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In this paper, we adapt a two-species agent-based cancer model that describes

the interaction between cancer cells and healthy cells on a uniform grid to

include the interaction with a third species—namely immune cells. We run six

di�erent scenarios to explore the competition between cancer and immune

cells and the initial concentration of the immune cells on cancer dynamics. We

then use coupled equation learning to construct a population-based reaction

model for each scenario. We show how they can be unified into a single

surrogate population-based reaction model, whose underlying three coupled

ordinary di�erential equations are much easier to analyse than the original

agent-based model. As an example, by finding the single steady state of

the cancer concentration, we are able to find a linear relationship between

this concentration and the initial concentration of the immune cells. This

then enables us to estimate suitable values for the competition and initial

concentration to reduce the cancer substantially without performing additional

complex and expensive simulations from an agent-based stochastic model.

KEYWORDS

agent-based modeling, equation learning, SINDy, cancer cell dynamics, immune cell

dynamics

1 Introduction

In Weerasinghe et al. [1], we developed an agent-based model to explore interactions

between cancerous cells and healthy cells in the presence of proteins in the extracellular

matrix (ECM). This setting is sometimes called the tumor microenvironment (TME).

The model represents a two-dimensional tissue section comprising healthy cells, cancer

cells and ECM proteins. The domain consists of an inner and outer region on a uniform

100×100 grid. The outer region represents the invasive margin of the tissue. The boundary

of the domain represents the surrounding ECMmembrane and is fully fenced with no gaps

at time zero. We assume that healthy cells are located only in the inner region, and their

movement is negligible as adhesion molecules keep these healthy cells in their intended

locations [2]. The ECM proteins are randomly placed in the domain and do not move.

Initially, the domain represents healthy tissue, and then a single healthy cell turns into a

cancerous cell that spreads throughout the tissue due to a series of mutations. Cancer cells

cannot occupy a grid position filled by an ECM protein.
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The model records the healthy cell and cancer cell densities as

a function of time, along with the number of cancer cells that exit

the domain due to the breaking down of the surrounding fence.

The agent-based model simulates these cell-cell and cell-ECM

interactions according to a set of interaction rules underpinned by

the eight hallmarks of cancer [3, 4], which allows a link between

tumor heterogeneity and cellular response. The model allows a

much richer set of interactions than the standard approach via

unimolecular and bimolecular reactions that underpin the Law

of Mass Action ordinary differential equation. These include, for

example, a cell stickiness value, a jump radius, the maximum

number of healthy cell divisions, a cell and division age, and a

competition rate between healthy and cancer cells, to name a

few—see Weerasinghe et al. [1] for more details. An example of

cancer progression within the agent-based model was given in

Weerasinghe [9], and we present it here—in which healthy cells,

cancer cells and ECM proteins (obstacles) are represented as blue,

red and black nodes (Figure 1).

Outputs from the model show that cell-cell and cell-ECM

interactions affect cancer cell dynamics and that low initial healthy

cell and ECM protein densities promote cancer progression, cell

motility and invasion, while high ECM breakdown probabilities of

cancer cells on the ECM can also promote cancer invasion.

Of course the processes underlying, for example, multiple

myeloma in the bone marrow take place in an unstructured

three-dimensional setting with very complex internal structures.

So one of our assumptions is that our two-dimensional model

taking place on a regular grid with a very simple internal

structure based on inner and outer domains is still appropriate

for capturing this complexity. This is of course a limitation but at

the same time could be considered a benefit when using equation

learning. Additionally our agent-based model is quite simple when

describing the interactions between cancer cells and immune cells

and the movement of cancer cells. Within the bone marrow, there

is a complex set of interactions between a variety of proteins that

we do not attempt to capture. This again is a limitation but it

is also a strength of our approach as there is little information

about the protein interaction rates and introducing complexity

without such information has negative repercussions when using

equation learning.

Even though reaction models following the Law of Mass

Action cannot describe the full range of behaviors possible in

stochastic ABMs, they form a useful abstraction that is much

easier to analyse than an ABM. In this paper, we pursue two

objectives. First, we extend the two-species ABM into a three-

species model that incorporates treatment strategies involving

immune cells (T-cells) (Section 2.1). This is designed to help

with the analysis of recently developed clinical protocols that

fit into the class of immunotherapy based on the injection of

immune cells. We then apply equation learning techniques [5–8]

to automatically construct a surrogate reaction system from six

different parametrisations of the three-species ABM (Sections 2.2–

2.4). These learning techniques determine ODE models from

time-series measurements by sparse symbolic regression. In

contrast to the stochastic ABM formulation and other kinds of

(neural) surrogate models, these are interpretable by humans

and can be analyzed mathematically. Finally, we show how to

use this simplified representation of the ABM to determine the

steady-state behavior of the model without performing costly

evaluations, and to make predictions of the efficacy of treatment

strategies (Section 3).

2 Materials and methods

2.1 An augmented agent-based model
with immune cells

In this paper, we will adapt the two-species agent-based model

in Weerasinghe et al. [1] to a three-species model in which the

third species represents T-cells (immune cells) that can destroy

cancer cells. The key elements of the agent-based cancer model,

with regard to a two-species interaction between cancer cells and

healthy cells, were described in Weerasinghe et al. [1]. In that

paper, careful consideration was given to issues such as the Tumor

Microenvironment and the extracellular matrix (ECM). A two-

dimensional regular grid was populated with healthy cells, proteins,

an initial cancer cell, as well as fences bordering the ECM. The

model forms the basis of this three-species model in which we

can also consider the interactions with immune cells. We note

that healthy cells, immune cells and the fixed number of ECM

proteins are static, with only cancer cells moving. Every cancer

cell and healthy cell has a stickiness value, and the jump radius

of a cancer cell is the number of positions a cell can move at a

time. Healthy cells (that have an associated age) have a probability

of dividing when mature enough and can divide at most a fixed

number of times. A key parameter is the fixed competition value

between immune cells and cancer cells, so that when a cancer cell

reaches a position that an immune cell occupies, both compete and

only the more powerful cell remains, based on the generation of

a random number that is compared with the competition value.

When cancer cells divide, a daughter cell is placed as close to the

mother cell as possible.When cancer cells reach the boundary of the

domain, there is a probability of degrading the surrounding fence

structure that can enable cancer cells to exit the domain, allowing

for the possibility of metastasis. In Chapter 4 of Weerasinghe [9],

Weerasinghe considers an initial exploration of the dynamics in

which intervention by immune cells represents an immunotherapy

treatment. Several authors have developed models, to study the

effects of immunotherapy treatments; to those belong ODE-based

models [10–12], as well as agent-based models [13–15].

In the agent-based model in Chapter 4, immune cells are placed

in the outer region of the domain. The immune cells are immobile.

Each immune cell has a competition rate. When a cancer cell or

group of cancer cells (due to the stickiness of the cells) reaches

a grid position occupied by an immune cell, they compete with

one another, and the weaker cell dies. The competition value on

[0, 1] of a cancer cell CT is fixed, while the competitiveness rate of

an immune cell, CI , can be fixed or be uniformly drawn from the

interval [a, 1]. The cancer cell will die if CT < CI . In Weerasinghe

[9], values of a = 0, 0.5 and 0.75 are considered. We note that no

equation learning of an underlying ordinary differential equation

is given in Weerasinghe [9], rather multiple simulations of the

agent-based model are performed.

Three different strategies are considered for introducing

immune cells into the agent-based model [9]: a one-off strategy, a
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FIGURE 1

Cancer progression in the agent-based model: blue and red nodes represent healthy and cancer cells, respectively. Black nodes represent ECM

proteins (obstacles) in the domain. Starting with one cancer cell, the cancer cell population increases, and the healthy cell population decreases

with time.

FIGURE 2

Cell distribution of the TME when immune cells are introduced to the environment. Blue nodes, red nodes, purple nodes and black nodes represent

healthy cells, cancer cells, immune cells, and ECM proteins, respectively.

repeated injection at fixed times, or injectionwhen some percentage

(such as 25%) of immune cells are lost. These are denoted as

strategies 1, 2, and 3. Immune cells are initially injected when a

certain number of cancer cells are detected (such as 500). Figure 2

(Figure 4.3 in Weerasinghe [9]) shows an initial progression of

the cancer displaying healthy, cancer, immune cells, and ECM

proteins (blue, red, purple, and black). Figure 4.5 in Weerasinghe

[9] compares the dynamics for the three strategies when a = 0.

Introducing immune cells keeps the healthy cell density at a higher

value than without immune cells, and strategy two seems the most

effective. Figure 4.14 in Weerasinghe [9] compares the dynamics

with a = 0, 0.5, 0.7, and a higher value of a seems to improve the

effectiveness of strategies one and three. The immune cell model

uses the same parameter values as in the two-species model (so that

the initial healthy cell density is 0.324, the ECM protein density

is 0.1, and the ECM breakdown probability is 0.5). The additional

aspects involve the initial immune cell density and the nature of the

competition between the immune cells and the cancer cells.

We will simulate the immune cell agent-based model with just

a single injection of the immune cells and a fixed competition

value between immune cells and cancer cells (cf. Section 2.4). The

reason for adopting the single injection protocol is that this is

clinically simpler to implement than other protocols and indeed, in

the recently developed CAR-T immunotherapy protocol, a single
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injection of re-engineered immune cells is performed [16]. This

will also simplify the use of equation learning to build a three-

dimensional system of ordinary differential equations based on

a library of interactions between the three species for a number

of scenarios based on different initial conditions for the immune

cells and a fixed competition value between immune cells and

cancer cells.

2.2 Building a system of ODEs using
Equation Learning

In Burrage et al. [6], we adapted the approach of Brunton

and Kutz [5, 17] based on their sparse identification of nonlinear

dynamics (SINDy) to discover an underlying ODE of our two

species agent-based stochastic model [9] describing the interaction

of healthy cells (H) and cancer cells (C). An issue with the standard

SINDy approach is that the ODE that is constructed is done

component by component, and so the ensuing system of ODEs

has system components decoupled from one another. However,

in Burrage et al. [6], the equation learning is based on a library

of chemical reactions describing the evolution of the population

counts of species Si (here,H and C). Reactions take the form liSi
k
−→

riSi with k being the rate constant, ri, li ∈ N the stoichiometric

constants, and ν, νi = ri − li the stoichiometric coefficient vector.

Under the Law of Mass Action, the rate constants are multiplied by

the concentrations of the reactants. With this assumption, a library

of functions can be constructed with the stoichiometric vectors

coupling the components. The ODE that is built in this way can

be interpreted as a set of reactions and respects the interactions

inherent in the agent-based model. We built a library of chemical

reactions based on C and H with 8 unimolecular reactions and 9

bimolecular reactions. The library of 17 possible reactions is
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with associated rate constants k1, · · · , k17. For example, the vector

number 3 corresponds to the reaction C
k3
−→ H and vector 12 to

2C
k12
−→ H.

The approach to find the non-negative rate constants is

described extensively in Burrage et al. [6], but essentially we build

data vectors C̃ and H̃ (computed as means over 500 simulations

on a fixed time mesh). We then compute approximations to the

derivatives C̃′ and H̃′ and solve a least squares problem

min





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

C̃′

H̃′

)⊤

− θ(C̃, H̃)K

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2



 ,

where θ(C̃, H̃) is the library of chemical reactions evaluated at the

data vectors and K = (k1, · · · , k17)
⊤ is the vector of non-negative

rate constants that is to be found. This can be solved by a non-

negative least squares algorithm such as lsqnonneg in MATLAB.

Once these rate constants have been found, we can use the Law of

Mass Action to write out the ODE system. Now, the Law of Mass

Action withm reactions can be described by an ODE

y′ =

m
∑

j=1

νjaj(y), (1)

with stoichiometric vectors νj and propensity functions aj(y).

There is a well-established theory for discrete stochastic chemical

kinetics—as the number of particles becomes large, we arrive

at the ordinary differential equation regime described by the

Law of Mass Action [18]. This regime arises in simple cases

such as unimolecular and bimolecular reactions as well as for

more complicated nonlinear reactions based around enzyme-like

reactions. However, equation learning is muchmore difficult in this

case and any analysis, such as equilibrium analysis, becomes much

too complicated so we avoid this latter strategy.

In the case of the above library, the corresponding ODE after

applying Equation 1 is

c′ = (k5 − k1 − k3)c+ (k4 + k8)h− (k9 +
1

2
k11 + k12)c

2

+
1

2
k14h

2 − (k15 + k17)ch

h′ = (k7 − k2 − k4)h+ (k3 + k6)c− (k10 +
1

2
k13 + k14)h

2

+
1

2
k12c

2 − (k15 + k16)ch.

We note from the library that there is a natural coupling between

the two components from reactions 3, 4, 12, 14, and 15.

Within the agent-based model [6], the authors took a time step

of 2/135 over a time interval of 26 2
3 that implies 1,800 steps. They

also chose H̃(0) = 0.324 and C̃(0) = 0.0001. Better matches

to the data seemed to be obtained when just sampling from 180

steps. Whether we used all 1,800 data points or sampled every 10

steps, the non-negative least squares algorithm determined that

k1, k2, k3, k4, k6, k8, k11, k13 and k16 were all zero, leaving only 8

reactions in the library [6].

It should be noted that this choice of reactions to be placed in

the library can lead to issues of linear dependence between certain

reactions—for example, C + C → 0 and C + C → C. In this

case, lsqnonneg flags a highly ill-conditioned system but still

converges to a solution in which C + C → 0 appears in the final

set, but C + C → C is removed.
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2.3 Equation learning formulation for the
augmented ABM

If we now consider the three-dimensional agent-based model

with cancer cells, C, healthy cells, H, and immune cells, I, and let

all the unimolecular and bimolecular reactions occur (with only

two reactants on the left-hand side) then there are 27 unimolecular

reactions and 33 bimolecular reactions—so a total of 60 reactions.

Different from Burrage et al. [6], we avoid some collinearities

without loss of generality by only considering reactions with a

stoichiometric change of at most one per species, that is, νi ≤ 1

for i ∈ {C,H, I}. We can write these reactions as below.

Unimolecular (27):

C,H, I → 0; C → H, I; H → C, I; I → C,H

C → C + C, C +H, C + I,H + I;

H → H + C,H + H,H + I,C + I;

I → I + C, I + I, I + H,C + H

0 → C,H, I,C +H,C + I,H + I

Bimolecular (33):

C + C → C,C + H,C + I

C +H → 0,C,H, I,C + C,C + I,H + H,H + I

C + I → 0,C,H, I,C + C,C + H, I + H, I + I

H +H → H,H + C,H + I

H + I → 0,C,H, I,H + C,H + I,H +H, I + I

I + I → I, I + C, I + H

Further, from the definition of the ABM we can infer that

immune cells only interact with cancer cells. Incorporating this

prior knowledge, we may work with a reduced library of 49

reactions, where reactions of the form I + I → ∗ and H + I → ∗

are removed (with the ∗ signifying “any” combination of products).

For the three-species ABM, the least squares problem is

min


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∣
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, (2)

where K is a vector of length 60 (49).

We let the approach learn which of the 60 (49) reactions

appear in terms of two key parameters—namely Ĩ(0) and the fixed

competition parameter between cancer cells and immune cells.

Note that Ĩ(0) is considered as a parameter of the model rather than

an initial condition, as it is varied as part of the treatment strategies

and may even be time-dependent.

2.4 Learning equations for the augmented
agent-based model

Solving Equation 2 requires two main ingredients: time-series

data C̃, H̃, Ĩ on the amount of C, H, and I, as well as the derivatives

C̃′, H̃′, and Ĩ′. In our case, the former is obtained by simulating

the three-species ABM for 20 time units and taking the mean

concentrations over 100 stochastic replications (cf. Figure 3). The

measurement step is set to 0.01 time units, resulting in (mean)

time-series data for C, H, and I with 2, 000 measurements each.

The derivatives can be determined by numerical differentiation

with central differences. However, the solution to Equation 2 is very

sensitive to the accuracy of these derivatives, as they form the target

vector. We also compare this to a numerical differentiation scheme

employing Kalman-filtered derivatives.1

Further, as was demonstrated in Burrage et al. [6], the number

of measurements in C̃, H̃, and Ĩ can considerably influence the

solution of Equation 2. Thus, we also vary the sampling interval,

using only every 10th, 20th, 40th, or 50th data point.

Finally, there are typically a lot of different solutions to the

inverse problem of determining amodel (structure and parameters)

from data. Thus, without additional information, it is generally

impossible to determine a single “correct” result. For example,

as also found in Burrage et al. [6] and discussed in Section 2.2,

collinearities pose a problem: The reactions
2k
−→ C and

k
−→ 2C have

the same effect (considering ODE semantics), so choosing among

them is impossible without additional knowledge. This also impacts

the ability of linear solvers to find an adequate solution, as the

equation system (Equation 2) becomes ill-conditioned. Thus, it is

helpful to incorporate prior knowledge. To avoid collinearities of

reactions as shown above, then for the three species ABM we only

consider reactions with stoichiometry one (requiring νi ≤ 1 for the

change of each species i), leading to 60 reactions (cf. Section 2.3).

We call this the complete library for our problem formulation.

Additionally, we can exclude interactions of immune cells with

healthy cells and among immune cells themselves, which leads to a

constrained library of 49 reactions. The necessity of incorporating

constraints and prior knowledge is also highlighted in Santosa

and Weitz [8] where the authors demonstrate identifiability

issues in equation learning (even before SINDy was introduced)

associated with sparsity-enforcing approaches when minimizing

ℓ1 or ℓ0 norms.

2.4.1 A single reaction model reflecting ABM
parameters

We solve Equation 2 using the nnls optimizer from the

Python package scipy [19] for the data obtained from the

different combinations for the initial percentage of immune cells

(Ĩ(0) ∈ {0.05, 0.2, 0.1}) and the competition value between cancer

and immune cells (CI ∈ {0.5, 0.75}). The result of the equation

learning is then a set of six models, one per parameter combination

in dom(Ĩ(0)) × dom(CI). We hypothesize that these six models

share a large part of their reactions, as they are based on data

from the same ABM. A final model is then determined by taking

the union over the sets of reactions included in all six scenarios.

If our hypothesis holds, this union model should contain much

less than the 60 (complete library) or 49 (constrained library)

reactions in the library. Taking the union instead of the intersection

acknowledges the fact that, in some scenarios, the rate constant of a

specific reaction might be (very close to) zero, while it is important

in many others. Further, there should be a relation between the

two varied parameters of the ABM and the rate constants and

1 see https://github.com/hugohadfield/kalmangrad.
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FIGURE 3

Timeseries data resulting from simulation of di�erent combinations of initial immune cell percentage Ĩ(0) and competition rate CI. Each plot shows

the mean over 100 stochastic replications, measured every 0.01 time units, resulting in 2, 000 data points until time 20. This data is used as a basis for

learning the reaction model.

reactions included in the union model. Exploiting this relation

should enable approximating a wide variety of behaviors of the

ABM and drawing conclusions on the ABM’s properties from

analyzing the union model.

A union model’s fidelity to the ABM can be tested a priori,

without knowledge of this relation, by trying to fit it to the six

scenarios again. For this, we again use Equation 2, but limit the

library to the reactions contained in the union model. We integrate

the calibrated models using LSODA and regard the mean over

the root mean squared errors (RMSEs) with respect to the six

time series as the union model’s accuracy. This measure allows us

to compare different values for the hyperparameters involved in

equation learning.

2.4.2 Hyperparameter scan
As we outlined above, learning reaction models involves

some choices that can strongly influence the resulting

model. These include the selection of reactions in the library

(complete/constrained), the method used for numerical

differentiation of the time series data (central differences

on filtered/unfiltered data), and the measurement interval

(considering only every n-th point from the data with

n ∈ {10, 20, 40, 50}). We determine a union model as

outlined above for every one of the above 16 combinations

of hyperparameters, selecting the model with the smallest RMSE as

the final result. The complete results of this analysis are visualized

in Figures 4, 5. The former shows the coefficient values obtained for

each reaction in our complete library when varying the sampling

frequency n of the data (y-axis) and the filtering for differentiation

(x-axis). Each subplot depicts the library of reactions on the x-axis

and the ABM parameter configurations on the y-axis. Figure 5

shows the same for the case of the constrained library. Some

interesting observations can be made regarding the choice of

hyperparameters. When using filtered gradients (right columns

in the figures), the magnitude of some coefficients decreases with

increasing value of n, such as for the reaction 2H → H in Figure 4.

On the other hand, when using unfiltered gradients, this effect

cannot be observed. Looking at the behavior over ABM parameter

configurations (vertical streaks), we can observe that, indeed,

there is a relation between ABM parameter configurations to the

coefficients of many reactions. For example, in Figure 4, bottom

left, the coefficient of the reaction 2I → I is always higher for

CI = 0.5 than for CI = 0.75. Further, it seems to increase when

I(0) increases (this can be seen by considering every second cell

from bottom to top). Such patterns can be observed for many of

the other reactions in both, the complete and constrained, cases.

3 Results

3.1 Equations for the three-species
agent-based model

Table 1 summarizes the results of the hyperparameter scan.

With the constrained library, where immune cells are not allowed
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FIGURE 4

Coe�cients determined for datasets produced by di�erent combinations of the competition rate c and initial immune cell populations. Left column:

central gradients. Right column: filtered gradients using kalmangrad. Top to bottom: using every 10th, 20th, 40th, and 50th data point.

FIGURE 5

Same as Figure 4, but with a library where immune cells (I) are only allowed to interact with cancer cells (C).

to interact with healthy cells or themselves, the smallest mean

over RMSEs (≈ 5.45 × 10−3) was obtained when using unfiltered

central difference gradients over every 10th data point, leading

to 12 reactions. In the unconstrained case, a slightly lower

mean over RMSEs (≈ 5.06 × 10−3) could be obtained using

the same hyperparameters, leading to 14 reactions. We choose
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TABLE 1 Results of the hyperparameter scan.

Constrained? n Gradient method No. reactions Mean RMSE (data) Mean RMSE (der.)

True 10 Unfiltered 12 5.45× 10
−3

108× 10
−3

True 10 Filtered 12 6.46× 10−3 94.8× 10−3

True 20 Unfiltered 12 5.72× 10−3 76.4× 10−3

True 20 Filtered 12 7.69× 10−3 59.6× 10−3

True 40 Unfiltered 12 6.00× 10−3 53.1× 10−3

True 40 Filtered 12 9.93× 10−3 37.6× 10−3

True 50 Unfiltered 12 6.01× 10−3 46.7× 10−3

True 50 Filtered 11 10.8× 10−3 34.7× 10−3

False 10 Unfiltered 14 5.06× 10
−3

84.8× 10
−3

False 10 Filtered 14 6.11× 10−3 76.6× 10−3

False 20 Unfiltered 14 5.31× 10−3 60.0× 10−3

False 20 Filtered 14 7.41× 10−3 50.5× 10−3

False 40 Unfiltered 14 5.59× 10−3 41.7× 10−3

False 40 Filtered 13 9.64× 10−3 35.3× 10−3

False 50 Unfiltered 14 5.63× 10−3 36.5× 10−3

False 50 Filtered 13 10.7× 10−3 33.5× 10−3

Hyperparameter values, resulting number of reactions, mean over RMSEs (with respect to fitting the union model to the ABM trajectories), and mean over RMSEs (with respect to numerically

determined gradients). Bold lines indicate the hyperparameter combinations leading to the most accurate models with respect to the data when using the unconstrained and constrained library,

respectively (cf. Section 3.1).

to continue with the model based on the constrained library,

for being more parsimonious and also recognizing our prior

knowledge about possible reactions while achieving a very similar

accuracy as the unconstrained model. In Figure 5, this combination

is shown on the top left. The reactions of our chosen union

model are:

C
k0
−→ C + C, H

k1
−→ H +H,

I
k3
−→ C + I, C + C

k4
−→ C,

C + C
k6
−→ C + I, C +H

k7
−→ H +H,

C +H
k9
−→ 0, C + I

k10
−→ C + C,

I
k2
−→ C, C + C

k5
−→ C +H,

C +H
k8
−→ H + I, H +H

k11
−→ H.

(3)

With the Law of Mass Action, we obtain the following

differential equation system

c′ = k0c+ (k2 + k3)i−
1

2
(k4 + k5 + k6)c

2

+(−k7 − k9)ch+ k10ci

h′ = k1h+
1

2
k5c

2 + (k7 − k9)ch−
1

2
k11h

2

i′ = −k2i+
1

2
k6c

2 + k8ch− k10ci. (4)

A coupling of the derivatives can be observed over the

coefficients k2, k5, k6, k7, k9, and k10.

Figure 6 shows the difference between the original data and

fitting this best model (adjusting k0, . . . , k11) to the six scenarios. It

can be seen that the 12 learned reactions above can very accurately

be fitted to the different ABM parametrizations and reproduce

the ABM’s results. We can now use the coupled equations from

Equation 4 as a surrogate to analyse properties of the ABM, such

as the equilibrium states.

3.2 Equilibrium analysis of the
equation-learning ODEs

In this subsection, we study the equilibrium of the 6

ODEs constructed from the scenario data. We note from

Equation 4 that each ODE takes the form (with the 13 coefficients

θ1, . . . , θ5;φ1, . . . ,φ4; λ1, . . . , λ4 determined)

C′ = θ1C + θ2I + θ3C
2 + θ4CH + θ5CI (5)

H′ = φ1H + φ2C
2 + φ3CH + φ4H

2 (6)

I′ = λ1I + λ2C
2 + λ3CH + λ4CI. (7)

We solve the right-hand side of each equation to 0. Studying

each in turn, Equation 7 can be written as

I (λ1 + λ4C) = −C(λ3H + λ2C) (8)

or

I = −Cp/q, p = λ3H + λ2C, q = λ1 + λ4C. (9)
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FIGURE 6

Accuracy when fitting the learned model Equation 3 to the di�erent ABM scenarios. It is evident, that the model is able to very accurately

approximate the ABM. Further, a relationship between the parameters CI, I(0) and the rate constants can be observed.

Now Equations 5, 9 lead to

C (θ1 + θ3C + θ4H) = C
p

q
(θ2 + θ5C)

and with C 6= 0 yields

q (θ1 + θ3C + θ4H) = p (θ2 + θ5C). (10)

Finally Equation 6 is just

φ1H + φ2C
2 + φ3CH + φ4H

2 = 0 (11)

so Equations 9–11 give

(λ1 + λ4C)(θ1 + θ3C + θ4H) = (λ3H + λ2C) (θ2 + θ5C)

or

(λ1 + λ4C)(θ1 + θ3C)− λ2C(θ2 + θ5C) = H
(

λ3(θ2 + θ5C)

−θ4(λ1 + λ4C)
)

. (12)
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TABLE 2 Cell densities at equilibrium.

ODE CI Ĩ(0) C̃ H̃ Ĩ

1 0.5 0.2 0.7313 0.0787 0.0771

2 0.5 0.1 0.8117 0.0571 0.0293

3 0.5 0.05 0.8364 0.0536 0.0108

4 0.75 0.2 0.6763 0.0798 0.0946

5 0.75 0.1 0.7838 0.0558 0.0371

6 0.75 0.05 0.8319 0.0506 0.0170

Write Equation 12 as

H =
R

S
(13)

R = λ1θ1 + C(λ1θ3 + λ4θ1 − λ2θ2)+ C2(λ4θ3 − λ2θ5)

S = λ3θ2 − λ1θ4 + C(λ3θ5 − λ4θ4).

}

(14)

Substitute Equation 13 into Equation 11, then

φ1
R

S
+ φ2C

2 + φ3C
R

S
+ φ4

R2

S2
= 0

or

φ1RS+ φ2C
2S2 + φ3CRS+ φ4R

2 = 0. (15)

Writing (and comparing coefficients with Equation 14)

R = α1 + α2C + α3C
2

S = β1 + β2C

and substituting into Equation 15 gives a fourth degree polynomial

in C:

E4C
4 + E3C

3 + E2C
2 + E1C + E0 = 0. (16)

We will solve Equation 16 for C, Equation 13 forH, Equation 8

for I. It can be shown that

E4 = φ4α
2
3 + φ3α3β2 + φ2β

2
2

E3 = φ1α3β2 + 2φ2β1β2 + φ3(α3β1 + α2β2)+ 2φ4α2α3

E2 = φ1(α3β1 + α2β2)+ φ2β
2
1 + φ3(α1β2 + α2β1)

+ φ4(2α1α3 + α2
2)

E1 = φ1(α1β2 + α2β1)+ φ3α1β1 + 2φ4α1α2

E0 = φ1α1β1 + φ4α
2
1 .

Some analysis (not given here) shows that there is only one positive

zero for C given by Equation 16 for each of the six scenarios. The

results are given in Table 2.

The use of equilibrium analysis is two-fold. First, it allows us to

see the long-term stability of cancer cells within the spatial domain,

and secondly, it allows us to infer a specific relationship between

the equilibrium value of cancer cells and the immune cell injection.

This is vital in giving clinicians a clue as to what sort of initial

immune cell injection value should be chosen in order to control

the cancer proliferation to an appropriate value.

4 Discussion

4.1 Insights from the agent-based model
and the learned equations

We adapted the two-species agent-based model describing

the interaction between cancer and healthy cells developed

in Weerasinghe et al. [1] to a three-species model that

included immune cells. The aim of this was to probe the

role of immunotherapy in cancers, such as multiple myeloma,

based on a simple but effective stochastic spatial model.

This was first developed in Weerasinghe [9]. Our model

is different from that in that there is a single injection

of immune cells into the spatial model, and there is a

constant competition parameter between cancer cells and immune

cells.

We use equation learning to construct a three-dimensional

ODE model, thus removing space and stochasticity from the study.

The main focus is then to probe the role of immune cells in dealing

with the proliferation of cancer cells.

We have only simulated six scenarios and studied the six

learned ODEs, as described in the previous section, in terms of

a key characteristic, namely their steady-state behavior. Figure 7

shows that for the two competition values of 0.5 and 0.75, we

get more or less a linear relationship between the steady-state

concentration of the cancer cells and the initial concentration

of the immune cells Ĩ(0). Thus, for a given value of CI we

would expect as we increase Ĩ(0) that we would still maintain

this linear relationship. This suggests that we do not need to

run more expensive simulations of the agent-based model in

order to learn additional features of the steady-state behaviors.

Furthermore, comparisons of the concentrations of C, H, and

I at T = 20 for each of the six learned ODEs and the

steady state values suggest that we do not need to run the

agent-based model over very long time intervals to find steady-

state values.

Figure 7 suggests that for a small value of the initial immune

concentration Ĩ(0), there is little effect of the competition

value on the cancer cell concentration—recall that a higher

value of CI (the competition value between cancer and

immune cells), the more effective are the immune cells in

suppressing the concentration of the cancer cells. Figure 7

also suggests that as we increase Ĩ(0), the competition value

plays an important role in suppressing the cancer cells.

Furthermore, Figure 7 also shows that if we want to reduce

the cancer cell concentration at steady-state, then engineering the

immune cells so that they have a higher competition value and

increasing the initial concentration of immune cells both play

important roles.

In order to explore further the linear relationship between C

and Ĩ(0) for both competition values CI = 0.5, 0.75 we find the

linear least squares solution in both cases. These are

C = 0.8766− 0.7154 Ĩ(0)

C = 0.8857− 1.0427 Ĩ(0).
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FIGURE 7

Relationship between I(0) and cancer cell density for each of the competition values.

We can then ask, for example, what value of Ĩ(0) gives a value

of C = 0.2 at equilibrium. It turns out to be

Ĩ(0) = 0.9457, CI = 0.5

Ĩ(0) = 0.6576, CI = 0.75.

Of course, we can use this approach to study immunotherapy

scenarios based on reducing the cancer to manageable levels over

certain periods of time.

4.2 Related work

ABMs have become an established approach in cancer

research [20, 21]. Modeling individuals and their interactions

flexibly supports incorporating detailed biological mechanisms

(also spatially and temporally constrained) at the micro level and

studying emergent properties at the macro level. Many multiscale

models exist that combine cellular behavior with intra-cellular

behavior, such as signaling pathways [20, 21].

In a recent review of mechanistic learning in oncology

[22], which contrasts knowledge-based and data-driven modeling,

various approaches of their combination are listed, including

equation learning. It is noted that “despite remarkable success

in physics, symbolic regression applications in oncology are still

scarce.” One approach is Brummer et al. [23]. It uses a combination

of sparse regression (SINDy) and dynamic mode decomposition

(DMC) to estimate a system of ODEs from in vitro CAR T-cell

glioma therapy data. The starting point is in-vitro data with high

temporal resolution instead of an agent-based simulation model.

Also, instead of deriving one model (in our case, a union of

learned models) to capture all observed dynamics, in Brummer

et al. [23], three different models are derived based on the different

experimental settings of the in-vitro experiments. Our work thus

adds to the currently very small body of literature on applying

equation learning in oncology. We have shown that equation

learning may not only be used to analyse data but also to simplify

the analysis of existing (agent-based) models.

When looking more broadly at the application field of cell

biology, the situation is slightly different. Discovering ODEs

for biochemical systems from data is discussed in Daniels and

Nemenman [24]. The authors automatically discover parsimonious

models by systematically fitting models of increasing complexity.

Several approaches [6, 25] are based on applying the seminal

Sparse Identification of Nonlinear Dynamics (SINDy) [5] to

derive ODEs.

Other approaches are based on the specification of biochemical

systems as a set of reactions. One way to achieve this is by learning

ODEs constrained by a specific coupling [6, 7, 26], as used here.

Other approaches include stochastic heuristic search [27] and

the chemical reaction neural network (CRNN) [28]. All methods

mentioned above only consider the deterministic semantics of

reaction models. When stochastic data is available, it can also be

used to infer CRNs that allow for a stochastic interpretation, such

as [29, 30].

The goal of these approaches is to learn entire simulation

models based on data. Ideally, the data stem from in-vitro or in-

vivo experiments. However, simulation can be used to generate

synthetic data formachine learning in general (thus closing possible

gaps in existing data) [31], and for evaluating equation learning in
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particular, as it allows us to directly compare the learned model

with the ground truth with the simulation model generating the

data [26].

We show that the approach [6] can generate an ODE model

that reproduces the data of the more complex agent-based tumor

model. As a next step, the equationmodel helps us derive properties

of the simulation model and reduce the computational costs in

experimenting with this original simulation model. The learned

equations can be viewed as a surrogate [32] for the real model.

However, unlike surrogate models, which are typically black box

models such as artificial neural networks [32], the derived equation

models can be interpreted by humans. In addition, the entire

tooling for analyzing ODEs is available to assess diverse properties

and behaviors of the equations approximating the agent-based

simulation model, which we showed exemplarily based on a steady-

state analysis.

5 Conclusions

We have seen that our approach of learning an ODE system

from just a few agent-based modeling scenarios (here, six) and

then using the ODE to study a key characteristic of the long-term

cancer dynamics is very powerful. In particular, by establishing a

linear relationship between cancer concentrations and the initial

concentration of the immune cells, this enables us to make a simple

analysis on the values of the competition and the initial immune

concentration in order to reduce the cancer concentrations to an

acceptable size, with a reasonably high value of CI needed in order

for Ĩ(0) to be not too large. From a clinical perspective, there may be

restrictions on how this might be managed, so other strategies for

immune cell injection could be considered based around optimal

control strategies, such as bang-bang control [33].

Cancer cell density is an important metric in understanding

the progression of a number of cancer-based diseases. In multiple

myeloma, for example, mutated cancerous plasma cells can crowd

the bone marrow, and significantly hinder the production of

red blood cells, white blood cells and platelets. These cancerous

cells can also escape the bone marrow, travel through the blood

system and degrade many other body components. The agent-

based model we have constructed can be considered as a very

simple, but still realistic, proxy of the treatment of cancer crowding

through immune cell injection in a multiple myeloma setting. Of

course the processes underlying multiple myeloma in the bone

marrow take place in an unstructured three-dimensional setting

with very complex internal structures and interactions between

a variety of proteins. As stated in Section 1, the ABM presented

here makes some assumptions, namely that its two-dimensional

domain, relatively simple interactions between cancer and immune

cells, and movement of cancer cells are still able to appropriately

capture this complexity. In particular, we do not intend to capture

all protein interactions in detail, as there is little information

about the interaction rates and introducing complexity without

such information can have negative repercussions for equation

learning. Regarding the learning of equations and their subsequent

mathematical analysis, these assumptions can also be seen as a

benefit, as they promote the learning of concise equations and allow

drawing informative, high-level conclusions (such as the relation

between I0 and cancer cell density in Section 3.2).

Probably the most important abstraction made by the equation

learning approach discussed here, is that no spatial information

is considered. This is adequate to derive certain insights, but this

generally depends on the research questions to be answered by

the surrogate. In the future, equation learning might, possibly

also considering space, be applied to more complex ABMs, but

there is a tradeoff between capturing the full ABM dynamics and

sparsity (analysability) of the reactions. Closely approximating the

full dynamics of the ABM will result in ODEs with many terms

and, depending on the variables of interest, additional ODEs that

complicate the analysis. On the other hand, enforcing ODEs with

fewer terms will reduce the fidelity of the surrogate to the ABM.

By steering this tradeoff according to specific research questions,

learning interpretable surrogate equations has the potential to lead

to faster and new answers.
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