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New analytical wave solutions of 
fractional order DMBBM and 
Bateman-Burgers equations
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Bangkok, Thailand

The purpose of this article is to explore a new method for solving one of the 
nonlinear partial differential equations (NPDE) which is difficult to solve. The 
dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and the solutions 
of space-time fractional Bateman-Burgers equation is solved by a travelling wave 
analysis method as the Riccati sub-equation. The solutions of space-time fractional 
DMBBM equation and the solutions of space-time fractional Bateman-Burgers 
equation can be expressed in the forms of exponential functions, trigonometric 
functions, rational functions, and hyperbolic functions. The singular wave, singular 
kink wave, and periodic wave are the representations of the solution graphs.
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1 Introduction

The nonlinear partial differential equations (NPDE) are the partial differential equation 
(PDE) which have nonlinear terms. The NPDEs are well known for their application of 
mathematics and physics. Investigating the analytical solutions of NPDEs plays important role 
in nonlinear science. In fact, NPDEs of physical problems are difficult to solve analytically.

At present, there are many alternative methods could obtain exact travelling wave solutions 
of NPDEs such as Riccati sub-equation (1, 15–17, 19), Kudryashov method (2, 18, 20), F
-expansion method (3), 

′G
G -expansion method (4–6) and hyperbolic tangent method.

One of interested NPDEs is the nonlinear dispersive modified Benjamin-Bona-Mahony 
(DMBBM) equation (7, 8) which was proposed by Benjamin, Bona and Mahony in 1972. It 
describes the role of nonlinear dispersion. The DMBBM equation is presented as

  α+ − + =2 0,t x x xxxu u u u u   (1)

where α  is a nonzero positive constant and ( )= ,u u x t . However, this method has 
complicated solutions and still difficult to solve even though the analytical solutions of DMBBM 
equation are established by using the direct reduction methods and some transformations. The 
article aims to investigate the travelling wave analysis methods to solve the analytical solutions 
of the DMBBM (Equation 1) and the Bateman-Burgers (Equation 2) in other ways.

In 1915, Harry Bateman presented the Bateman-Burgers equation which is illustrious in 
the field of applied mathematics such as fluid mechanics, traffic flow and gas dynamics. 
Bateman-Burgers equation is presented as

  δ+ = .x x xxu uu u   (2)

where u  is a function of variables x  and t , δ  is the viscosity of a fluid (1).
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1.1 Jumarie’s Riemann-Liouville derivative

The Jumatie’s Riemann-Liouville derivative of order β  respect to 
t  is defined as follows (9),
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The important properties of fractional Riemann-Liouville 
derivatives are following (10),
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( ) ( ) ( )( ) ( ) ( )ββ β β′     = =    ′   ,gt t tD f g t D f g t g t f g t D g t

 
(6)

By combining the fractional Jumatie’s Riemann-Liouville 
derivative (Equations 3–6) with the algorithm of the Riccati 
sub-equation method, we  have found numerous new exact 
travelling wave solutions of the fractional nonlinear space–time 
DMBBM equation and the fractional nonlinear space–time 
Bateman-Burgers equation. Wave behavior graphs in contour, 
two-dimensional, and three-dimensional plots are demonstrated. 
Additionally, compared to results from previous approaches, the 
acquired results showed greater variability.

The researcher intends to use the Riccati sub-equation method 
to determine the exact solutions and analyse the behavior of the 
fractional nonlinear space–time DMBBM equation and the 
fractional nonlinear space–time Bateman-Burger equation. This 
method will provide the exact solution in three different forms: 
rational functions, generalised hyperbolic functions, and 
generalised triangular functions. There are a total of 15 distinct 
solutions. The researcher analysed the behavior of the solution by 
examining the graph of the solutions in three different formats: 
contour, two-dimensional graph, and three-dimensional graph. 
Using Jumarie’s Riemann-Liouville Derivative and its properties, 
the above procedure must convert nonlinear fractional PDE to 
nonlinear PDE. Then, it must use the wave transform to convert 
nonlinear PDE to nonlinear ODE, and finally, the Riccati 
sub-equation technique to solve the problem further.

2 Methodology

The simple equation method with the Riccati sub-equation for 
solving the DMBBM equation and Bateman-Burgers equation are 

illustrated as the following procedures. To begin with, the general 
form of (1 + 1) dimensional NPDEs.

 ( )ψ =, , , , , 0x t xx xtu u u u u
 

(7)

where u  is the functional of x  and t . Considering two 
independent variables x  and t , the nonlinear conformable fractional 
partial differential equation is as follows:

 
( )β β ββ β β β… = > < ≤2 2H , , , , , , 0, 0,0 1,x x xt t tu D u D u D u D u D D u t

 
(8)

where ( )= ,u u x t  and H  is a polynomial expression that contains 
both greatest order and nonlinear factors in u , along with 
fractional derivatives.

2.1 Step 1. Wave transformation

Setting the wave variable 
( ) ( )

ψ ψωξ
ψ ψ

= −
Γ + Γ +1 1
kx t where ,k  and 

ω  are nonzero with positive direction of travelling wave when ω > 0  
and a negative direction of the travelling wave when ω < 0 , and 
( ) ( )ξ = ,U u x t  (11). Nonlinear Equation 8 can be  transformed 

into an ODE

 
ξ ξ ξ

 
Φ =  
 



2 3

2 3, , , , 0dU d U d UU
d d d  

(9)

where Φ is a polynomial that contains its derivatives for both 
largest order and nonlinear factors in .U

2.2 Step 2. Solution supposition

2.2.1 Riccati sub-equation method
Recall that the solution of the simple equation (SE) method may 

be expressed in the form (11).

 
( ) ( )ξ ξ

=
=∑

0

N
i

i
i

U a V
 

(10)

where ia  are the real constants with Na is nonzero. The Riccati 
sub-equation method is used to find ( )ξV  defined as (12, 13):

 ( ) ( )ξ ρ ξ= +′ 2 ,V V
 

(11)

Where ρ  is an arbitrary constant. There are general three cases 
solutions of Equation 11 shown as follows:

Case I: when ρ < 0,
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( ) ( )ξ ρ ρξ= − − −1 tanh ,pqV

 
(12)

 
( ) ( )ξ ρ ρξ= − − −2 coth ,pqV

 
(13)

 
( ) ( ) ( )ξ ρ ρξ ρ ρξ= − − − ± − −3 tanh 2 2 ,pq pqV i sech

 
(14)

 
( ) ( ) ( )ξ ρ ρξ ρ ρξ= − − − ± − −4 coth 2 2 ,pq pqV csch

 
(15)

 
( ) ρ ρ
ξ ρ ξ ρ ξ

− −
= − − + −

    
            

5
1

tanh coth ,
2 2 2

pq pqV
 

(16)
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(18)

where ,Q R  are nonzero constants with − >2 2 0R Q .
Case II: when ρ > 0 ,

 
( ) ( )ξ ρ ρξ=8 tan ,pqV

 
(19)

 
( ) ( )ξ ρ ρξ= −9 cot ,pqV

 
(20)

 
( ) ( ) ( )ξ ρ ρξ ρ ρξ= − ±10 tan 2 sec 2 ,pq pqV

 
(21)

 
( ) ( ) ( )ξ ρ ρξ ρ ρξ= − ±11 cot 2 csc 2 ,pq pqV

 
(22)

 
( ) ρ ρ
ξ ρ ξ ρ ξ

    
= −            
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1 tan cot ,
2 2 2pq pqV

 
(23)
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(24)

 

( )
( ) ( )

( )
ρ ρ ρξ

ξ
ρξ

± − −
= −

+

2 2

14

sin 2
,

cos 2

pq

pq

Q R Q
V

Q R
 

(25)

where ,Q R  are nonzero constants with − >2 2 0.Q R
Case III: when ρ > 0 ,

 
( )ξ

ξ
= −

+15
1 ,V
b  

(26)

where b  is a constant.
The generalised hyperbolic functions in Equations 12–18, with p  

and q  are arbitrary constants and >, 0p q , are defined as follow,

 
( )

θ θ
θ

−−
=sinh ,

2pq
pe qe

 
(27)
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θ θ
θ

−+
=cosh ,

2pq
pe qe

 
(28)
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θ θ

θ θθ
−

−
−

=
+

tanh ,pq
pe qe
pe qe  

(29)

 
( )

θ θ

θ θθ
−

−
+

=
−

coth ,pq
pe qe
pe qe  

(30)

 
( ) θ θθ

−
=

+

2 ,pqsech
pe qe  

(31)

 
( ) θ θθ

−
=

−

2 ,pqcsch
pe qe  

(32)

where θ  is an independent variable.
The generalised triangular functions in Equations 19–25, with p  

and q  are arbitrary constants and >, 0p q , are defined as follow,
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θ θ
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( )

θ θ

θ θθ
−

−
+

=
−

cot ,
i i

pq i i
pe qei
pe qe  

(36)

 
( ) θ θθ

−
=

+

2sec ,pq i ipe qe  
(37)

 
( ) θ θθ

−
=

−

2csc ,pq i i
i

pe qe  
(38)

where θ  is an independent variable.  Substituting the appropriate 
solutions for case I, II, or III in Equations 12–38 leads to the general 
three-case solutions of Equation 11. Step 3 Finding the integer.

2.3 Step 3. Finding the integer N

The integer N  (11) in Equation 10 of this method can be obtained 
by balancing the highest order derivative and nonlinear terms, which 
are appeared in Equation 9.

2.4 Step 4. Solution obtaining

Collect all the coefficient terms with the same order of iV , 
( )= …0,1,2,i . Set them to zero (11). The parameters ( )= …, , 0,1,2, ,ia i N  
and ω  are obtained. Thus, the analytical solutions of Equation 7 
are composed.

3 Application

The travelling wave behaviors were investigated by the fractional 
nonlinear space–time DMBBM equation and the fractional nonlinear 
space–time Bateman-Burgers equation shown here.

3.1 The fractional nonlinear space–time 
DMBBM equation

In this chapter, we apply some travelling wave analysis methods 
in the previous chapter to solve the analytical solutions of the DMBBM 
equation with the following methods using simple equation. The 
nonlinear space–time fractional DMBBM equation,

 
ψ ψ ψ ψα+ − + =2 3 0,x x xtD u D u u D u D u  (39)

where α  is a nonzero positive constant. Equation 39 is 
transformed into Equation 40 as the following (14):

 
ω α

ξ ξ ξ ξ
− + − + =

3
2 3

3 0.dU dU dU d Uk kU k
d d d d  

(40)

Integrating concerning ξ  choosing of integration as zero, 
we obtain the following ODE,

 ( )ω α− − + ′ =′3 33 3 0.k U kU k U
 

(41)

Balance the highest order derivative and the nonlinear term. So, 
we have N = 1. The solution is expressed as

 ( ) ( )ξ ξ= +0 1 .U a a V
 

(42)

Differentiating Equation 42 yields,

 ( ) ( )ξ ξ′ = ′1 ,U a V
 

(43)

 ( ) ( ) ( )ξ ρ ξ ξ′ = +′ 3
1 12 2 ,U a V a V

 
(44)

and

 ( ) ( )ξ ξ= + +2 2 2 2
0 0 1 12 ,U a a a V a V

 
(45)

 ( ) ( ) ( )ξ ξ ξ= + + +3 3 2 2 2 3 3
0 0 1 0 1 13 3 .U a a a V a a V a V

 
(46)

Substitute Equations 42, 44–46 into Equation 41,

 
( ) ( ) ( )ω α ω α ρ ξ− − + − − +3 2 3

0 0 0 1 1 0 1 13 3 3 3 3 6ka a ka ka a ka a k a V

 
( ) ( ) ( )α ξ α ξ− + − =2 2 3 3 3

0 1 1 13 6 0ka a V k a ka V

Setting the coefficients of iV  to zero, we obtain

 ( )ξ ω α− − =0 3
0 0 0: 3 3 0,V ka a ka

 
(47)

 ( )ξ1 :V ω α ρ− − + =2 3
1 1 0 1 1 ,3 3 3 6 0ka a ka a k a  (48)

 ( )ξ α− =2 2
0 1: 3 0,V ka a

 
(49)

 ( )ξ α− =3 3 3
1 1: 6 0.V k a ka

 
(50)

Solving the system of Equations 47–50, we get

 =0 0,a η
α

=1
6ka  and ω ρ= + 32k k  (51)

where η = ±1 . The exact solutions of the fractional DMBBM 
equation are:

Type I: when ρ < 0,

https://doi.org/10.3389/fams.2025.1568834
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Sribua-Iam and Chinviriyasit 10.3389/fams.2025.1568834

Frontiers in Applied Mathematics and Statistics 05 frontiersin.org

 
( ) ( )ρη ρξ

α
−

= − −1
6case1: , tanh ,pq
ku x t

 
(52)

 
( ) ( )ρη ρξ

α
−

= − −2
6case2 : , coth ,pq
ku x t

 
(53)
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( ) ( )ρ ρη ρξ η ρξ
α α

− −
= − − ± −
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6 6tanh 2 2 ,pq pq

u x t
k ki sech

 
(54)
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α α
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− − ± −
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6 6coth 2 2 ,pq pq
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k k csch

 
(55)

 

( )
ρ ρη ρ ξ ρ ξ

α
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6 tanh coth ,
2 2 2pq pq

u x t

k

 
(56)
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η
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6
2 2

pq
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cosh 26 ,
sinh 2pq

u x t

Q R Qk
Q R

 

(57)
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( ) ( )
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ρ ρ ρξ

η
α ρξ

=
 − − − − − 

−  
− + 
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7
2 2

case7 : ,

sinh 26 ,
cosh 2

pq

pq
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R Q Qk
Q R

 

(58)

where ,Q R  are nonzero constants with − >2 2 0R Q .
Type II: when ρ > 0 ,

 
( ) ( )ρη ρξ

α
=8

6case8 : , tan ,pq
ku x t

 
(59)

 
( ) ( )ρη ρξ

α
= −9

6case9 : , cot ,pq
ku x t

 
(60)

 

( )

( ) ( )ρ ρη ρξ η ρξ
α α

=

− ±

10case10 : ,
6 6tan 2 sec 2 ,pq pq

u x t
k k

 
(61)

 

( )

( ) ( )ρ ρ
η ρξ η ρξ

α α

=

− ±

11case11 : ,

6 6
cot 2 csc 2 ,pq pq

u x t

k k

 
(62)
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ρ ρη ρ ξ ρ ξ

α

=
    

−            

12case12 : ,

6 tan cot ,
2 2 2pq pq

u x t

k

 
(63)

 

( )
( ) ( )

( )
ρ ρ ρξ

η
α ρξ

=
 ± − − 
 

+ 
 

13
2 2

case13 : ,

cos 26 ,
sin 2

pq

pq

u x t

Q R Qk
Q R

 

(64)

 

( )
( ) ( )

( )
ρ ρ ρξ

η
α ρξ

=
 ± − − 

−  
+ 

 

14
2 2

case14 : ,

sin 26 ,
cos 2

pq

pq

u x t

Q R Qk
Q R

 

(65)

where ,Q R  are nonzero constants with − >2 2 0.Q R
Type III: when ρ > 0 ,

 
( ) η

α ξ
 

= −  + 
15

6case15 : , ,ku x t
b  

(66)

where b  is a constant, 
( )

( )
( )

ψψ ρ
ξ

ψ ψ

+
= −
Γ + Γ +

32

1 1

k k tkx . The 

analytical solutions of the fractional DMBBM equation are shown in 
Equations 51–66. Replacing Equations 59, 60, and 66 by setting the 
parameters α = = =0.5, 1, 1,b k  ≤ ≤0 60x  and ≤ ≤0 60y , the wave 
of the solutions of the space–time fractional DMBBM equation by 
Riccati sub-equation can be demonstrated as the following Figures 1–3.

3.2 The fractional nonlinear space–time 
Bateman-Burgers equation

Given,

 
ψ ψ ψδ+ − =2 0,x xtD uD u D u  (67)

where δ  is the viscosity of a fluid. Transform Equation 67 
into the differential equation, setting the wave variable 

( ) ( )
ψ ψβξ
ψ ψ

= −
Γ + Γ +1 1
kx t  and ( ) ( )ξ = ,U u x t  yields,

 
β δ

ξ ξ ξ
− + − =

2
2

2 0.dU dU d UkU k
d d d  

(68)
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Balance the highest order derivative and the nonlinear term. So, 
we have N = 1. The solution is expressed as

 ( ) ( )ξ ξ= +0 1 .U a a V
 

(69)

Substitute Equations 69, 43, and 44 into Equation 68, we get

 

( ) ( ) ( )
( )
ρ βρ ρ δρ β

δ

− + − + −

+ − =

2 2 2
0 1 1 1 1 0 1 1
2 2 3
1 1

2

2 0.

k a a a k a k a V ka a a V

ka k a V

Setting coefficients of iV  to zero, we obtain

 ( )ξ ρ βρ− =0
0 1 1: 0,V k a a a

 
(70)

 ( )ξ1 :V ρ δρ− =2 2
1 12 0k a k a   (71)

 ( )ξ β− =2
0 1 1: 0,V ka a a

 
(72)

 ( )ξ δ− =3 2 2
1 1: 2 0.V ka k a

 
(73)

Solving the system of Equations 70–73, we get

 
β

=0 .a
k  and δ=1 2a k  (74)

The exact solutions of the fractional Bateman-Burgers 
equation are:

Type I: when ρ < 0,

 
( ) ( )β δ ρ ρξ= − − −1case1: , 2 tanh ,pqu x t k

k  
(75)

 
( ) ( )β δ ρ ρξ= − − −2case2 : , 2 coth ,pqu x t k

k  
(76)

 

( )
( ) ( )β δ ρ ρξ δ ρ ρξ

=

− − − ± − −

3case3 : ,

2 tanh 2 2 2 ,pq pq

u x t

k ki sech
k  

(77)

FIGURE 1

Periodic wave solution profile of the space–time fractional DMBBM equation by Riccati sub-equation for Equation 59.

FIGURE 2

Singular solution profile of the space–time fractional DMBBM equation by Riccati sub-equation for Equation 60.
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where ,Q R  are nonzero constants with − >2 2 0R Q .
Type II: when ρ > 0 ,

 
( ) ( )β δ ρξ= +8case8 : , 2 tan ,pqu x t k

k  
(82)

 
( ) ( )β δ ρ ρξ= −9case9 : , 2 cot ,pqu x t k

k  
(83)

 

( )
( ) ( )β δ ρ ρξ δ ρ ρξ

=

− ±

10case10 : ,

2 tan 2 2 sec 2 ,pq pq

u x t

k k
k  

(84)

 

( )
( ) ( )β δ ρ ρξ δ ρ ρξ

=

− ±

11case11: ,

2 cot 2 2 csc 2 ,pq pq

u x t

k k
k  

(85)

 

( )
ρ ρβ δ ρ ξ ρ ξ

=
    

+ −            

12case12 : ,

tan cot ,
2 2pq pq

u x t

k
k

 
(86)

 

( )
( ) ( )

( )
ρ ρ ρξβ δ

ρξ

=
 ± − − 

+  
+ 

 

13
2 2

case13 : ,

cos 2
2 ,

sin 2

pq

pq

u x t

Q R Q
k

k Q R
 

(87)

 

( )
( ) ( )

( )
ρ ρ ρξβ δ

ρξ

=
 ± − − 

−  
+ 

 

14
2 2

case14 : ,

sin 2
2 ,

cos 2

pq

pq

u x t

Q R Q
k

k Q R
 

(88)

where ,Q R  are nonzero constants with − >2 2 0.Q R
Type III: when ρ > 0 ,

 
( ) β δ

ξ
 

= − + 
15

2case15 : , ,ku x t
k b  

(89)

where b  is a constant, 
( ) ( )

ψ ψβξ
ψ ψ

= −
Γ + Γ +1 1
kx t . The analytical 

solutions of the fractional Bateman-Burgers equation are shown 
in Equations 74–89.

Replacing Equations 82, 83, and 89 by setting the parameters 
δ = = =0.5, 1, 1,b k  ≤ ≤0 80x  and ≤ ≤0 80y , the wave of the 
solutions of the space–time fractional Bateman-Burgers equation 
by Riccati sub-equation can be demonstrated as the following 
Figures 4–6.

FIGURE 3

Singular Kink wave solution profile of the space–time fractional DMBBM equation by Riccati sub-equation for Equation 66.
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4 Discussion and results

The fifteen novel solutions found using the Riccati sub-equation 
method for the two equations are as follows: seven generalised 

hyperbolic functions, seven generalised triangular functions, and one 
rational function. The new solutions are more varied than the ones 
that were previously available: the space–time fractional modified 
Benjamin-Bona-Mahony (mBBM) equation, which was solved using 

FIGURE 5

Singular wave solution profile of the space–time fractional Bateman-Burgers equation by Riccati sub-equation for Equation 83.

FIGURE 6

Singular Kink wave solution profile of the space–time fractional Bateman-Burgers equation by Riccati sub-equation for Equation 89.

FIGURE 4

Periodic wave solution profile of the space–time fractional Bateman-Burgers equation by Riccati sub-equation for Equation 82.
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the modified Kudryashov method, has four solutions (15), while the 
(1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-
Mahony (DMBBM) equation, which was solved using the Bernoulli 
equations, has four solutions (8). In addition, the solution graphs of 
the equation display periodic waves which are solutions to travelling 
waves that are periodic, in Figures 1, 4. Singular waves, as seen in 
Figures 2, 5, and kink waves, as depicted in Figures 3, 6.

5 Conclusion

In this article, the simple equation method has been successfully 
implemented. The wave solutions for the space–time fractional 
DMBBM equation and the space–time fractional Bateman-Burgers 
equation are found using the Riccati sub-equation. This method 
releases fifteen solutions with independent parameters in the form of 
generalised triangular functions and generalised hyperbolic functions 
which are considered to describe some intricate physical phenomena. 
This research shows some physical wave behavior graphs in three-
dimensional plots. Both Figures  1, 4 are exhibit periodic wave 
solutions which increase and decrease, Figures 2, 5 show singular 
solutions and singular kink wave solutions were presented in 
Figures  3, 6. Based on the results, the Riccati sub-equation 
methodology is an effective, dependable, and efficient method that 
provides new solutions to these equations and shows the wave impacts 
of those solutions in different ways.
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