirically well-suited to the unique
features of cryptocurrency volatility.

3.3 Value-at-Risk estimation

Value-at-Risk (VaR) is a commonly used risk measure that
provides an estimate of the potential losses over a period of time
at a given confidence interval. In this study, we produce VaR
estimates at commonly used quantile levels 1%, 2.5%, and 5% for
the long positions (left tail risk), and 95%, 97.5%, and 99% for short
positions (right tail risk). A detailed breakdown of VaR estimates
for the fitted models is reported in Appendix C. Table 3 below
summarizes themodels that produced the lowest VaR estimates, i.e.,
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TABLE 2 Long memory tests of the returns of daily Bitcoin prices

(BTC/USD), Ethereum prices (ETH/USD), Litecoin prices (LTC/USD), and

Ripple prices (XRP/USD).

Test Statistic Estimate

Returns

Bitcoin R/S analysis Hurst exponent 0.6090

GPH test d estimate 0.0230

Ethereum R/S analysis Hurst exponent 0.6373

GPH test d estimate 0.0658

Litecoin R/S analysis Hurst exponent 0.6088

GPH test d estimate 0.0460

Ripple R/S analysis Hurst exponent 0.6132

GPH test d estimate 0.1318

Squared returns

Bitcoin R/S analysis Hurst exponent 0.6777

GPH test d estimate 0.2770

Ethereum R/S analysis Hurst exponent 0.6615

GPH test d estimate 0.0780

Litecoin R/S analysis Hurst exponent 0.7045

GPH test d estimate 0.3047

Ripple R/S analysis Hurst exponent 0.7202

GPH test d estimate 0.3043

most conservative forecast, at the long and short positions across
the different cryptocurrencies.

From a financial perspective, these results provide valuable
insights into how the different volatility models behave across
different risk quantiles and asset types. For majority of the short
position quantiles where large upward price movements can pose
risk to short sellers, the LMGAS models tend to produce the lowest
VaR estimates. This suggests a stronger sensitivity to extreme right-
tail risks and thus indicates that the long memory component is
especially effective in capturing the volatility persistence that often
occur in speculative runs or short squeezes which are commonly
observed in cryptocurrency markets. Notably, the LMGAS-GHD
model dominates the short-side risk estimates for Bitcoin and
Ripple at extreme quantiles. This reflects its ability to detect and
prepare for high-magnitude positive shocks. The LMGAS-GLD
model appears most conservative for Ethereum and Litecoin which
could be indicative of unique trading patterns and skewness in
returns, especially during periods of protocol upgrades or retail-
driven rallies. For the long positions, the standard GAS and
GARCH models appear to result in low VaR values which may
indicate that although these models are less complex, they still have
the ability to capture risk under certain distributional conditions,
implying that in some stable market regimes these simpler models
may suffice for capturing downside risk. However, these models
may underestimate risk in turbulent periods.

Thus, these results indicate that model performance varies
across cryptocurrencies and positions with long memory structures
being particularly valuable in modeling right-tail risk exposures,

TABLE 3 Summary of best performing models by lowest VaR estimates.

Best model (long
position)

Best model (short
position)

Bitcoin FIAPARCH-GLD LMGAS-GHD

Ethereum GARCH-GHD LMGAS-GLD

Litecoin GAS-GHD LMGAS-GLD

Ripple GARCH-GHD LMGAS-GHD

while performance for downside risk is more mixed. In
the following sections, we perform backtesting methods to
determine whether these VaR estimates adequately represent actual
risk exposure.

3.4 In-sample backtesting

The adequacy of the fits of the models was evaluated by
in-sample backtesting for the periods 01/08/2015–31/07/2022
for Bitcoin, Litecoin, and Ripple and 07/08/2015–31/07/2022
for Ethereum, using two formal statistical methods, the Kupiec
likelihood ratio test, which examines the unconditional coverage
of VaR exceedances, and the Christoffersen conditional coverage
test, which furthers the analysis to add the independence of
exceedance sequences. Table 4 summarizes the best performing
models for each cryptocurrency for multiple risk levels, based on
the highest p-values from both the Kupiec and Christoffersen tests.
A model is considered to perform best for a given cryptocurrency
if it consistently produces the highest p-values across both tests,
particularly at the extreme tails (1% and 99%), where risk
assessment is most critical. A higher p-value, exceeding 0.05
suggests that the model’s VaR forecasts are statistically consistent
with the observed violations and thus is more more reliable for
risk management.

The results of backtesting offer key information on the
practical relevance of each model in managing cryptocurrency risk.
Although the long memory GAS models perform adequately at
certain risk levels, they appear to fail to capture extreme tail risk
which is primarily what risk managers and regulators are most
concerned with. This is reflected in the low p-values, especially at
the 1% and 99% quantiles. This implies that the model’s capabilities
for VaR prediction may be limited in that even though they
are able to capture some aspects of volatility persistence, they
tend to struggle with abrupt shocks exhibited by cryptocurrencies
unless paired with distributions that can better capture tail
behavior. Conversely, the FIAPARCH-GLD and GARCH-type
models demonstrate more stable performance across the risk levels.
These models appear to be better equipped to handle the significant
kurtosis and volatility exhibited by cryptocurrencies. Particularly,
for Bitcoin and Litecoin, the FIAPARCH-GLD model provides
the most reliable in-sample results, indicating its robustness in
modeling downside risk and volatility clustering which are features
often observed during market stress or speculative bubbles in
these assets. The flexibility demonstrated by the FIAPARCH-GLD
model in including both long memory and asymmetric responses
to shocks makes it particularly appropriate for markets like Bitcoin
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TABLE 4 Summary of best-performing models for in-sample VaR

accuracy based on Kupiec and Christo�ersen tests for the periods

01/08/2015–31/07/2022 for Bitcoin, Litecoin, and Ripple and

07/08/2015–31/07/2022 for Ethereum.

Best model(s) Observations

Bitcoin FIAPARCH-GLD Strong tail performance and
good conditional coverage

Ethereum FIAPARCH-GLD, GARCH-GLD Consistent across long and
short positions

Litecoin GARCH-GHD, FIAPARCH-GLD Robust across quantiles

Ripple GARCH-GHD, GARCH-GLD Best unconditional and
conditional coverage

where price swings can be sudden and prolonged. For Ethereum,
the GARCH-GLD model outperforms others, specifically at higher
quantiles, indicating that despite its strong technical fundamentals
and investor diversity, a relatively simpler volatility model paired
with a heavy-tailed distribution is enough to capture its risk
structure. For Ripple, both GARCH variants deliver strong and
consistent results suggesting that its behavior is not well captured
by models with higher parameter complexity.

In-sample findings are essential for portfolio managers and
institutional traders who rely on accurate VaR predictions to
make capital allocation, set margins, and hedging decisions. The
models that performwell under backtesting not only offer statistical
adequacy but also align more closely with the specific risk profiles
and trading behavior of each asset. For further evaluation on
the predictive performance of the models, the following section
presents a static out-of-sample backtesting analysis based on
forecasts from August 2022 to December 2024.

3.5 Out-of-sample backtesting

In order to assess the predictive performance of the models
beyond the estimation sample, an out-of-sample evaluation was
performed using a reserved forecasting period from 01 August
2022 to 31 December 2024. Similar to the methods of in-sample
backtesting, the Kupiec and Christoffersen tests were applied to
evaluate the unconditional and conditional coverage properties of
the VaR forecasts. The p-values for all models across several risk
levels for both long and short positions are recorded in Appendix C.
A summary of the best-performing models is provided in Table 5.

The results show that the long memory volatility models retain
their predictive advantage out of sample. Specifically, for Bitcoin
and Litecoin, the FIAPARCH-GHD model exhibits strong tail
performance and robust conditional coverage, which portrays its
flexibility in capturing long memory and asymmetric volatility,
which are generally exhibited during turbulent periods in markets.
For Ethereum, both GAS-GHD and FIAPARCH-GHD models
perform well, with the GAS-GHD achieving better results at the
more extreme quantiles implying that non-long memory models
may perform better under certain distributional assumptions,
particularly for more mature coins. Ripple’s results indicate that
GARCH-GLD and FIAPARCH-GLD models outperform the other
models in terms of forecasting, especially for high confidence

TABLE 5 Summary of best-performing models for out-of-sample VaR

accuracy for the period 01/08/2022–31/12/2024 based on Kupiec and

Christo�ersen tests.

Cryptocurrency Best model(s) Observations

Bitcoin FIAPARCH-GHD Strong tail accuracy and
best performance under the
Christoffersen test,
especially at the extreme
quantiles.

Ethereum GAS-GHD,
FIAPARCH-GHD

GAS-GHD performs better
at extreme quantiles
whereas FIAPARCH-GHD
shows consistent coverage
across levels.

Litecoin FIAPARCH-GHD Best performance at both
tails and strong conditional
coverage at most quantiles.

Ripple GARCH-GLD,
FIAPARCH-GLD

Reliable forecasts at high
confidence levels with
strong p-values for both
tests.

levels which supports the notion that heavy-tailed distributions
are especially useful for modeling assets that are prone to extreme
price swings.

Overall, these findings validates the practical value of these
models in real-world forecasting and risk management scenarios.

3.6 Volatility forecast evaluation

The models’ capability to produce accurate volatility forecasts
beyond the sample used for estimation was assessed by utilizing
their one-step-ahead conditional variance predictions using the
Root Mean Squared Error (RMSE) and the Quasi-Likelihood
(QLIKE) metrics. These measures are widely used in volatility
modeling, with QLIKE being resilient to noise and is generallymore
sensitive to under estimated variance.

The volatility forecasts are evaluated over the out-of-sample
period from 01 August 2022 to 31 December 2024. We assess
the models’ forecast performance based on the accuracy of their
conditional variance predictions for this holdout period. Table 6
provides a summary of the best-performing models based on
RMSE and QLIKE measures. The detailed results of the RMSE and
QLIKE values for all models and cryptocurrencies are found in
Appendix C. Lower RMSE and QLIKE values tend to suggest better
forecast performance.

For all four cryptocurrencies, the FIAPARCH-GLD and
GARCH-type models produce the lowest RMSE and QLIKE values,
and thus suggests the most superior forecast accuracy when
compared to the LMGAS and GAS-type models. For Bitcoin
and Ethereum, the FIAPARCH-GLD model slightly outperforms
the other models, with GARCH-GHD and GARCH-GLD also
performing strongly. Although the GAS and LMGAS models are
highly flexible, these models generate significantly higher loss
values. The results of this section reinforce the VaR backtesting
results, suggesting that GARCH-type and FIAPARCH models
are more reliable for practical volatility forecasting and risk
management in cryptocurrency markets.
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TABLE 6 Best-performing models for out-of-sample volatility forecasting

based on RMSE and QLIKE.

Cryptocurrency Best model(s) Observations

Bitcoin FIAPARCH-GLD,
GARCH-GLD

Lowest RMSE and QLIKE
values

Ethereum FIAPARCH-GLD,
GARCH-GHD

Strong and consistent
accuracy

Litecoin FIAPARCH-GLD,
GARCH-GHD

Robust across both metrics

Ripple FIAPARCH-GLD Best overall forecast
performance

4 Conclusion

In this study, we have investigated and modeled the long
memory features of four highly-traded cryptocurrencies, Bitcoin,
Ethereum, Litecoin, and Ripple by employing long memory
extensions of the GAS and GARCH model. In line with prior
research [7, 21], our results confirm that the presence of long
memory in cryptocurrencies is prevalent. This implies that the
standard GARCH and GAS-type models may fall short when it
comes to capturing the persistent long-term dependencies found
in the volatility dynamics and thus validating the need for long
memory integrated models.

We evaluated the performance of LMGAS models and
FIAPARCH models and compared them against benchmark
models, standard GAS and GARCH models. By extending
traditional methods, we adopted heavy-tailed innovation
distributions, i.e., GHD and GLD and therefore introduce
LMGAS-GHD, LMGAS-GLD, FIAPARCH-GHD, and
FIAPARCH-GLD models.

The adequacy of the models were assessed in multiple
stages. The AD-tests show that all the models except the
GARCH models were able to capture the distributional
properties of the standardized residuals. VaR estimation and
in-sample backtesting, using the Kupiec and Christoffersen tests,
revealed that FIAPARCH-GLD consistently produced the most
desirable results, especially at extreme quantiles. The GARCH
models also demonstrated stability, however they tend to under
represent extreme risk events. In contrast, the LMGAS models
underperformed at extreme risk levels. Nevertheless, they were still
able to capture some risk dynamics. The GAS models produced
mixed results with numerous fluctuations for the cryptocurrencies
and thus may be unstable for risk estimation.

We also extended the analysis by conducting out-of-sample
backtesting to evaluate the models’ predictive ability under real-
world market conditions. The findings were consistent in that the
FIAPARCH-GLD and GARCH-type models consistently produced
strong results across multiple VaR quantiles. Additionally, a
volatility forecasting evaluation using RMSE and QLIKE metrics
confirmed the robustness of thesemodels, particularly FIAPARCH-
GLD, for all four cryptocurrencies. However, the LMGAS models
yielded unstable forecasts, with several undefined QLIKE values
and large RMSE values, further implying their limitations in
practical forecasting.

Overall, the results of this study reveal that long memory and
asymmetric volatility models, especially FIAPARCH with heavy-
tailed innovations, provide a powerful framework for both risk
estimation and volatility forecasting in cryptocurrency markets.
From a financial perspective, our results provide new insights
into the volatility behavior of cryptocurrencies. The consistent
outperformance of long memory models indicates that risk in
cryptocurrency markets may not decay as quickly as in traditional
assets. It appears that cryptocurrencies exhibits persistence that,
if ignored, could lead to the underestimation of extreme losses.
The findings in this paper may be of relevance to all those
who are involved and interested in the cryptocurrency market
as the explorations in this study develop sophisticated modeling
techniques to grasp the complexities of cryptocurrencies. For
practitioners, including portfolio managers, institutional traders
and risk managers, our findings highlight the importance of
selecting models that can robustly capture volatility clustering and
tail dependence.

Further recommendations of research includes employing
various other heavy-tailed distributions to govern the innovations
of the LMGAS and FIGARCH models. Other long memory
GARCH models, like the HYGARCH and FIGARCH, can be used
to model cryptocurrencies and relative comparisons can be made
with the models utilized in this paper. Extending the analysis
performed in this study to other popular cryptocurrencies such as
Monero, Dogecoin, Tether etc. can also be of great value. Finally,
extending this framework using rolling window estimation could
provide valuable insights into the dynamic evolution of risk and
long memory characteristics in response to external shocks and
market events.
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