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The stochastic time-fractional Kuramoto–Sivashinsky (STFKS) equation models

a wide range of physical phenomena involving spatio-temporal instabilities

and noise-driven dynamics. Accurate analytical solutions to this equation

are essential for understanding the influence of fractional derivatives and

stochasticity in nonlinear systems. This study applies the Tanh–Coth method

and He’s Semi-Inverse (HSI) method in conjunction with the Truncated M-

fractional derivative (TMFD) framework to derive exact solitary wave solutions

of the STFKS equation. These approaches are implemented under a traveling

wave transformation to reduce the governing partial di�erential equation to

an ordinary di�erential equation. Exact analytical solutions are obtained for

the STFKS equation, and graphical plots are presented to visualize the physical

characteristics of the derived wave profiles under varying fractional orders

and stochastic conditions. The results confirm that both the Tanh–Coth and

HSI methods are e�ective and reliable for solving the STFKS equation. The

graphical analysis reveals the significant impact of fractional parameters and

stochastic terms on the solution behavior, demonstrating the practical utility of

the proposed methodology in nonlinear stochastic modeling.

KEYWORDS

nonlinear partial di�erential equation, stochastic time fractional Kuramoto-Sivashinsky

equation, truncated M-fractional derivative, Tanh–Coth method, He’s Semi-Inverse

methods

1 Introduction

Non-linear stochastic partial differential equations (NSPDEs) are crucial in modeling

complex phenomena across various scientific fields. They are essential in describing

dynamic processes in physics, fluid dynamics, plasma physics, nonlinear dynamics,

and wave propagation, as well as in disciplines such as mathematics, finance, biology,

mechanical engineering, chemistry, and genetics [1–6]. Various methodologies have been

developed to obtain exact and numerical solutions to NSPDEs. These include the Jacobi

elliptic function method, improved fractional sub-equation method, bilinear Bäcklund

transform, He’s homotopy perturbationmethod, (G′/G)-expansionmethod, Bernoulli sub-

equation function method, improved Fan’s sub-ordinary differential equation method,

auxiliary equation methods, and Kudryashov method [7–15]. The Kuramoto–Sivashinsky

(KS) equation is one of the NSPDEs due to its non-linear, dissipative, and spatiotemporal

dynamics [16]. As a non-linear partial differential equation, it exhibits complex behavior
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driven by non-linearity, diffusion, and higher-order derivatives.

This equation is often used to model phenomena such as

flame propagation and pattern formation, highlighting its role

in describing systems where spatial x and temporal t non-linear

interactions influence variations. The mathematical formulation of

the KS equation is as follows:

φt + νφxxxx + ηφxx + ρ φφx = 0, (1)

where function φ(x, y) represents variable x in conjunction with the

variable t and ν, ρ, η are constants. The time fractional KS equation

is given by [17]:

iD
α,γ
M,tφ + ρ φφx + ηφxx + νφxxxx = 0. (2)

This equation contains the term iD
α,γ
M,tφ, which results from

using the Truncated M-fractional derivative (TMFD) technique

introduced by Sousa et al. [18]. TMFD represents a notable

advancement in fractional calculus, with significant applications

across various fields like physics, mathematics, finance, biology,

chemistry, and engineering. In Equation (2), TMFD is expressed

as iD
α,γ
M,tφ representing a fractional derivative with respect to t

of order α. Additionally, TMFDs are defined as follows: the first

order are iD
α,γ
M,tφ and iD

α,γ
M,xφ fractional derivatives with respect to t

and x, respectively, the second-order are iD
2α,γ
M,t ψ and iD

2α,γ
M,x ψ =i

D
α,γ
M,x(iD

α,γ
M,xφ), and the fourth-order is iD

4α,γ
M,t φ =i D

α,γ
M,t(iD

3α,γ
M,t φ),

where these derivatives are applied recursively. In recent years,

manymodels have been formulated in the literature using fractional

derivatives [18–23].

The stochastic time fractional KS (STFKS) equation is given

as [24]:

iD
α,γ
M,tφ + νφxxxx + ηφxx + ρ φφx = σφ (x, t) dW (t) . (3)

This equation, W(t), represents a random variable known as

standard Brownian motion (SBM), with σ indicating the noise

term in the Itô sense. SBM, introduced by Wiener [25], has been

a key element in the development of stochastic process theory.

Incorporating TMFD in soliton theory is particularly beneficial

because it can precisely describe soliton wave behaviors and offer

deeper physical insights. With this in mind, this paper employs

the Tanh–Coth and He’s Semi-Inverse (HSI) methods to derive

traveling wave solutions for Equation (3).

The Tanh–Coth and HSI methods are widely recognized for

their utility in constructing traveling wave solutions for various

NSPDEs [26–29]. Despite their effectiveness in many contexts,

their application to the STFKS equation has remained relatively

unexplored, making this research both novel and significant.

Recognizing the limitations of existing solution methods for the

STFKS equation, the motivation behind this study is to leverage the

Tanh–Coth and HSI methods to discover new analytical solutions.

The main objective of this study is to explore the use of these

methods to find analytical solutions to the STFKS equation and

examine the implications of these solutions for understanding the

behavior of non-linear systems. These methods promise to expand

the repository of exact solutions for the STFKS equation and

provide deeper insights into the intricate behaviors of fractional-

order non-linear systems. By transforming the STFKS equation

into an ordinary differential equation (ODE) using a traveling wave

transformation, this paper uncovers a broader spectrum of exact

analytical solutions. Graphical representations are also included to

illustrate the physical characteristics of these solutions visually, and

the impact of varying the fractional order αand noise terms σ is

explored. The structure of this paper is as follows: Section 2 covers

the TMFD technique, Section 3 presents solutions for the space-

time STFKS equation, Section 4 provides graphical representations,

and Section 5 concludes the study.

2 Truncated M-fractional derivative

Truncated M-fractional derivative (TMFD), introduced by

Sousa et al. [18], extends traditional fractional derivatives by

combining fractional-order differentiation with a truncation

mechanism. This technique enhances flexibility in modeling

systems with non-local interactions andmemory effects, improving

the representation of phenomena like anomalous diffusion and

viscoelasticity. The order of the derivative, denoted by α,

interpolates between integer and fractional derivatives, with

truncation limiting the derivative’s influence in specific regions.

Key properties include linearity, a generalized Leibniz rule, and

the ability to manage initial and boundary conditions, making it

valuable for complex systemmodeling in various fields. The TMFD

of the order α, where 0 < α ≤ 1, for a function ψ :[0,∞)→ R, is

defined as:

iD
α,γ
M,xψ (x) = lim

ε→0

ψ
(

xiEγ (ε x
−α) − ψ (x )
ε

,

where iEγ (.), for x∈ C and γ > 0, is the truncated Mittag-

Leffler function, given by:

iEγ (x) =
∑i

k=0

xk

Ŵ(γk+ 1)
,

and the Gamma function Ŵ (γ ) , defined for γ > 0, is:

Ŵ (γ ) =
∫ ∞

0
e−xxγ−1dx.

Note that if ψ is α-differentiable in some open interval (0, a)

and a > 0, and lim
x→0

(

iD
α,γ
M,xψ(x)

)

exist. Then we have iD
α,γ
M,xψ (0) =

lim
x→0

(

iD
α,γ
M,xψ(x)

)

.

The well-defined TMFD is applied by following specific

essential properties. Let α ∈ (0, 1] and assume that ψ and � are

α-differentiable functions for all positive values of x, where a and b

are constants. Then, the following properties hold:

• iD
α,γ
M,x

(

a ψ + bΩ
)

= aiD
α,γ
M,x(ψ)+ biD

α,γ
M,x(Ω).

• iD
α,γ
M,x (ψ Ω) = ΩiD

α,γ
M,x(ψ)+ ψiD

α,γ
M,x(Ω).

• iD
α,γ
M,x

(

ψ
Ω

)

= Ωi D
α,γ
M,xψ−ψi D

α,γ
M,xΩ

Ω2 .

• iD
α,γ
M,x (c) = 0, where c is constant.

• iD
α,γ
M,x (ψ) (x) =

x1−α

Ŵ(γ+1)
dψ
dx
.

These properties have been proven by Sousa and de Oliveira

[18] and Vanterler et al. [22].
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3 The solutions of Equation (3)

Using two distinct methods, the Tanh-Coth and HSI methods,

the STFKS in space-time equation is derived by analyzing the wave

equation corresponding to Equation (3). Specifically, the following

wave transformation is applied:

φ (x, t) = ψ (ξ) e
(

σW(t)− 1
2 σ

2t
)

, ξ = k(x−
c Γ (γ + 1)

α
tα). (4)

In this transformation, ψ is a deterministic real-valued

function, and k and c are non-zero constants. By employing

the TMFD technique, the traveling wave transformation, and the

properties of SBM, the following equations are derived:

iD
α,γ
M,tφ (x, t) =

(

−ck ψ ′ + σψdW(t)
)

e
(

σW(t)− 1
2 σ

2t
)

. (5)

φx = kψ ′e
(

σW(t)− 1
2 σ

2t
)

. (6)

φxx = k2ψ ′′e
(

σW(t)− 1
2 σ

2t
)

. (7)

φxxx = k3ψ ′′′e
(

σW(t)− 1
2 σ

2t
)

. (8)

φxxxx = k4ψ ′′′′e
(

σW(t)− 1
2 σ

2t
)

. (9)

By substituting Equations (5)–(9) into Equation (3), the

following equation is obtained:

− c kψ′ + kρψψ ′e
(

σW(t)− 1
2 σ

2t
)

+ k2η ψ ′′ + k4νψ ′′′′ = 0. (10)

SinceW(t) represents Brownianmotion, taking the expectation

on both sides of Equation (10), where E[eσW(t)] = e
(

1
2 σ

2t
)

,

and integrating with the constant of integration set to zero, the

following result is obtained:

− c ψ +
1

2
ρ ψ2 + kηψ ′ + k3 νψ ′′′ = 0. (11)

3.1 Application of the Tanh-Coth method

This method, outlined in [30, 31], is applied in this study to

derive wave solutions for Equation (11). By equating the non-linear

term ψ2 with the highest-order derivative ψ”’, it is determined that

the parameter m = 3. Consequently, the solution can be expressed

as follows:

ψ (ξ) = β−3ϕ
−3 + β−2ϕ

−2 + β−1ϕ
−1 + β0 + β1ϕ + β2ϕ2 +

+ β3ϕ
3. (12)

where ϕ = tanh(ξ) and βj, j = 0, ±1, ±2, ±3 are constants to be

determined. By substituting Equation (12) into Equation (11) and

grouping terms according to powers of ϕ, the coefficients of each

power are set to zero, resulting in a system of algebraic equations.

This system is then solved using MAPLE to find the values of the

constants. β−3,β−2,β−1,β0,β1,β2,β−3, c, k, and µ, which leads to

the final solutions.

Case 1:

β3 = 0,β2 = 0, β1 = 0, β0 = ±
30η

19ρ

√

−
η

19ν
,

c = ±
30η

19

√

−
η

19ν
, k = ∓

1

2µ

√

−
η

19ν
µ = µ,

β−1 = ∓
30η2

722νρ
√

− η
19ν .

,β−2 = 0, β−3 = ±
30η2

722νρ
√

− η
19ν .

In Case 1, the solution of Equation (3) is given by:

φ1 (x, t) = ± 30η
19ρ

√

− η
19ν

[

1+ 1
2 coth

(

∓ 1
2

√

− η
19ν

(

x− ±30η
19

Γ (γ+1)
α

√

− η
19ν t

α
)

)

+ 1
2 coth

3

(

∓ 1
2

√

− η
19ν

(

x− ±30η
19

Ŵ(γ+1)
α

√

− η
19ν t

α
)

)]

e
(

σW(t)− 1
2 σ

2t
)

.

;
η

ν
< 0

(13)

Case 2:

β3 = 0, β2 = 0, β1 = 0, β0 = ±
30
√
11η

19
√
19ρ

√

η

ν
,

c = ∓
30
√
11η

19
√
19

√

η

ν
, k = ±

1

2
√
19µ

√

η

ν
µ = µ,

β−1 = ∓
135η2

√
209

361νρ
√

η
ν
.
,β−2 = 0, β−3 = ±

165η2
√
209

361νρ
√

η
ν
.

In Case 2, the solution of Equation (3) takes the form:

φ2 (x, t) = 135η2
√
209

361ρν
√

η
υ

[

± 2
9 ∓ coth

(

± 1
2
√
19

√

η
ν

(

x− ∓30
√
11η

19
√
19

Ŵ(γ+1)
α

t
α)

)

± 11
9 coth

3
(

± 1
2
√
19

√

η
ν

(

x− ∓30
√
11η

19
√
19

Ŵ(γ+1)
α

t
α)

)]

e
(

σW(t)− 1
2 σ

2t
)

.

;
η

ν
> 0

(14)

Case 3:

β3 = ±
90η

38ρ

√

−
η

19ν
,β2 = 0,β1 = ∓

30η

38ρ

√

−
η

19ν
,

β0 = ±
30η

19ρ

√

−
η

19ν
, c = ∓

30η

19

√

−
η

19ν
, k = ±

1

2µ

√

−
η

19ν
,

µ = µ, β−1 = 0, β−2 = 0, β−3 = 0.

In Case 3, the solution to Equation (3) is given by:

φ3 (x, t) = 30η
19ρ

√

− η
19ν

[

±1∓ 1
2 tanh

(

± 1
2

√

− η
19ν

(

x −∓30η
19ρ

Ŵ(γ+1)
α

√

− η
19ν t

α
)

)

∓ 3
2 tanh

3
(

± 1
2

√

− η
19ν

(

x −∓30η
19ρ

Ŵ(γ+1)
α

√

− η
19ν t

α
)

)]

e
(

σW(t)− 1
2 σ

2t
)

.

;
η

ν
< 0.

(15)

Case 4:

β3 = ±
165η

√
209

361ρ

√

η

ν
,β2 = 0,β1 = ∓

135η
√
209

361ρ

√

η

ν
,

β0 = ±
30η

√
209

19
√
19ρ

√

η

ν
, c = ∓

30η
√
209

19
√
19ρ

√

η

ν
, k = ±

√
209

38µ

√

η

ν
.

µ = µ, β−1 = 0 , β−2 = 0, β−3 = 0.
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In Case 4, Equation (3) has the following solution:

φ4 (x, t) = 15η
√
209

19
√
19ρ

√

η
υ

[

±2∓ 9√
19

tanh
(

±
√
209

38µ

√

η
ν

(

x− ∓30η
√
209

19
√
19ρ

Ŵ(γ+1)
α

tα
)

)

± 11√
19

tanh
3
(

±
√
209

38µ

√

η
ν

(

x− ∓30η
√
209

19
√
19ρ

Ŵ(γ+1)
α

t
α)

)]

e
(

σW(t)− 1
2 σ

2t
)

.

;
η

ν
> 0

(16)

Case 5:

β3 = ±
15η

152
√
19ρ

√

−
η

ν
,β2 = 0,β1 = ±

135η

152
√
19ρ

√

−
η

ν
,

β0 = ±
30η

19
√
19ρ

√

−
η

ν
, c = ∓

30η

19

√

−
η

ν
, k = ±

1

4
√
19µ

√

−
η

ν
,

µ = µ, β−1 = ±
135η

152
√
19ρ

√

−
η

ν
, β−2 = 0,

β−3 = ∓
15η

152
√
19ρ

√

− η
ν

.

In Case 5, the solution of Equation (3) is expressed as:

φ5 (x, t) =



































































15η

19
√
19ρ

√

− η
υ

[

±2± 9
8 tanh

(

± 1
4
√
19

√

− η
ν

(

x

−∓30η
19

Ŵ(γ+1)
α

√

− η
ν
tα

)

)

± 1
8 tanh

3

(

± 1
4
√
19

√

− η
ν

(

x− ∓30η
19

Ŵ(γ+1)
α

√

− η
ν
tα

)

)

± 9
8 coth

(

± 1
4
√
19

√

− η
ν

(17)
(

x− ∓30η
19

Ŵ(γ+1)
α

√

− η
ν
tα

)

)

∓ 1
8 coth

3

(

± 1
4
√
19

√

− η
ν

(

x− ∓30η
19

Ŵ(γ+1)
α

√

− η
ν
tα

)

)]

e
(

σW(t)− 1
2 σ

2t
)

, η
ν
<0.

Case 6:

β3 = ±
165η

√
209

2888ρ

√

η

ν
, β2 = 0,β1 = ∓

45η
√
209

2888ρ

√

η

ν
,

β0 = ±
30η

√
209

361ρ

√

η

ν
, c = ∓

30η
√
209

361

√

η

ν
,

k = ±
√
209

76µ

√

η

ν
, µ = µ, β−1 = ∓

45η
√
209

2888ρ

√

η

ν
,

β−2 = 0, β−3 = ±
165η

√
209

2888νρ

√

η

ν
.

In Case 6, the solution of Equation (3) is given by:

φ6 (x, t) =



































































15η
√
209

361ρ

√

η
υ

[

±2∓ 3
8 tanh

(

±
√
209
76

√

η
ν

(

x

−∓30η
√
209

361
Ŵ(γ+1)
α

√

η
ν
tα

)

)

± 11
8 tanh3

(

±
√
209
76

√

η
ν

(

x− ∓30η
√
209

361
Ŵ(γ+1)
α

√

η
ν
tα

)

)

∓ 3
8 coth

(

±
√
209
76

√

η
ν

(

x (18)

−∓30η
√
209

361
Ŵ(γ+1)
α

√

η
ν
tα

)

)

± 11
8 coth

3

(

±
√
209
76

√

η
ν

(

x− ∓30η
√
209

361
Ŵ(γ+1)
α

√

η
ν
tα

)

)]

e
(

σW(t)− 1
2 σ

2t
)

; η
ν
> 0.

3.2 Application of the He’s Semi-Inverse
method

This method, outlined in Wazzan [32], simplifies complex

problems by dividing them into manageable components and

extends its applications to fractional and stochastic systems,

providing insights into memory effects and randomness. It is

used to derive wave solutions for Equation (11) through a

variational formulation,

J(ψ) =
∫ ∞

0

(

−c ψ +
1

2
ρψ2 + kηψ ′ + k3νψ ′′′

)

dξ . (19)

The solitary wave solution of Equation (11) is proposed in the

following form:

ψ(ξ ) = λ sech(ξ ), (20)

where λ is an unknown constant to be determined. Substituting

Equation (20) into Equation (19) yields:

J (ψ) = λ

∫ ∞

0
[−c sech(ξ ) +

1

2
ρλ sech2(ξ )

− kη sech(ξ ) tanh(ξ )− k3ν sech (ξ) tanh3 (ξ)

+ 5 k3ν sech3(ξ ) tanh(ξ )]dξ = k3λν +
1

2
ρλ2

−
1

2
c πλ− kηλ. (21)

Making J stationary concerning λ results in:

∂J

∂λ
= k3 ν + ρλ−

1

2
c π − kη = 0. (22)

From Equation (22), we obtain:

λ =
2kη − 2 k3ν + c π

2ρ
. (23)

The solitary solution of Equation (11) is obtained as:

ψ(ξ ) =
2kη − 2 k3ν + c π

2ρ
sech(ξ ). (24)

Consequently, the solution of Equation (3) is:

φ7 (x, t) =
2kη − 2 k3ν + c π

2ρ
sech(kx

− c
k Γ (γ + 1)

α
tα) e

(

σW(t)− 1
2 σ

2t
)

. (25)

Another proposed form for the solitary wave solution of

Equation (11) is given as:

ψ(ξ ) = ̺ sech(ξ ) tanh2(ξ ), (26)

where one must determine the unknown constant ̺. By following

the same procedure as above, we obtain:

̺ =
40 k3v+ 5c π

2ρ
. (27)
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Thus, the solution of Equation (3) is:

φ8 (x, t) =
40 k3ν + 5c π

2ρ
sech

[

k(x−
c Ŵ(γ + 1)

α
tα)

]

tanh2
[

k(x−
c Γ (γ + 1)

α
tα)

]

e
(

σW(t)− 1
2 σ

2t
)

. (28)

4 Impact of noise and fractional order
on solution behavior

This study provides a comprehensive graphical analysis to

examine the effects of variations in the noise term and fractional

order on the solution behavior of Equation (3). Using fixed

parameter values ν = 1, ρ = 1, η = −1,π = 3.14, k = 1
2
√
19

FIGURE 1

The 3D graphs for the solutions φ1 (x, t) (a) and φ8 (x, t) (b), where σ = 0, γ = 0.7and α = 1.

FIGURE 2

The 3D graphs for the solution φ1 (x, t), where γ = 0.7 and α = 1 for σ = 1 (a) and σ = 2 (b).

FIGURE 3

The 3D graphs of the solution φ8 (x, t), where γ = 0.7 and α = 1 for σ = 1 (a) and σ = 2 (b).
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and c = 1
19
√
19
, within the domains x ∈ [0, 6] and t ∈ [0, 2], the

graphical representations of the solutions for Equations (12) and

(28) are analyzed. Specifically, for Equation (12), the focus is on the

behavior of positive values of βj, c, and k.

4.1 The e�ect of the noise term

The 3D graphs in Figure 1 illustrate the influence of the noise

term σ = 0 on the solutions φ1 (x, t) (Figure 1a) and φ8 (x, t)

(Figure 1b) under the conditions γ= 0.7 and α = 1.Without noise,

Figure 1a shows a singular bright profile with a sharply localized

peak, representing phenomena like concentrated energy bursts

or solitons in non-linear media. In contrast, Figure 1b displays

singular periodic solutions characterized by wave-like oscillations

with recurring singularities resembling periodic energy spikes or

wave instabilities. These behaviors suggest that in the absence

of external disturbances, the system exhibits energy localization

and transfer (Figure 1a) or periodic instabilities and resonance

phenomena in dynamic systems (Figure 1b).

The 3D graphs of Figure 2 illustrate how noise strength affects

the system’s dynamics. In Figure 2a, at noise strength σ →
1, the solution φ1 (x, t) appears smooth and planar, indicating

that the system’s behavior remains stable and uniform across

FIGURE 4

The 3D graphs of the solution φ1(x, t), where γ = 0.7 and σ = 0 for α = 1 (a), α = 0.8 (b) α = 0.6 (c) and x = 1 for (d).

FIGURE 5

The 3D graphs of the solution φ8(x, t), where γ = 0.7 and σ = 0 for α = 1 (a), α = 0.8 (b) α = 0.6 (c) and x = 1 for (d).
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both the x and t domains. In contrast, Figure 2b shows how

the solution deviates from this planar structure as the noise

strength increases σ > 1. This is evidenced by the emergence

of localized spikes and irregularities in φ1 (x, t), which reflects

the influence of stochastic perturbations. The increased noise

introduces randomness into the system, disrupting its deterministic

behavior and causing the solution to fluctuate. In a physical

context, φ1 (x, t) could represent variables such as concentration,

temperature, or displacement, while the noise term σ captures

external fluctuations like thermal noise, random forcing, or

stochastic environmental interactions.

In Figure 3, the 3D graphs for the solution φ8 (x, t), with

γ = 0.7 and α = 1 at two different noise strengths σ =
1 and σ = 2 further illustrate how noise influences the

system. The noise strength increases from σ = 1 to σ = 2,

and the surface transitions from a relatively smooth, planar

structure to a more complex, non-planar one. This shift indicates

increased noise strength results in more significant fluctuations and

distortions, leading to a more chaotic and turbulent surface. These

graphs demonstrate how increasing noise strength exacerbates

irregularities and disrupts the smoothness and stability of the

solution φ8 (x, t ).

4.2 The e�ect of the fractional order

A 3D plots of the solutions φ1 (x, t) is presented in Figures 4a–

c, where σ = 0, and the parameter curves of the solution are given

as follows: (a) α = 1, γ = 0.7, (b) α = 0.8, γ = 0.7 and

(c) α = 0.6, γ = 0.7. The impact of the fractional order on the

solution behavior is evident as the surface transitions become less

planar. Additionally, Figure 4d shows the 2D plot of the solutions

φ1 (x, t) from Figures 4a–c with the same parameters and x = 1.

In the 2D plot, the function value increases with time but decreases

with the fractional order, highlighting the sensitivity of the solution

to changes in fractional order.

Figure 5 illustrates the impact of the fractional order on the

solution behavior of φ8 (x, t). The 3D plots of the solutions are

shown in Figures 5a–c for the parameter set with σ = 0. In

Figure 5a, where α = 1 and γ = 0.7, the solution displays a

standard wave-like behavior. As the fractional order α decreases

in Figure 5b with α = 0.8 and γ = 0.7, the wave dynamics

become more complex, indicating a more substantial influence

of the fractional derivative on the solution’s behavior, causing

the wave to propagate more slowly and with more significant

distortion. In Figure 5c, where α = 0.6 and γ = 0.7, the

fractional order further reduces the wave speed and introduces

more pronounced deviations in the solution, highlighting the

increasing effect of fractional behavior on wave propagation. In

Figure 5d, 2D plots of the solutions at x = 1 are provided

for the same parameter values, where the wave propagation is

observed to occur from left to right. As the fractional order

decreases, the wavemaintains a fixed amplitude, but its propagation

rate slows down, with the solution exhibiting a more spread-

out, less sharp profile. This behavior can be interpreted as a

result of the fractional order modulating the dispersive properties

of the system, slowing down wave propagation, and altering its

structure.

5 Conclusion

This study derived analytical solutions for the STFKS equation

using a combination of the Tanh-Coth and He’s Semi-Inverse

methods with the TMFD technique. The solutions include solitons,

waveforms, and singular periodic structures, which are critical for

interpreting the behaviors described within the STFKS framework.

The findings reveal that as the noise term diminishes, solutions

become increasingly planar when the fractional order remains

constant. Conversely, in the absence of noise, lower fractional

orders lead to more intricate wavefront dynamics, transitioning

to less planar forms with consistent amplitude propagation.

Graphical representations elucidate these phenomena, emphasizing

their physical characteristics. MAPLE software facilitated all

computations, demonstrating the methods’ efficiency. Notably,

the derived solutions align with existing results [e.g., [31, 33]]

when the noise term is omitted and the fractional order equals

1. This study underscores the sensitivity of fractional-order

systems to noise and fractional order variations. Building on

these findings, future research could explore the influence of

variable fractional orders and noise intensity in dynamic systems

governed by the STFKS equation. Extending these methods

to multi-dimensional systems and other fractional differential

equations could yield more profound insights into complex

physical phenomena.
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