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Ranking cricket teams are crucial in determining their standing and precedence

in international cricket. In this study, we propose a novel approach to assess

cricket team rankings using the Bayesian paired comparison method. The

Bayesian paired comparison method is a statistical technique that leverages

subjective assessments from a group of teams to evaluate their relative

performance. The proposed approach is compared with the o�cial rankings

provided by the International Cricket Council (ICC), and it is found that

the results obtained from the Bayesian method closely align with the ICC

rankings. By incorporating subjective assessments and leveraging Bayesian

inference, the method proves to be a reliable and accurate tool for evaluating

team performance. The study highlights the advantages of the Bayesian

paired comparison approach over traditional statistical techniques and provides

valuable insights for cricket administrators, coaches, and enthusiasts in assessing

and comparing the performance of cricket teams.

KEYWORDS
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1 Introduction

Cricket, being a highly popular sport worldwide, implements a long-standing ranking
system to assess team performance and establish their superiority. Its origins can be traced
back to the late 16 century in England [1], and the sport has evolved significantly since
then. Keeping a record of rating of each team from the earliest cricket matches has always
been essential.

In the early stages, team ratings were documented manually without the aid of
any specialized tools, relying on handwritten records. Due to its immense popularity,
cricket generates extensive public discussion, often focused on comparing the skills and
achievements of the past and present players. In order to showcase the relative standing
of different teams and players, cricket rankings are established based on the outcomes
of competitions and matches. The conventional approach involves assigning positions
to teams based on points accumulated, with the team having the highest points being
ranked first. However, traditional sports rankings primarily rely on win-loss or tie ratios
and subjective assessments through polls. For instance, the ICC utilizes a set of ad hoc

regulations to determine the cricket rankings. The methods employed by the ICC to rank
cricket teams and individuals have been criticized for their perceived complexity and lack of
transparency [2]. There is a growing need for a thorough examination of these mechanisms
in order to develop improved ranking techniques that offer more clarity and fairness.

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2025.1568445
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2025.1568445&domain=pdf&date_stamp=2025-04-11
mailto:as.zada@paaet.edu.kw
https://doi.org/10.3389/fams.2025.1568445
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2025.1568445/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Alkhezi et al. 10.3389/fams.2025.1568445

The theory of inference offered by Bayesian statistics allows us
to describe observed outcomes through hypothetical predictions
[3]. Bayesian statistics provides the fundamental framework
for incorporating new empirical data and updating existing
information. Pair comparisons (PC) have long been employed as
a technique for comparing different items and addressing certain
challenges. In the context of our study, we assign preference or
indifference scores to each pair of items when comparing them.
Traditional PC models typically assign scores to items on a linear
scale, reflecting the reference point for evaluating the items.

Due to the substantial interest observed in recent years,
researchers have shifted their focus toward the Bayesian analysis
of multiple PC models, as evidenced by several studies [4–7], along
with many others. The model proposed by Bradley and Terry [8]
is widely regarded as the fundamental model for PCs. Extensive
research has been conducted in the field of PC techniques leading
up to the present moment although this discussion only covers
a small portion of the extensive literature. A scaling method was
explored by Guttman [9], which bears a striking resemblance to the
process of discriminate analysis.

A probabilistic model for PC experiments is described in
Gridgeman [10]. The author investigates cases with and without
ties, examining their implications within the models. The problem
posed by the non-linear state space model for contrasting objects
is addressed by Glickman [11]. The study explores a solution
where the performance of the objects may change significantly
as the citizen variable increases. Several generalizations of the
Bradley–Terry model are proposed by Hunter [12]. The author
adopts a robust approach to iteratively determine optimal prospect
parameter approximations. In the Bayesian framework, Aslam [13]
investigates the PC model with ties. Non-informative priors are
employed to conduct Bayesian analyses for two theories, namely,
the Rao–Kupper and the Davidson models. Posterior means,
posterior probabilities, and predictive probabilities are evaluated
and subsequently discussed.

The methods for addressing pairwise comparison selection
issues are proposed by Priekule and Meisel [14]. The authors
numerically compare four sampling strategies, including different
knowledge gradient policies, an exploration policy, and a knockout
competition. For the analysis, they utilize a multi-binomial model.
The results of their study indicate that knowledge gradient policies
outperform exploration and knockout tournament policies. In
analyzing wrestling data, Usami [15] focus on the PC model. They
combine the Bradley–Terry and non-linear models to develop their
proposed model. The author suggests that the proposed model
yields superior results than existing models.

The consideration of ties in the basic model is extended by
including threshold parameters as discussed in Rao and Kupper
[16]. The results reveal that the Bradley–Terry model, which
compares two treatments, exhibits a clear preference for one of the
treatments. However, disregarding the possibility of ties completely
results in the loss of valuable information contained within the no
preference class.

In this study, the PC model studied by Altaf et al. [17]
is subjected to Bayesian analysis. Non-informative priors are
employed for the Bayesian analyses. By deriving joint posterior
distributions and marginal posterior distributions for the
parameters of the model, posterior estimates (means), predictive
probabilities, and posterior probabilities for contrasting the

TABLE 1 Summary statistics of the number of matches played among six

teams.

Estimate

N 30

Minimum 1

Maximum 14

Median 6.5

Mode 3

Arithmetic mean 7.03

Standard deviation 4.563

Q1 3

Q3 9

two treatment parameters are obtained. Additionally, graphical
representations of the marginal posterior distributions of the
parameters are provided. Some recent papers have also explored
similar topics. Various generalizations of different paired
comparison models are presented in Oliveira et al. [18], Orbán-
Mihálykó et al. [19], Orbán-Mihálykó et al. [20], Osei and Davidov,
[21], Ghosh and Davidov [22].

The remaining sections of this paper discuss the Rao–Kupper
model in Section 1, providing an overview of the notation used in
the suggested model. The prior distribution of the suggested model
is described in Section 2. Section 3 derives the likelihood function
of the suggested model. In Section 4, the detailed derivation
of the posterior distribution and its graphical representation are
presented. This section also covers several statistical measures, such
as posterior mean, preference probabilities, Bayesian hypothesis
testing, predictive probability, and the adequacy of the proposed
model. Finally, the conclusion and future research directions are
addressed in the last section.

2 Materials and methods

2.1 Data

The extracted data cover the top six teams in the International
Cricket Council (ICC) rankings, which can be found at the
link https://stats.espncricinfo.com/ci/engine/stats. These have been
summarized into summary statistics of the number of matches
played between the top six ICC teams in Table 1.

2.2 Methods

2.2.1 Rao–Kupper model
According to Rao and Kupper [16], in order to account for

tied observations, modifications need to be made to the Bradley–
Terry model. The introduction of a new parameter, denoted as
σ = lnγ (threshold parameter), is proposed. The assumption made
is that if the observed difference (Xk − Xl) between treatments tk
and tl is smaller than σ , the panelist will be unable to distinguish
between the two treatments and will declare a tie. Thus, when
comparing treatments tk and tl, the probability that treatment tk is
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preferred to treatment tl (where k 6= l) is represented as ψ(k.kl) and
is defined as follows:

ψ(k.kl) =
1

4

∫ ∞

−(lnϑk−lnϑl)+δ
sech2

( y

2

)

dy, k 6= l; k, l = 1, 2, . . . , n

ψ(k.kl) =
ϑk

(ϑk + γϑl)
(1)

The Rao–Kupper model that tkand tl having no preference is
denoted by

ψ(0.kl). The ψ(0.kl) given by

ψ(0.kl) =
1

4

∫ (lnϑk−lnϑl)+δ

−(lnϑk−lnϑl)+δ
sech2

( y

2

)

dy k 6= l; k, l = 1, 2, . . . , n

ψ(0.kl) =
ϑkϑl(γ

2 − 1)

(γϑk + ϑl)(ϑk + γϑl)
(2)

The Rao–Kupper model becomes the Bradley–Terry model
if γ = 1.

2.2.2 Notations of Rao–Kupper model
In the analysis of the proposed Rao–Kupper model, the

following notations are utilized: Nk,klm takes the value of 1 or 0,
indicating whether the treatment tk is preferred over treatment tl or
not in the kth repetition (m = 1, 2, . . . , rkl) of the comparison.
Similarly,N0,klm takes the value of 1 or 0, indicating whether the
treatment tk is tied to treatment tl or not. It should be noted
that Nk,klm + Nl,klm + N0,klm = 1 and Nk,klm = Nl,klm.Nk,kl =
∑

m Nk,klmrepresents the number of times treatment tk is preferred
to treatment tl. N0.kl =

∑

m N0.klmN0.kl =
∑

m N0.klm =

the number of times treatment tkand treatment tlis tied. rk.kl is
the number of times of comparisons between treatment tkand
treatment tl. With rkl = N0.kl + Nk.kl + Nl.kl = rlk.

The following notation is useful for further simplification of the
likelihood function:

Nklm = N0.klm + Nm.klm, Nklm = N0.klm + Nm.klm = rlk − Nk.klm

where Nkl =
∑

m Nklm is the number of times treatment tk is
preferred to tland the number of Times treatment tk and tl are
tied. Nk =

∑n
l 6=k Nkl is the total number of times treatment

tk is preferred to any other treatment, and the number of times
treatment tk and tl are tied. Nk =

∑n
k<l N0.kl = the total number of

times treatment tk and tl are tied.

2.2.3 Prior distributions for the proposed model
Two non-informative Jeffreys and Uniform priors are taken

into account for the Bayesian analysis of the suggested model [23,
24]. Every unit receives the same probability under the Uniform
prior. Symbolically, it can be expressed as

Pu (ϑ) ∝ 1, where ϑ = (ϑ1, ϑ2, . . . ,ϑn, ε)

In contrast, the Jeffreys prior can be found
as: PJ (ϑ) ∝

√

det [I (ϑ) ]

R =

∫ ∞

0

∫ 1

0

∫ 1−ϑ1−ϑ2−...−ϑn−2

0

n
∏

l<m

Pw(γ )
γ
Sl
l
εNo.lm

(

ϑ3
l
+ ϑ3

m + ε
√

ϑ3
l
.ϑ3

m

)Nlm
dϑn−1

. . . . . . dϑ1dε

where the Fisher information matrix is represented by I (ϑ).
Fisher’s information matrix is as follows for n = 2:

I (γ ) = (−1)2

∣

∣

∣

∣

∣

∣

E
{

∂2logl(.)
∂ϑ2

1

}

E
{

∂2logl(.)
∂ϑ1∂ε

}

E
{

∂2logl(.)
∂ε∂ϑ1

}

E
{

∂2logl(.)
∂ε2

}

∣

∣

∣

∣

∣

∣

Given that the Jeffreys prior has an extended and difficult algebraic
equation that is difficult to apply for n = 6, we derive the Jeffreys
prior numerically for n = 6 using SAS programming.

2.2.4 Likelihood function for the proposed model
According to the Rao–Kupper model, the likelihood function

of the observed outcome, the probability of the observed outcome
in the repetitions of the treatment pair (tk, tl)

Pklm =
(

γ 2 − 1
)N0.klm

[

ϑk

ϑk + γϑl

]Nklm
[

ϑl

ϑl + γϑk

]Nklm

I (x;ϑ1, ϑ2, . . . ,ϑl) =
n

∏

k<l=1

rkl
∏

m=1

pklm

=

(

γ 2 − 1
)N0 ∏n

k<l=1 Kkl

∏n
k=1 ϑ

Nk

k
∏n

k6=l (ϑk + γϑl)
Nkl

where mkl =
rkl!

(N0.kl!Nk.kl!Nl.kl!)
, 0 ≤ ϑk ≤ 1, k =

1, 2, . . . , l,
∑l

k=1 ϑk = 1, and γ > 1.
The treatment parameters in this case are ϑ1,ϑ2, . . . ,ϑn, and

the threshold parameter is γ .

2.2.5 Posterior distribution using uniform prior for
n = 6 teams

Let us consider the case for the parameters of six teams
ϑ1,ϑ2, . . . ,ϑ6. The following is the joint posterior distribution for
the unknown parameters:

P(ϑ1,ϑ2,ϑ3,ϑ4,ϑ5|x) ∝ l(x;ϑ1,ϑ2,ϑ3,ϑ4,ϑ5)p(ϑ1,ϑ2,ϑ3,ϑ4,ϑ5)

P(ϑ1,ϑ2,ϑ3,ϑ4,ϑ5|x) =

(

γ 2 − 1
)N0 ∏k

k<l=1 mkl

∏k
k=1 ϑkkk

∏6
k6=l (ϑk + γϑl)

Nkl

P(ϑ1,ϑ2,ϑ3,ϑ4,ϑ5|x) =

(

γ 2 − 1
)N0 ∏6

k<l=1 mkl

∏6
k=1 ϑ

nk
k

m
∏6

k6=l (ϑk + γϑl)
Nkl

where mkl =
rkl!

(N0.kl!Nk.kl!Nl.kl!)
, 0 ≤ ϑk ≤ 1, k =

1, 2, . . . , 6,
∑nl

k=1 ϑk = 1, l = 6, and γ > 1 is the order parameter,
using the constraint ϑ1 + ϑ2 + ϑ3 + ϑ4 + ϑ5 + ϑ6 = 1, then
ϑ6 = 1 − (ϑ1 + ϑ2 + ϑ3 + ϑ4 + ϑ5) with ϑ1,ϑ2,ϑ3,ϑ4,ϑ5 ≥ 0
and R is normalizing constant.

N1 = N12 + N13 + N14 + N15 + N16,

N2 = N21 + N23 + N24 + N25 + N26,

N3 = N31 + N32 + N34 + N35 + N36,

N4 = N41 + N42 + N43 + N45 + N46,

N5 = N51 + N52 + N534 + N54 + N56,

N6 = N61 + N62 + N63 + N65 + N65

The marginal posterior distribution of ϑ1using Uniform prior is
defined as
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TABLE 2 The data of ODI matches from 2016 to 2022 for n = 6 teams.

Teams Pair (k, l) Nk.kl Nl.kl N0.kl Total
number

of
matches

(NZ, AUS) (1, 2) 4 9 4 17

(NZ, IND) (1, 3) 07 10 1 18

(NZ, SA) (1, 4) 03 03 0 6

(NZ, ENG) (1, 5) 05 10 0 15

(NZ, PAK) (1, 6) 10 03 02 15

(AUS, IND) (2, 3) 14 14 2 30

(AUS, SA) (2, 4) 04 14 01 19

(AUS, ENG) (2, 5) 06 09 0 15

(AUS, PAK) (2, 6) 11 03 0 14

(IND, SA) (3, 4) 09 07 0 16

(IND, ENG) (3, 5) 07 06 0 13

(IND, PAK) (3, 6) 03 01 0 04

(SA, ENG) (4, 5) 08 07 02 17

(SA, PAK) (4, 6) 04 06 0 10

(ENG, PAK) (5, 6) 12 02 01 13

P (ϑ1|x) =
1

R

∫ 1−ϑ1

ϑ2=0

∫ 1−ϑ1−ϑ2

ϑ3=0

∫ 1−ϑ1−ϑ2−ϑ3

ϑ4=0

∫ 1−ϑ1−ϑ2−ϑ3−ϑ4

ϑ5=0

6
∏

l<m

Pw(ϑ)
ϑ
Sl
l
εNo.lm

(

ϑ3
k
+ ϑ3

m + ε
√

ϑ3
k
.ϑ3

m

)Nlm
dϑidε

The expression for the marginal posterior densities for the rest
of the parameters can also be derived.

2.2.6 Appropriateness of the Rao–Kupper model
The observed numbers of preferences are compared to the

expected number of preferences in order to determine whether the
Rao–Kupper model is appropriate for the paired comparisons. If
the differences are minimal, the result is considered as consistent.
The hypothesis that the model is true for some value of ϑ0(the
vector of parameter values) is tested using the chi-squaretest.
We have

H0 : ϑ = ϑ0 VS H0 : ϑ 6= ϑ0 (3)

where the parameters of the vector are ϑ . Using chi-square χ2 test,
we evaluate the appropriateness of the model. Let us consider how
often treatments tk are predicted to be preferred over treatments
tl and how on treatments tlare likely to be preferred over treatments
tk. The chi− squaretest is expressed as

χ2 =

N
∑

k<l











(

Nk,kl − N̂k,kl

)2

N̂k,kl

+

(

Nl,kl − N̂l,kl

)2

N̂l,kl











(4)

FIGURE 1

Graphs for the n = 6 teams using ODI’s data.

which has chi-square distribution with (N − 1) degree of freedom.
The expected number of treatments is obtained as

N̂k,kl =
rklϑk

ϑk − γϑl
, N̂l,kl =

rklϑl

γϑk − ϑl

N̂0,kl =
rkl

(

γ 2 − 1
)

ϑkϑl

γϑk − ϑl
, k < l = 1, 2, . . . , 6

3 Results

3.1 Graphical presentation of the marginal
distribution for parameters n = 6 teams

Graph of the marginal posterior distribution in the case of six
parameters n = 6, on the data basis of the above data of 1 Day
International matches, are given below. The behavior of all the
teams is positive skewness. The behavior of the worth parameter γ

shows positive skewness. The behavior of the team ϑ2 shows less
slightly positive skewness than ϑ3. The behavior of the team ϑ3

shows less slightly positive skewness than the team ϑ1. The behavior
of the team ϑ1 shows less slightly positive skewness than the team
ϑ4. Table 2 shows the ODI matches from 2019 to 2022, whereas
Figure 1 shows the graph for n = 6 teams using ODI’s data.

3.2 Posterior means

The Bayes estimations of the parameters are based on posterior
means. The SAS package is used to find posterior means. This
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TABLE 3 The data of ODI matches from 2016 to 2022 for n = 6 teams.

Parameter Country Posterior mean

ϑ1 New Zealand 0.1756

ϑ2 Australia 0.2561

ϑ3 India 0.2324

ϑ4 South Africa 0.2276

ϑ5 England 0.2089

ϑ6 Pakistan 0.0963

γ Worth Parameter 2.64

TABLE 4 Preference Probabilities for n = 6.

Teams Pair (k, l) PΨ kl PΨ lk

(NZ, AUS) (1, 2) 0.3421 0.6579

(NZ, IND) (1, 3) 0.3674 0.7326

(NZ, SA) (1, 4) 0.3542 0.6458

(NZ, ENG) (1, 5) 0.4856 0.5144

(NZ, PAK) (1, 6) 0.5282 0.4718

(AUS, IND) (2, 3) 0.5214 0.4786

(AUS, SA) (2, 4) 0.5865 0.4135

(AUS, ENG) (2, 5) 0.6232 0.3768

(AUS, PAK) (2, 6) 0.6893 0.3107

(IND, SA) (3, 4) 0.5262 0.4738

(IND, ENG) (3, 5) 0.5184 0.4816

(IND, PAK) (3, 6) 0.5382 0.4618

(SA, ENG) (4, 5) 0.5152 0.4848

(SA, PAK) (4, 6) 0.4512 0.5488

(ENG, PAK) (5, 6) 0.5606 0.4394

is derived from the joint distribution 2.1 of the six parameters
denoted by ϑ1,ϑ2, . . . ,ϑ6. For the data listed in Table 3, the
posterior estimates (means) for the aforementioned parameters
of the proposed model are as follows: according to the estimates
found in Table 3, we conclude that of the six teams, Australia is the
top, followed by India, South Africa, England, New Zealand, and
Pakistan at last.

3.3 Preference probabilities

Using a Uniform prior distribution, the preference probabilities
are calculated from the data in Table 4 and are then provided in
According to the results shown in Table 4, it can be concluded
that in matches between New Zealand and Australia, Australia
has a 0.6579 winning probability while New Zealand has a 0.3421
winning probability. Similarly, in matches between New Zealand
and India, New Zealand has a 0.3674 winning probability while
India has a 0.7326 winning probability. Similarly, the rest of the
table can be interpreted in the same way.

TABLE 5 Posterior probabilities for n = 6.

Hypothesis PPkl PQkl

H12 : ϑ1 > ϑ2 0.0762 0.9238

H13 : ϑ1 > ϑ3 0.1686 0.8314

H14 : ϑ1 > ϑ4 0.2465 0.7535

H15 : ϑ1 > ϑ5 0.5234 0.4766

H16 : ϑ1 > ϑ6 0.3567 0.6433

H23 : ϑ2 > ϑ3 0.5678 0.4322

H24 : ϑ2 > ϑ4 0.5968 0.4032

H25 : ϑ2 > ϑ5 0.7848 0.2151

H26 : ϑ2 > ϑ6 0.7854 0.2146

H34 : ϑ3 > ϑ4 0.6543 0.3457

H35 : ϑ3 > ϑ5 0.8816 0.1184

H36 : ϑ3 > ϑ6 0.5739 0.4216

H45 : ϑ4 > ϑ5 0.8083 0.1917

H46 : ϑ4 > ϑ5 0.3216 0.6784

H56 : ϑ5 > ϑ6 0.4632 0.5368

3.4 Bayesian hypothesis testing for n = 6
using Rao–Kupper model

The posterior probabilities of the hypotheses for comparing six
parameters are calculated.

Table 5 contains that P12 = 0.0762 and Q12 = 0.9238
the hypothesis that H12 is accepted with high probability Q12 =

0.9325 and interpreted that the Australian team wins the match,
the hypothesis that H13 is accepted with a high probability Q13 =

0.8314 and interpreted that the India team won the match, and
the rest of the table can be interpreted in the same way as the
above interpretation.

3.5 Predictive probability

The probability of treatment tk is favored over tl in a single
future comparison in the Rao–Kupper model is calculated in the
term of predictive probability P(kl) is given Table 6 is that it is
expected that in the future the matches between New Zealand and
Australia that there is 63.45% chance that the Australian team will
win the match, it is expected that in the future the matches between
New Zealand and India that there is a 66.26% chance that India
will win, in the matches between New Zealand and South Africa
that there in the future is a 64.52% chance that South Africa will
win the match. The rest of Table 6 can be interpreted in the same
way. The predictive probabilities P(0.12), P(0.13), P(0.14), P(0.15),
and P(0.16) are 0.4, 1.13, 3.44, 2.25, and 1.43%, respectively. These
values are very small, so one can say that the probability of declaring
a tie in a future single comparison of different treatments is <11%
and the rest of the predictive probability can be interpreted in the
same way. The appropriateness of the proposed model is calculated
using the observed and expected number of preferences calculated
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TABLE 6 Predictive probabilities are obtain for n = 6.

Teams Pair (k, l) P(kl) P(lk) P(0.kl)

(NZ, AUS) (1, 2) 0.3451 0.6345 0.0204

(NZ, IN) (1, 3) 0.3261 0.6626 0.0113

(NZ, SA) (1, 4) 0.3234 0.6452 0.0344

(NZ, ENG) (1, 5) 0.3461 0.6314 0.0225

(NZ, PAK) (1, 6) 0.5121 0.4836 0.0143

(AUS, IND) (2, 3) 0.5032 0.4632 0.0336

(AUS, SA) (2, 4) 0.5337 0.4559 0.0012

(AUS, ENG) (2, 5) 0.5523 0.4304 0.0173

(AUS, PAK) (2, 6) 0.6532 0.3026 0.0442

(IND, SA) (3, 4) 0.5472 0.4203 0.0225

(IND, ENG) (3, 5) 0.5832 0.3931 0.1901

(IND, PAK) (3, 6) 0.5211 0.4210 0.0511

(SA, ENG) (4, 5) 0.5623 0.4135 0.0242

(SA, PAK) (4, 6) 0.4823 0.4133 0.0044

(ENG, PAK) (5, 6) 0.4723 0.5033 0.0244

TABLE 7 Observed frequencies and expected frequencies.

Teams Nk,kl N̂k.kl Nl,kl N̂l.kl N0.kl N̂0.kl

(NZ, AUS) 04 5.23 9 8.78 0 0.01

(NZ, IND) 07 6.55 10 12.21 2 1.35

(NZ, SA) 03 4.29 03 5.15 0 1.43

(NZ, ENG) 05 4.87 10 9.65 0 0.53

(NZ, PAK) 10 11.31 03 4.01 2 4.54

(AUS, IND) 14 13.78 14 15.29 2 1.61

(AUS, SA) 04 5.34 14 13.46 1 1.59

(AUS, ENG) 06 4.26 09 10.02 0 0.58

(AUS, PAK) 11 13.51 03 2.32 0 1.36

(IND, SA) 09 10.94 07 6.32 4 5.13

(IND, ENG) 07 7.83 06 8.55 0 1.52

(IND, PAK) 03 6.28 01 0.43 0 0.02

(SA, ENG) 08 11.34 07 10.27 2 1.45

(SA, PAK) 04 2.34 06 7.46 0 0.65

(ENG,PAK) 12 14.11 02 3.36 1 0.56

using the χ2 statistic using the data given in Table 7, χ2 = 23.147
with a p-value found to be 0.541, so there is no evidence that the
model is not a good fit.

4 Discussion

The ICC (International Cricket Council) ranking system uses
a different approach. The ICC rankings are typically determined
based on a points system that considers match outcomes, series

results, and tournament performances. The specific algorithms
and criteria used by the ICC might include factors such as the
quality of opposition, home and away performances, and the ODI
matches. We compare the results of our proposed study with the
ICC ranking system.

With the proposed model of paired comparison and its
methodology it is challenging to make a direct comparison or
provide a preference over the ICC ranking system. However, we
discuss general reasons why some cricket enthusiasts or analysts
might prefer alternative ranking models over the ICC system.

4.1 Transparency of methodology

Some fans and analysts may prefer ranking systems that are
more transparent about their methodologies. The suggested model
openly shares its algorithms and criteria, users might find it easier
to understand how rankings are calculated.

4.2 Specific criteria consideration

Different ranking systems may prioritize different criteria in
assessing team performance. The proposed model considers factors
that are perceived as more accurate or relevant by some cricket
enthusiasts, they may prefer its results over the ICC rankings.

4.3 Up-to-date data

Some ranking models might incorporate more recent
performance data or different types of statistics that enthusiasts
believe better reflect current form of a team. If the Rao–
Kupper model updates more frequently or includes more recent
information, users may find its rankings more reflective of the
current scenario.

4.4 Accuracy in predicting outcomes

The suggested model has demonstrated accuracy in predicting
match outcomes or has consistently aligned with fan perceptions of
team strength, users might prefer it over a ranking system that they
perceive as less accurate.

4.5 International consistency

Some enthusiasts may prefer a ranking system that is consistent
across various formats and tournaments, providing a more
comprehensive evaluation of overall performance of a team. If the
Rao–Kupper model offered this consistency, and viewed favorably.
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4.6 Incorporation of contextual factors

The suggested model incorporates contextual factors, such
as player form, team strategies, or match conditions in a way
that is seen as more sophisticated or accurate, users may prefer
its rankings.

It is crucial to note that the ICC ranking system is widely
recognized and accepted as the official ranking system for
international cricket. However, preferences for alternative models
may arise due to subjective opinions about what factors are most
important in assessing team performance and how well a particular
model captures those factors. Ultimately, the choice of a ranking
system may depend on individual preferences and the perceived
strengths and weaknesses of each model.

In summary, the preference for a paired comparison model,
such as the Rao–Kupper model, over the ICC cricket ranking
system for ODI teamsmay stem from the desire for amore nuanced
and context-specific evaluation. Paired comparison models allow
for a direct comparison between teams, taking into account-specific
match-ups and individual performances. This approach can
capture the subtleties of team dynamics and adaptability, providing
a more dynamic and responsive ranking system. Supporters of
paired comparison models often appreciate the transparency and
simplicity of the methodology as it avoids complex weighting
systems and allows for a straightforward understanding of how
teams are positioned relative to each other. Additionally, these
models may be seen as offering a more immediate reflection of
the current form of a team, emphasizing recent performances and
capturing changes in dynamics more rapidly than broader, long-
term-oriented ranking systems. While the ICC cricket ranking
system holds official recognition and global acceptance, some
enthusiasts may lean toward paired comparison models for their
ability to offer a more finely tuned assessment of team capabilities
based on direct comparisons.

5 Conclusion

The present study applies a Bayesian analysis to PC data
using the suggested model studied by [16, 17], which allows for
the inclusion of ties. By incorporating ties through a Bayesian
approach, this research aims to generate increased interest in PC
analysis. The paper provides a Bayesian analysis using both the
Uniform prior and Jeffreys prior. We utilize specifically focusing on
ODI matches between 2016 and 2022, employing various programs
within the SAS package to obtain results such as posterior means,
preference probabilities, and predictive and posterior probabilities.
The results reveal that based on the posterior means, the following
ranking is observed: Australia is ranked first, India is ranked
second, South Africa is ranked third, New Zealand is ranked fourth,
England is ranked fifth, and Sri Lanka is ranked last. This ranking
aligns with the ICC ranking of 2022. The calculated preference
probabilities indicate that Australia, India, South Africa, and New
Zealand are favored over England, South Africa, and New Zealand,
respectively, thereby supporting the ICC ODI rankings. To assess
the adequacy of the proposed model, the chi-squared statistic is
employed. The results confirm that the model fits well, and the
use of a non-informative Uniform prior is deemed suitable for the
Bayesian analysis of the model. In order to conduct a Bayesian

analysis of the PC models, alternative non-informative priors
that are more appropriate are suggested. Additionally, suitable
informative priors are proposed for the observed frequencies and
their expected frequencies Bayesian analysis of the model. It is also
feasible to perform analysis without imposing any limitations on
the parameters. Moreover, Bayesian analysis can be applied to other
PC models. Furthermore, the PC technique can reliably rank more
than six teams.

In terms of future research, it would be valuable to extend
the analysis to include a larger dataset encompassing a wider
range of time periods and matches. This would provide a more
comprehensive understanding of the rankings and preferences
in ODI cricket. Additionally, exploring alternative PC models
and priors for Bayesian analysis could yield further insights and
comparisons. Finally, investigating the applicability of the PC
technique for ranking teams in other sports or domains would
expand the scope and applicability of the research.
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