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Introduction: Accurate price forecasts and the evaluation of some of the factors that 
affect the prices of grains are crucial for proper planning and food security. Various 
methods have been designed to model and forecast grain prices and other time-
stamped data. However, due to some inherent limitations, some of these models 
do not produce accurate forecasts or are not easily interpretable. Although dynamic 
Bayesian generalized additive models (GAMs) offer potential to overcome some of 
these problems, they do not explicitly model local trends. This may lead to biased 
fixed effects estimates and forecasts, thus highlighting a significant gap in literature.

Methods: To address this, we propose the use of random intercepts to capture 
localized trends within the dynamic Bayesian GAM framework to forecast 
South African wheat and maize prices. Furthermore, we examine the complex 
underlying relationships of the prices with inflation and rainfall.

Results: Evidence from the study suggests that the proposed method is able to 
adequately capture the dynamic localized trends consistent with the underlying 
local trends in the prices. It was observed that the estimated localized variations 
are significant, which led to improved and efficient fixed-effect parameter 
estimates. This led to better posterior predictions and forecasts. A comparison to 
the static trend Bayesian GAMs and the autoregressive integrated moving average 
(ARMA) models indicates a general superiority of the proposed approach for the 
posterior predictions and long-term posterior forecasts and has potential for 
short-term forecasts. The static trend Bayesian GAMs were found to generally 
outperform the ARMA models in long-term posterior forecasts and also have 
potential for short-term forecasts. However, for 1-step ahead posterior forecasts, 
the ARMA models consistently outperformed all the Bayesian models. The study 
also unveiled a significant direct nonlinear impact of inflation on wheat and maize 
prices. Although the impacts of rainfall on wheat and maize prices are indirect and 
nonlinear, only the impact on maize prices is significant.

Discussion: The improved efficiency and forecasts of our proposed method suggest 
that researchers and practitioners may consider the approach when modelling and 
forecasting long-term prices of grains, other agricultural commodities, speculative 
assets and general single-subject time series data exhibiting non-stationarity.
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1 Introduction

Climate change has dire consequences for food and water security 
around the world. In sub-Saharan Africa, food insecurity is 
exacerbated by a variety of factors, such as slow economic growth, 
inflation, inaccessibility, price affordability, low investment in 
irrigation and agricultural research, corruption, and high population 
growth, among others (1). For example, the mid-year update of the 
2022 Global Report on Food Crises by the World Bank (2) indicates 
that at least an estimated 20% of Africans (140 million) go to bed 
hungry. The situation is not different in South Africa. A statistically 
weighted survey conducted by Dlamini et al. (3) in 2021 estimates that 
the food insecurity rate for South Africa is on par with the average for 
other African nations. Grains, such as maize and wheat, and products 
made from them are among the staple foods in South  Africa. 
Fluctuations in the prices of these crops due to climate change, 
inflation, and other external pressures affect the food security and 
social stability of the country (4). Therefore, the need to accurately 
predict the prices of grain futures and how external pressures such as 
climate change and inflation have become more necessary.

Like many other speculative assets, the prices of grain futures are 
notoriously difficult to predict due to their inherent nonlinearity and 
other characteristics such as non-stationarity, trends, and seasonal 
patterns that vary over time (5). Nonlinearity may be  due to the 
influence of the collective actions or decisions of players such as 
producers, exporters, importers, processors, handlers, and speculators, 
etc. which are themselves influenced by nonlinear factors such as 
opinions, expectations, emotions, sentiments, and unexpected events 
such as market crashes.

In capturing some of these characteristics associated with the 
prices of grain futures for accurate modelling and forecasting, 
literature has predominately focused on the use of traditional time 
series models such as Autoregressive Integrated Moving Average 
(ARIMA) and ARIMA generalized autoregressive conditional 
heteroscedasticity (ARIMA-GARCH) as well as machine learning 
algorithms such as neural networks [see (6–10)]. Although these 
models have been found to be competitive in forecasting prices of 
agricultural commodities such as corn and other grain prices, they are 
plagued with some weaknesses that limit their usefulness, especially 
when assessing the impact of external pressures on the prices. For 
example, ARIMA models are theoretically appealing and simple to 
implement; however, the models are inherently linear due to the 
imposed linearity assumption (11). Consequently, models cannot 
capture the complex and ever-changing nature of the influencing 
factors (12) and may also struggle to accommodate extreme 
events (11).

However, although some machine learning approaches have been 
found to be competitively better than ARIMA, econometric, and other 
statistical models (6, 7, 13), they can be time-consuming to train and 
often require a large amount of data to properly train the models (14). 
Furthermore, unlike many statistical and econometric models, 
traditional machine learning models are not inherently built to 
simultaneously model causal relationships in addition to forecasting 
and predictions (15). It should be noted that there is growing literature 
focusing on integrating casual modelling into machine learning 
algorithms (16–19). However, this new class of models also comes 
with limitations in terms of casual interpretations. For example, many 
casual machine learning models assume casual relationships that do 

not change over time and are inconsistent with time series data. 
Although limited attempts have been made to address this problem 
(16–19), they often yield computationally intractable solutions as the 
number of features increases; especially when computing Shapley 
values. Moreover, the incorporation of plausibility and actionability 
constraints into the models also results in NP-hard1 or NP-complete 
problems when solving integer-based variable problems, neural 
network problems, or problems involving quadratic objectives and 
constraints (20, 21).

Bayesian generalized additive models (Bayesian GAMs) provide 
an alternative approach to overcome some of the limitations of 
econometric and machine learning models. They provide a flexible 
nonparametric framework that allows the use of splines to capture 
complex patterns and nonlinearity within the time series data (14). 
The framework accommodates fully parametric and semiparametric 
specifications; thus, Bayesian GAMs can build on the strengths of 
parametric and nonparametric models to improve forecasts (14). 
Furthermore, the Bayesian GAMs can accommodate prior beliefs 
about the population parameters in the modelling process and are also 
well suited for small sample sizes due to their ability to stabilize the 
estimated parameters (22). The Bayesian GAMS have gained traction 
in areas such crop production (23), climate change and human health 
(24), electric load forecasting under extreme weather conditions (25), 
agricultural commodity prices (26) and general statistical modelling 
(27) due to their ability to model complex nonlinear relationships. A 
recent variation of the Bayesian GAM, the dynamic GAM (DGAM), 
has also been proposed by Clark and Wells (28) to model discrete 
ecological time series data. Nonstationary time-series data for single 
subjects are not considered as cross-sectional data because they do not 
involve many subjects observed at a single point or period in time. 
Therefore, the use of Bayesian GAMs in modelling and forecasting 
nonstationary time series data such as agricultural commodity yield 
and prices (23, 26), ecological data (28), among others, do not isolate 
the local trends from the global or the overall trend, thus by default 
they are assumed to be static. However, time aggregation effects at 
both micro time frames (e.g., daily) and macro time frames (e.g., 
monthly or annually) can obscure heterogeneity in  local trend 
fluctuations (29) which can potentially lead to biased fixed effect 
estimates and less accurate predictions and forecasts if left uncounted 
for in the modelling process.

To address this problem, we propose the incorporation of dynamic 
local trends into the dynamic Bayesian GAM framework (hereafter 
called Dynamic Local Trend Bayesian GAM or simply Dynamic Trend 
model) to account for the obscured heterogeneity in  local trend 
fluctuations in South  African maize and wheat prices to improve 
efficiency of fixed parameter estimates and the overall posterior 
forecasts. In addition to this, the study explores the non-linear impacts 
of inflation and rainfall on prices to understand how changes in these 
exogenous factors affect prices. By allowing the local trends and the 
uncertainties surrounding them to dynamically evolve over time, the 
proposed Dynamic Local Trend Bayesian GAM is expected to offer 
more efficient estimates and improved posterior forecasts in 
comparison to competing models, thus allowing farmers, government, 

1 An NP-hard problem involves computational problems where known 

algorithm cannot efficiently solve all instances (i.e., in polynomial time).
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and other stakeholders to make timely and informed decisions to 
ensure food security, accessibility, and affordability.

The rest of the article is organized as follows: Section 2 is a detailed 
review of the literature. Section 3 gives a brief overview of the data 
used, the analytical methods, and the model evaluation approaches 
applied. The empirical results and discussion thereof are given in 
Section 4, while the conclusions and recommendations are given in 
Section 5.

2 Literature review

The dynamic Bayesian GAM was introduced recently by Clark 
and Wells (28) to model complex ecological time series data. However, 
although it offers promising applications in the prediction of grain 
futures, its use has not received much attention. The literature has 
primarily focused on the use of traditional time series models such as 
ARIMA and SARIMA to forecast grain prices and the price of other 
agricultural commodities, as well as to assess the impact of external 
factors such as inflation and climate change on prices. Although these 
models are simple and theoretically appealing, their simplicity 
imposes structural limitations on them, which makes them unable to 
model complex relationships. Despite their weaknesses, traditional 
time series models have been found to be useful in forecasting prices 
of agricultural commodities such as corn and other grain prices.

One of such studies was conducted by Diop and Kamdem (8). In 
this study, the authors used a univariate time-frequency 
decomposition-based approach to choose a seasonal autoregressive 
integrated moving average (SARIMA) model to predict monthly 
prices for specific agricultural futures. They focused on identifying a 
SARIMA model that is suitable for explaining the rise in the indexes 
of agricultural prices and then using the resulting model to generate 
forecasts. The data used was divided into two periods: January 1980 
to December 2016 (37 years with 444 observations) and the year 2017. 
It was found that the complete seasonal ARIMA model SARIMA (p, 
d, q) (P, D, Q) 12 was superior to forecasting agricultural time series 
data compared to other SARIMA models.

Another study by Albuquerquemello et  al. (9) compared the 
precision of various macroeconomic models used in financial 
literature from 1995 to 2017. Using multivariate transition regime 
models, which account for structural breaks, the model was found to 
provide better forecasts for corn prices. The study suggested that the 
best models should consider not only the structure of the corn market 
but also financial and macroeconomic fundamentals, as well as 
transition regimes and non-linear trends, such as threshold 
autoregressive models. In the same year, Zhou used univariate ARIMA 
to forecast monthly corn prices data for 23 months from April 2019 to 
February 2021. From the analysis, a forecast was made for the price of 
corn in March 2021  in China. After comparing the experimental 
results with the actual price, the model showed a good fit and accurate 
predictions for corn prices in China (30).

Furthermore, Saxena and Mhohelo (10) assessed the effectiveness 
of ARIMA models in forecasting maize prices in the Gairo, Manyoni, 
and Singida markets in Tanzania using historical monthly data from 
January 2009 to May 2019. Before the data was used in fitting the 
ARIMA models, the Augmented Dickey-Fuller test was used to assess 
the stationarity of the time series while autocorrelation and partial 
autocorrelation plots were used to identify the appropriate orders for 

the autoregressive and moving averages of the ARIMA model. After 
fitting the models, the mean squared error, mean absolute error, mean 
percentage error, and mean absolute percentage error were used to 
evaluate forecast performance. Evidence from the study indicates that 
ARIMA (1, 1, 4),2 ARIMA (2, 1, 3) and ARIMA (2, 2, 3) were selected 
as the best fitted models for the maize prices from the Gairo, Manyoni 
and Singida markets, respectively. These models have lower 
information criteria and MAPE values compared to alternative 
models. From the forecast, the authors concluded an increasing price 
outlook for maize prices within these markets over the period June 
2018 and May 2019, highlighting the importance of accurate 
forecasting to help producers and consumers make informed decisions 
when buying and selling maize crops in Tanzania.

On the use of machine learning models, the superiority over 
traditional time series models is clearly visible in literature despite 
their inability to explain the evolution of the underlying relationships 
among the target and the features. For example, Jin and Xu (13) 
emphasized that accurate price predictions of agricultural products 
are crucial for farmers, traders, and policymakers to make informed 
decisions. However, they argue that the traditional forecasting 
methods are limited in capturing nonlinear patterns and seasonal 
variations, thus they explore the application of neural networks in 
forecasting prices of green beans to improve the forecasts. In this 
quest, they employed neural network, support vector machine, and 
regression tree models and then evaluated their performance in 
comparison to traditional models such as autoregressive (AR), 
AR-GARCH models, and the no-change model. The data consist of 
the weekly price index of the Chinese market over from January 1, 
2010, to January 3, 2020. Although the results indicate the superiority 
of the neural network model in forecasting green beans index prices 
in comparison to the other machine learning and econometric 
models, the econometric models turn out to perform badly in 
comparison to the other machine learning models such as the support 
vector machine and regression tree model, but it performed better 
than the no-change model.

In another study, Brignoli et al. (6) evaluated the performance of 
the Long Short-Term Memory Recurrent Neural Networks (LSTM-
RNNs) model in comparison to econometric models such as ARIMA, 
the vector autoregressive and vector error correction model in 
forecasting corn futures prices. In addition to corn futures prices, the 
data set included 12 other external time series variables such as the 
dollar and gasoline prices, among others. The data set consisted of a 
total of 5,174 observations for each series that spanned January 2000 
to June 2020. The analysis of the study suggests that the LSTM-RNNs 
model exhibits superiority in forecasting corn futures prices over all 
horizons, particularly for long periods. Furthermore, it was observed 
that the LSTM-RNN model was able to automatically accommodate 
structural breaks in the modelling process, which contributed to its 
superior performance. Although the LSTM-RNNs performed 
consistently better than the econometric models over various 
horizons, it was found that the model has difficulty handling 

2 The first value within the brackets indicates the autoregressive (AR) term, 

the second specifies the order of integration, and the last value represents the 

moving average (MA) term.
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seasonality and trend components and may require specific 
transformations or constructions when incorporating the components.

Wang et al. (7) also applied a hybrid of LSTM and a convolutional 
neural network (LSTMCNN) to forecast grain prices of commodities in 
the United States of America. The data included weekly grain prices such 
as oat, corn, soybean, and wheat and 14 characteristics that include 
macroeconomic variables and weather variables such as snow water 
equivalent, snowfall, and snow depth from 1990 to 2021. The 
performance of the LSTMCNN model was then compared with that of 
the traditional ARIMA and the standalone LSTM and CNN model using 
the mean squared error evaluation metric. It was observed that across all 
forecast horizons (5, 10, 15 and 20 weeks), the hybrid LSTMCNN model 
consistently outperforms the ARIMA and the standalone LSTM and 
CNN models. The ARIMA model was also outperformed by the LSTM 
and CNN models. These results confirm the superiority of the machine 
learning model over the classical ARIMA model.

In summary, the literature review shows a shift towards advanced 
techniques such as machine learning models and sophisticated 
econometric models such as AR-GARCH in forecasting agricultural 
commodity prices using historical price data and relevant features. 
Although the superiority of machine learning models over 
econometric models has been established due to their flexibility in 
modelling the underlying complex structure of agricultural 
commodity prices; they lack interpretability (31). Because of this, it is 
difficult to understand the evolution of the underlying relationship 
among agricultural commodity prices and predictors. Nonparametric 
approaches such as the Bayesian GAM provide an alternative 
framework for flexibility, robustness and interpretability while 
improving performance. These provide Bayesian GAM models with 
competitive advantage over machine learning algorithms; thus the 
framework is proposed in this study forecasting the grain prices.

3 Data and methodology

3.1 Data

The paper uses monthly historical data of wheat and white maize 
prices from RSA SAFEX Domestic Future, which was accessed from 
www.sagis.org.za/safex_historic.html. Data on consumer price index 
(inflation) was obtained from www.investing.com while precipitation 
index (rainfall) was obtained from the Giovanni Earth data website.3 The 
sample period spans from January 2000 to March 2024. The choice of the 
sample period was solely based on the availability of data for all variables, 
while the choice of inflation and rainfall is also based on their notable 
impact on grain prices and their ability to improve price forecasts.

3.2 Dynamic Bayesian generalized additive 
model

The development of generalized additive models GAMs in 
estimating smooth nonlinear relationships between predictors and 
response variables through a backfitting algorithm was pioneered by 

3 www.giovanni.gsfc.nasa.gov/giovanni

Hastie and Tibshirani (32) as an extension of generalized linear models 
(33) to allow non-parametric smooth functions (such as splines) instead 
of fixed linear terms. The concept received subsequent developments and 
refinements, particularly in the context of using penalty terms to control 
the overfitting of smooth functions (34) and the combination and 
flexibility of nonparametric regression with mixed models (35), leading 
to the development of generalized additive mixed models (GAMMs). 
GAMMs are capable of capturing nonlinear effects while accounting for 
random effects in correlated observations within clusters. In addition, 
Solonen and Staboulis (36) introduced the Bayesian generalized additive 
models which incorporate prior distributions and posterior inference to 
provide full probabilistic uncertainty quantification while allowing 
flexible, non-linear relationships between predictors and a response 
variable. Recently Clark and Wells (28) introduced a dynamic Bayesian 
GAM to model complex discrete ecological time series data.

However, the model allows the exogenous factors to evolve over time 
as either a random walk with constant drift or as an autoregressive 
process, and thus it does not inherently or explicitly account for 
variations in the local trend. This may lead to several problems including 
biased fixed effect estimates, misleading inference about trends or 
temporal effects, and poor model fitness and predictive performance. 
The unmodeled heterogeneity across the time series periods (quarters, 
years, etc.) may confound the temporal effects thus leading to apparent 
trends or fixed effects, which may otherwise be due to the presence of 
time heterogeneity. To address this, we propose the incorporation of 
dynamic temporal trends into the dynamic Bayesian GAM framework 
to account for the observed fluctuations in the local trends in grain 
futures prices, as indicated below.

Consider a time series ty  and a set of κ  predictors κ…1 2, ,.x x x , 
then the dynamic generalized additive model of Solonen and Staboulis 
(36) is defined in Equation 1 as follows:

 
( )

κ
β β ε−

= =
= + + + ∈∑∑0 , , , 1

1 1
, .

ij

t i j i j i t t t
i j

y f x Z where t 
 

(1)

Here β0denotes the overall or global intercept (trend), ( ), .i jf are 
the basis functions for predictor i with coefficients β ,i j, tZ  is the 
dynamic part which captures time varying local deviation in the time 
series and εt  is the error component. The prior distribution of εt  is 
assumed to follow the skewed t-distribution, to account of heavy-tails 
and skewness commonly observed in the prices of speculative assets, 
thus ( )ε β α σ−

2
1~ , , , ,t ST t tf y vX . The skewed t-distribution is 

defined in Equation 2 below:
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The parameters α σ ν2, ,  are the location, scale and shape 
parameters respectively, and Ã is the Gamma function. The scale 
parameter specifically accounts for the uncertainty in the model; the 
shape parameter controls the skewness in the data, while the location 
parameter represents the mean. It should be emphasized that σ > 0 . 
The dynamic component of the model captures the underlying 
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temporal dependence. The component is assumed to follow an ARMA 
process which is defined in Equation 3:

 
ψ γ ε− −

= =
= −∑ ∑

1 1
,

p q

t i t i r t r
i r

Z Z
 

(3)

where p and q are integers, ψ i and γ r are real coefficients, −t iZ  and 
ε −t r are, respectively, the autoregressive and the moving average terms. 
To incorporate temporal variations in the local trend to account for 
obscured heterogeneity due to time aggregation effect, the global 
intercept β0 is reparametrized as a sum of the fixed effect ( )β0

fixed  
and the random effects or local trends ( )β int

0
erceptt and ( )β0

slopet  as 
indicated in Equation 4.

 

( ) ( )
( )

β β β β= + +


int
0 0 0 0

  
.

ercept slopefixed

random effects local trend

t t

 

(4)

The intercept of the local trend ( )β int
0

erceptt  measures group-
specific deviations from the global trend. It accounts for heterogeneity 
at the group level such as different years, where unique events (such 
as pandemics, food shortages, geopolitical risks, etc.) might cause 
certain years to have systematically higher or lower localized trends 
than what the global trend predicts. Therefore, the random intercepts 
capture group-level shifts, which allow the model to isolate group 
variations from the global trend, especially in the presence of localized 
influences. On the other hand, the random slope ( )β0

slopet  captures 
how the effect of time varies across groups like quarters or years. This 
allows the model to distinguish between global trends and group-
specific time trends. By doing so, it isolates the specific contribution 
of trends from each group to the overall trend, thus highlighting 
whether some groups have stronger or weaker temporal changes.

3.3 Choice of splines

The dynamic additive model formulated in Equation 1 requires 
the specification of the basis function to allow the model to fit the 
underlying non-linear structure. There are several types for these basis 
functions which include the B-splines, cubic spline, penalized splines 
and adaptive splines among others (37). However, the choice of an 
appropriate function depends on the nature of the underlying 
relationship between the variable of interest (outcome or target) and 
the external variables. A look at the scatter plots in Figure 1 clearly 
shows that cubic splines are appropriate for the data. This is because 
the observed relationship between inflation and the prices of maize 
and wheat is a cubic function. On the other hand, although the 
observed relationship between rainfall and maize and wheat prices 
does not appear to show any clear patterns, cubic splines may also 
be appropriate. For these reasons, cubic splines are used in modelling 
the underlying complex dynamics among the variables in the data.

3.4 Parameter estimation via the Markov 
chain Monte Carlo algorithm

Parameter estimation of the Bayesian generalized additive models 
often involve sampling from probability distributions whose densities 

are intractable, thus a common approach to tackle this problem is 
through the use of parameter estimation via the Markov Chain Monte 
Carlo (MCMC) algorithm (38). The MCMC algorithm requires the 
drawing of sequential random samples (called Markov chains) from a 
prior distribution where each chain state is dependent only on the 
previous chain state. The process continues until the chains converge 
to the desired distribution. After convergence, selected increments of 
the states of the chain are then used to construct the parameters of 
interest, and the necessary inferences are then made on the estimated 
parameters (38).

The most common MCMC algorithms used included Metropolis-
Hastings, Gibbs sampling, and Hamiltonian Monte Carlo sampling 
(39). The use of each of these methods depends on the task at hand. 
For example, the Metropolis-Hastings algorithm is used when the 
parameters at hand do not allow for easy sampling. Gibbs Sampling is 
used when the full conditional distribution can be directly derived. On 
the other hand, Hamiltonian Monte Carlo is used for continuous 
distributions, as is the case in this study. The Hamiltonian Monte 
Carlo leverages on the gradients of the log-posterior and it is built on 
theoretical foundations of differential geometry; thus, it is suited for 
high-dimensional data, and has proven to be completely well even for 
complex problems (40).

The estimation algorithm starts with defining the likelihood 
function. Consider the parameter space 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
β β β

β ψ θ α σ

  Ω =  
  

int 0 00
0 0 0

0 0 0 0 0 0 2 0
, , ,

, , , , , ,

ercept slopefixed
i i

ij j i r

t t

B v

. Given the 

observed data conditioned on Ω , the likelihood of the observed data 
can be expressed as in Equation 5:

 
( ) ( )−

=
Ω = Ω∏ 1

1
| , | ,

T

t t t
t

L y f yX X
 

(5)

From the likelihood function, the posterior distribution of the 
model parameters given the observed data is therefore derived 
using the Bayes theorem which can be  simplified as shown in 
Equation 6:

 ( ) ( ) ( )−Ω ∝ Ω Ω1| , .t t tp y L y pX
 (6)

where ( )Ω tp y  represent the distribution while ( )Ωp  
represents the prior distributions. The following priors were 
imposed on the parameters of the estimated models. The flat priors 
(noninformative) were used for the fixed parameters of the 
autoregressive and the regression parameters (rainfall and 
inflation) since we have no prior beliefs about these parameters. 
The weakly student-t informative priors were used for the global 
intercept, standard deviations of the spline parameters (inflation 
and rainfall), the residual standard deviation (scale parameter 
associated with the residual), and the random effects (random 
intercepts and random slopes). For each of the parameters, the 
estimated sample degrees of freedom, location, and scale were used 
as the input for the student-t priors. Specifically, student-t (3, 
2775.6, 1628.2) and student-t (3, 1773, 927.9) are the respective 
priors for the global trends for the wheat and the maize data. The 
student-t (3, 0, 1628.2) and student-t (3, 0, 927.9) priors were also 
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used for the standard deviations of the spline parameters, the 
residual standard deviation and the random effects for the wheat 
and maize prices, respectively.

The shape parameter associated with the residuals was also 
modelled by the informative gamma prior indicated by gamma (2, 0.1). 
The choice of this prior is supported by an empirical study (41) that 
found that the Gamma (2, 0.1) prior performs well in practice. The 
prior balances flexibility and informativeness of the degrees of freedom 
parameter by modelling a wide range of shapes, which is enough to 
guide the estimation process without being overly restrictive. The prior 
also has a mean of 20 and a variance of 200, which provides a 
reasonable belief for the estimation of the degrees-of-freedom 
parameter, thus ensuring convergence and stability. The flexible but 
non-informative Lewandowski–Kurowicka–Joe distribution (42) prior 
was used for the correlation matrix constructed from the random 
intercepts and slope within the hierarchical trend model formulation. 
This prior is more useful in situations where no strong prior knowledge 
about the correlation matrix exists, as is the case here. The MCMC 
algorithm starts by initializing all the parameters and then repeatedly 
iterating all the parameters for a predefined number of times until all 
the chains converge as discussed below.

Step 1: Initialization

 • Initialize the parameters space Ω  to some constants ( )Ω 0  
obtained from the individual priors.

 Step 2: Iteration

 • For each iteration steps = …1,2, ,m M , generate a new 
proposal ( )∗Ω k  sampled from the full conditional 
distribution in Equation 7:

 
( )( ) ( )( ) ( )( )ρ ρ − −

− −Ω ∝ Ω Ω1 1| , , | .k n k n k
t t t ty y pX X

 
(7)

where ∈Ωk represents the thk  parameter and ( )−n k  
denotes the remaining parameters after removing the thk  parameter. 
For example, given the fixed parameter ( )β ∈Ω0

0
fixed , ( )β 0

0
fixed  

is sampled from the student-t distribution indicated in Equation 8:

( )( ) ( )( )( ) ( )( )( )β βρ β ρ − −
− − Ω Ω∝

0 0

0 00
0 1 1| , , | .

fixed fixedk kfixed
t t t ty y pX X

 
(8)

 Step 3: Acceptance probability

 • Compute the Metropolis-hastings acceptance probability (α) 
using Equation 9:

( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( ) ( )( )( )

ρ
α

ρ

∗ − − ∗

− − ∗ −

 
 
 Ω Ω Ω Ω
 = ×
 Ω Ω Ω Ω 
 
 
 

1

1 1

   

| |
min 1,

| |

k n k k m k

k m n k k k m

Posterior ratio proposal density ratio

q

q

 

(9)

FIGURE 1

Scatter plots indicating the nature of relationships among the variables.
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where ( )( )−Ω 1k m  represents the current value of the parameter 
( )Ω k  at iteration ( )−1m  of the MCMC chain.

Step 4: Acceptance decision

 • Draw a random number u from a uniform distribution ( )0,1U
. If α≤u  accept ( )∗Ω k  otherwise reject ( )∗Ω k  and retain 
the current value.

Step 5: Repeat ( )−1m  iterations

 • After accepting or rejecting the new proposal, proceed to 
the next iteration at step 2 and repeat the process until all 
the ( )−1m  iterations have been exhausted.

Step 6: Iteration for the remaining ( )−n k parameters

 • Repeat the steps 2 through to 5 for each of the remaining 
( )−n k parameters until all the ( )−1m  iterations have 
been exhausted.

Step 7: Convergence diagnostics for chains

 • Using methods such as Trace Plots, Effective Sample Size 
(ESS) and Gelman-Rubin Statistic (R̂), convergence of the 
estimated parameters ∗Ω  cam be assessed. The trace plots 
visualise the MCMC chains for stationarity by 
superimposing the posterior distribution of the chains on 
the distributions of random draws. A clear near complete 
overlapping of the two plots coupled with an effective 
Sample Size >1,000 and ≈ˆ 1.0R  across multiple chains 
indicate suggest a good mixing chains, hence converging 
chains which can be used for reliable inference. On the other 
hand, if the chains are not mixing well or converging, the 
model may need to be re-parameterized and the estimation 
process repeated. Non-convergence chains may also be due 
to outliers; in which case the problematic observation 
should be removed, and the iterations are then repeated.

Once convergence has been reached, the posterior forecasts for 
new data can be  obtained from the posterior samples using 
Equation 10.

 ( ) ( )θ θ θ−∫ 1~ ,t t t ty y p y x p y d
 (10)

After the parameters of the Bayesian GAMs have been fitted using 
the MCMC algorithm, a large number of posterior samples from all 
the model parameters are generated to construct a predictive 

distribution. The algorithm then draws samples from the predictive 
distribution at each forecast step to generate a posterior forecast that 
accounts for the uncertainty of the parameters, residual variation, and 
random effects through incorporation of the posterior standard 
deviations to construct the credible intervals and other necessary 
estimates. By capturing the combined uncertainty in the data, model 
parameters, and their relationships through predictive draws, the 
model can capture the overall uncertainty in the posterior forecasts.

4 Empirical results

4.1 Preliminary data analysis

The preliminary data analysis aims to understand the 
distribution and the underlying patterns and structure the target 
variables (maize and wheat prices) so that they are appropriately 
incorporated into the modelling process. For this reason, we report 
and discuss descriptive statistics, test for normality, and then assess 
the autocorrelation structure of the data. Table  1 provides 
descriptive statistics, while Figure  2 displays quantile plots. In 
Figure 3, autocorrelation graphs are reported, while Figure 4 shows 
seasonal decomposition graphs.

In Table 1, the respective skewness values for wheat and maize 
prices are 0.0796 and 1.0265, suggesting that both prices are positively 
skewed. The positive skewness of the prices is confirmed by the 
minimum and maximum values, which are all positive. Furthermore, 
a look at the kurtosis values indicates that both prices are more peaked 
than the normal distribution, but the tail of the wheat price is flatter 
than the maize price due to its negative value. These observations 
indicate that the wheat price data is platykurtic (lighter tails and a 
flatter peak), while the maize price data is leptokurtic (heavier tails 
and a sharper peak), suggesting that prices are not normally 
distributed. The observations are confirmed by the test results from 
the Shapiro–Wilk normality test and the QQ plots since the p-values 
of the Shapiro–Wilk test are less than 0.05 and the empirical quantiles 
deviate significantly from the theoretical quantile (straight line) as 
shown in the QQ plots. These observations suggest the use of a heavy-
tailed distribution, such as the skewed student t-distributions, to 
model the prices.

Price data are time series since they consist of observations that 
are recorded at regular intervals over time, and thus the data need 
to be checked for characteristics of time series such as seasonality 
and autocorrelations so that they can be accommodated in the 
modelling framework if they are present. The autocorrelation 
function (ACF) and partial autocorrelation function (PACF) plots 
are therefore important for analyzing the time-series data to 
understand the relationships between the observations at different 
time lags. Figure 3 shows the ACF and PACF plots for wheat and 
maize prices, which are important for identifying the AR and MA 

TABLE 1 Descriptive statistics of wheat and white maize prices.

Variable Mean Median Skewness Kurtosis Shapiro–Wilk Min Max

Statistic p-value

Wheat 3,383 3,400 0.0796 −1.445 0.9384 1.3e-09 1,199 8028.0

Maize 2183.2 1901.5 1.0265 1.2798 0.9453 6.5e-09 504.3 5322.9
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structures present in the data. When ACF gradually decreases and 
PACF cuts off sharply, it suggests an AR model. On the contrary, 
when ACF has a sharp cutoff point and PACF has gradual decay, it 
indicates an MA model. The plot suggests an AR (2) structure for 
wheat and maize prices data since the ACF plots gradually decrease 

and the PACF plots indicate two prominent spikes outside the 5% 
confidence bounds (the dotted lines), respectively. Maize and 
wheat are seasonal crops; therefore, it is appropriate to assess the 
presence or absence of seasonality in the prices of the crops. A look 
at the seasonal decomposition plots suggests the absence of 

FIGURE 2

QQ plots for wheat and maize prices.

FIGURE 3

ACF and PACF plots for wheat and maize prices.
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seasonality in the data and thus no need to incorporate seasonality 
into the models. However, the plot indicates a dynamic trend that 
needs to be accommodated in the models.

4.2 Diagnostics of the estimated Bayesian 
dynamic GAMs

Techniques such as posterior probability plot, Rhat, tail effective 
sample size (ESS), the bulk ESS, and the Leave-One-Out (LOO) cross-
validation method are used in assessing the fitness of the estimated 
models. The posterior distribution plot is a plot of the posterior 
distribution superimposed on the distributions of random draws. The 
Rhat model is evaluated by comparing the variation within the chains 
with the overlap between the chains. The tail ESS estimates the 
number of independent samples obtained from the posterior 
distribution, which corresponds to the number of independent 
samples that have the same estimation power as the n autocorrelated 
samples (43). On the other hand, the bulk ESS indicates the number 
of samples the sampler took from the denser part of the distribution, 
while the tail ESS reflects the time spent in the tails of the distribution. 
For a well-fitted model, both Bulk ESS and Tail ESS should exceed 
1,000 and the Rhat values should be greater than 1 (44). Furthermore, 
the posterior distribution plot should overlap with the distribution 
plots of random draws. The Rhat assesses the convergence of the 
model by comparing the variation within the chains to the overlap 
between chains. The LOO method assesses the predictive ability of 
posterior distributions. If all the Pareto estimates from the LOO 
estimates are less than 0.07, a model is considered to have good 
predictive ability. However, if any of the pareto estimates is greater 
than 0.7, it is an indication that the importance sampling may 

be unstable, suggesting that the predictive accuracy may be inaccurate 
or misleading (over-fitting or under-fitting), which may be due to the 
presence of outliers in the data. The results of the diagnostic tests and 
graphs are reported in Figures 5a,b, Tables 2, 3.

From the posterior probability plots in Figures 5a–d, the thin light 
blue lines represent the distribution of 20 random draws, while the 
dark blue line represents the posterior distribution of the prices. From 
the plots, it is observed that the thin light blue lines almost overlap 
with the dark blue line. The Rhat values reported in Table 2 are all less 
than 1 for all parameters in each of the models. Furthermore, the bulk 
ESS and tail ESS values exceed 1,000 for all models. Finally, with the 
exception of the static trend model for the maize data, the reported 
pareto estimates in Table 3 for all the observations in the respective 
models are less than 0.7. These results suggest that all of the estimated 
Bayesian models fit well with the respective data except for the static 
trend model for the maize data.

4.3 Assessing efficiency of estimated 
parameters of the Bayesian GAMs

Our proposed methodology requires the trend parameters, the 
intercept and the slope to vary over time, which adds more complexity 
and flexibility to the model. However, it is important to assess whether 
the added complexity and flexibility yield more efficient parameter 
estimates. The evaluation is done by comparing the posterior standard 
deviation (denoted as estimated error) and the credible intervals 
(denoted as L-95% CI and U-95% CI) of the proposed dynamic local 
trend model to the static version. A smaller posterior standard 
deviation accompanied by shorter credible intervals indicates less 
uncertainty about the parameter estimates, which may indicate a more 

FIGURE 4

Seasonal decomposition plots for wheat and maize prices.
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efficient parameters. On the other hand, larger posterior standard 
deviations with wider credible intervals may suggest less efficient 
parameter estimates.

The results are presented in Tables 4, 5. Observations from Table 4 
indicate that the dynamic local trend model generally yields a reduced 
posterior standard deviation and shorter credible intervals compared 
to the statistic version. Exceptions were observed, however, with the 
AR (2) parameter, the regression coefficient for inflation, and the 
nu-distributional parameter where both models yielded approximately 

the same posterior standard deviations and credible intervals, or the 
static trend model yielded better estimates. In the case of the maize 
data, as indicated in Table  5, the static trend model has its 
nu-distributional parameter having a lower posterior standard 
deviation and a shorter credible interval than the dynamic local trend 
model. Furthermore, the static trend model has approximately the 
same posterior standard deviation as the dynamic trend model for the 
AR (2) parameter and the smoothing spline hyperparameter for 
inflation; however, the dynamic local trend model has a shorter 

FIGURE 5

(a) Posterior distribution plots for the wheat price data from the dynamic local trend model. (b) Posterior distribution plots for the wheat price data 
from the static trend model. (c) Posterior distribution plots for the maize price data from the dynamic local trend model. (d) Posterior distribution plots 
for the maize price data from the static trend model.
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credible interval for these parameters. For all other parameters, the 
dynamic local trend model has lower posterior standard deviation and 
shorter credible intervals. The observed lower posterior standard 
deviation and shorter credible intervals associated with the dynamic 
local trend models suggest that the added complexity and flexibility 
generally produced more efficient parameter estimates because the 
models are able to capture the underlying structures of the maize and 
wheat prices accurately.

4.4 Model performance comparisons

The observed efficiency of the dynamic local trend model in 
comparison to the static trend model is expected to translate into 
more accurate predictions and forecasts, thus the need to assess the 
posterior predictive and forecast performances of the dynamic local 
model. In this exercise, a comparison is made with the static trend 
model. The ARIMA models are commonly used in forecasting grain 

TABLE 2 Dynamic Bayesian GAM convergence estimates for the models 
for wheat prices.

Parameter

Wheat data Maize data

Rhat Bulk 
ESS

Tail 
ESS

Rhat Bulk 
ESS

Tail 
ESS

Smoothing spline hyperparameters

Inflation 1.00 2095 

(1814)

2,266 

(1881)

1.00 1,679 

(1326)

1878 

(1470)

Rainfall 1.00 2,528 

(2724)

2,793 

(2875)

1.00 2,262 

(2077)

2013 

(1947)

Correlation structures

AR1 1.00 2,860 

(2875)

2,787 

(2834)

1.00 2,466 

(2499)

2,405 

(2258)

AR2 1.00 2,887 

(2782)

2,836 

(2834)

1.00 2,484 

(2642)

2,185 

(2404)

Multilevel hyperparameters (trend)

Intercept of 

local trend

1.00 2,856 2,783 1.00 1910 1924

Slope of local 

trend

1.00 2,178 2,494 1.00 1,296 1812

Cor (intercept, 

slope)

1.00 2,638 2,913 1.00 1,337 1800

Regression coefficients

Global intercept 1.00 3,084 

(2600)

2,832 

(2762)

1.00 2,219 

(2349)

1996 

(1836)

Inflation 1.00 2,803 

(2636)

2,814 

(2681)

1.00 2,200 

(1993)

2002 

(1828)

Rainfall 1.00 2,682 

(2886)

2,590 

(2516)

1.00 2,451 

(2365)

2,267 

(2340)

Further distributional parameters

sigma 1.00 2,925 

(2724)

2,848 

(2798)

1.00 2,263 

(2333)

21,552 

(166)

nu 1.00 2,848 

(2902)

2,706 

(2834)

1.00 2,463 

(2437)

2,443 

(2408)

TABLE 3 Leave-one-out (LOO) cross-validation tests.

Data Statistic

Dynamic 
trend

Static trend

Estimate 
(Standard 

error)

Estimate 
(Standard 

error)

Wheat elpd_loo −1527.1 (16.4) −1470.41 (6.3)

p_loo 18.20 (2.0) 13.5 (1.1)

looic 3054.2 (32.8) 2940.8 (32.6)

MCSE of elpd_loo 0.1 0.1

Pareto estimates k < 0.7 k < 0.7

Maize elpd_loo −1586.0 (17.5) −1584.9 (17.5)

p_loo 34.5.0 (5.0) 14.4 (1.4)

looic 3172.1 (34.9) 3169.9 (34.9)

MCSE of elpd_loo 0.2 NA

Pareto estimates K < 0.7 K1 = 0.8151 > 0.7

elpd_diff/se_diff = −1.1/4.0 = −0.275 for maize data and elpd_diff/se_
diff = −1.7/1.2 = −1.417 for wheat data. A ratio of less than 4 suggest no significant 
differences between the two models.

TABLE 4 Estimated parameters for dynamic and static trend Bayesian 
GAMs for wheat prices.

Dynamic and static trend Bayesian GAMs

Parameter Estimate Estimate 
error

L-95% 
CI

U-95% 
CI

Smoothing spline hyperparameter

Inflation 0.04 (0.05) 0.05 (0.06) 0.00 (0.00) 0.18 (0.20)

Rainfall 2.44 (2.36) 2.43 (2.55) 0.08 (0.08) 8.66 (8.92)

Multilevel hyperparameters (trend)

Intercept of 

trend

33.81 29.55 1.20 109.85

Slope of trend 0.32 0.29 0.01 1.10

Cor (intercept, 

slope)

−0.22 0.57 −0.98 0.89

Correlation structures and regression coefficients

AR1 1.27 (1.28) 0.06 (0.06) 1.15 (1.15) 1.39 (1.40)

AR2 −0.37 (−0.37) 0.06 (0.06) −0.49 

(−0.50)

−0.25 

(−0.25)

Intercept 2770.08 

(2772.10)

78.93 (80.63) 2610.66 

(2617.61)

2934.49 

(2928.43)

Inflation 2.19 (2.20) 0.14 (0.14) 1.91 (1.92) 2.46 (2.47)

Rainfall −4.21 (−4.08) 5.25 (5.20) −14.76 

(−14.21)

5.95 (6.03)

Further distributional parameters

sigma 92.90 (92.73) 8.94 (8.33) 76.53 

(77.33)

110.91 

(109.77)

nu (degrees of 

freedom)

3.57 (3.48) 1.08 (0.95) 2.13 (2.15) 6.24 (5.81)

Estimates for the static trend model are in the brackets while those of the dynamic trend 
model are outside the brackets.
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prices, and thus we also compare the performances of trend models 
with the ARIMA models. For fair comparisons, the same 
autoregression orders and predictors were used in estimating all 
models. We report the in-sample performance metrics and the out-of-
sample performance metrics for short-term (1, 3 and 7 months ahead) 
and long-term (36 and 48 months ahead). The metrics used include 
the mean absolute percentage error (MAPE), the mean absolute error 
(MAE), and the root mean square error (RMSE). The results are 
reported in Table 6.

Lower MAPE, MAE, and MSE indicate that a model performs 
well. In Table 4, we observe that the performance metrics for the trend 
or Bayesian models are smaller than those of the ARIMA models. This 
indicates that the Bayesian models outperform the ARIMA models for 
the in-samples estimates for both wheat and white maize prices. The 
lower MAPE, MAE, and MSE values for the dynamic local trend 
models in comparison to the static trend models also indicate 
superiority of the dynamic trend models over both the ARIMA and 
the static trend models.

The observed superiority confirms the efficiency of the trend 
model that was observed in Section 4.3. However, a better trained 
model may not necessarily yield accurate forecasts, thus the need to 
assess the performance of the model on unseen data. In this regard, 

we consider the LOO estimates. On the surface, a look at the LOO 
estimates indicates that static trend models are comparatively 
superior to dynamic trend models. This is because they have relatively 
higher expected logarithmic predictive density (elpd_loo) and lower 
leave-one-out information criterion(looic) values. However, the ratio 
of the elpd_loo differences(elpd_diff) to the standard error of elpd_
loo (se_diff) is −0.275 for the maize data and −1.417 suggest that 
there are no significant differences between the two respective 
models. However, the estimated static trend model for the maize 
model is not reliable, since it has an observation whose Pareto k value 
is greater than 0.7 as indicated in Table 3. Furthermore, since LOO 
uses almost the entire data set for training, the model might capture 
noise instead of the underlying pattern, which may lead to overfitting; 
thus, the model may perform poorly on new and unseen data. It is 
therefore imperative to comprehensively assess the estimated models 
using a complete set of data that were not part of the model 
training phase.

In this regard, we assess the performance of the proposed model 
in comparison to the benchmarked models (static trend and 
ARIMA) for several forecasting horizons including short-term 
horizons (1, 3 and 7 months ahead) and long-term horizons (36 and 
48 months ahead) using the MAPE, MAE and MSE loss functions 
as reported in Table 7. Evidence from the table suggests that the 
dynamic local trend and the static trend Bayesian models 
outperform the ARIMA models at all horizons except horizon 1. A 
comparison of the Bayesian models reveals that the dynamic local 
trend model is superior to the static trend model at all horizons 
except horizon 7. With reference to the maize data, the evidence 
seems to be pointing towards the general superiority of the static-
trend Bayesian model in comparison to the dynamic local trend 
Bayesian model. However, since the LOO estimates for the static 
trend Bayesian model indicate a higher Pareto k value for the first 
observation, the observed superiority may be due to over-fitting, 
therefore we cannot make reliable conclusions or generalizations. 
Hence, we can only compare the performance of the dynamic local 
trend Bayesian and ARIMA models. On this note, the ARIMA 
performs better at horizon 1 and 3 than the dynamic trend Bayesian 
model while the dynamic local trend Bayesian model outperforms 
the ARIMA model at horizons 7, 36 and 48.

TABLE 5 Estimated parameters for dynamic and static trend Bayesian 
GAMs for maize prices.

Dynamic and static trend Bayesian GAMs

Parameter Estimate Estimated 
error

L-95% 
CI

U-95% 
CI

Smoothing spline hyperparameters

Inflation 0.08 (0.09) 0.09 (0.10) 0.00 (0.00) 0.35 (0.38)

Rainfall 0.24 (0.27) 0.20 (0.20) 0.01 (0.02) 0.76 (0.79)

Multilevel hyperparameters (trend)

Intercept of 

trend

125.26 83.45 6.82 314.06

Slope of trend 1.27 0.78 0.10 3.16

Cor (intercept, 

slope)

−0.24 0.57 −0.98 0.88

Correlation structures and regression coefficients

AR1 1.12 (1.10) 0.06 (0.06) 0.99 (0.99) 1.24 (1.22)

AR2 0.17 (−0.15) −0.06 (0.06) −0.30 

(−0.26)

−0.04 

(−0.04)

Intercept 1822.31 

(1800.70)

194.16 (206.04) 1455.86 

(1365.39)

2185.69 

(2191.47)

Inflation 1.35 (−2.39) 

(1.24)

0.34 (0.38) 0.65 (0.40) 1.97 (1.91)

Rainfall −2.32 0.86 (0.90) −4.07 

(−4.11)

−0.63 

(−0.65)

Further distributional parameters

sigma 105.36 

(109.66)

10.26 (10.35) 85.43 

(91.06)

125.96 

(131.17)

nu (degrees of 

freedom)

2.86 (2.83) 0.67 (0.64) 1.81 (1.84) 4.43 (4.44)

Estimates for the static trend model are in the brackets while those of the dynamic trend 
model are outside the brackets.

TABLE 6 Prediction (in-sample) evaluations.

Data Model MAPE MAE MSE

Wheat data Dynamic 

trend Bayesian 

GAM

3.5025 94.4224 136.7856

Static trend 

Bayesian 

GAM

3.5552 96.0398 138.5636

ARIMAX 3.6003 96.8167 138.9398

Wheat data Dynamic 

trend Bayesian 

GAM

6.1768 113.6782 172.5520

Static trend 

Bayesian 

GAM

6.6061 121.5398 183.7759

ARIMAX 6.8639 125.8518 184.4744
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From the assessment of the LOO estimates and the loss 
function, it can be concluded that the Bayesian models generally 
perform better than the ARIMA models; however, the ARIMA 
models have potential of producing more accurate in the short 
term; especially up to three forecast horizons. Among the Bayesian 
models, the dynamic local trend model is generally superior to the 
static trend model because it produced more accurate long-term 
forecasts than the static model and may be competitive for short-
term forecasting, as was the case of the wheat price data in this 
study. This conclusion suggests that the incorporation of dynamic 
local trends into the Bayesian GAM has the potential to improve 
model efficiency as well as prediction and forecast accuracy. It is 
therefore recommended that for short-term (except for one 
horizon ahead) and long-term forecasting of grain prices and other 
speculative asset prices, the dynamic local trend Bayesian GAM is 
recommended, while the ARIMA model is recommended for 1-day 
ahead forecasts.

4.5 Interpretations and discussion

To improve the forecast performance of the proposed Bayesian 
model while simultaneously understanding the complex dynamics 
among grain price external factors, past inflation (consumer price) 
and rainfall (precipitation indices) were incorporated into the model 
building process. Tables 4, 5 report the estimated parameters for the 
models, which include the smoothing spline hyperparameters, 
correlation structure, multilevel hyperparameters for the trend, 
regression estimates, and other distributional parameters. Other 
estimates such as the credible intervals (CI) are also reported.

From Tables 4, 5, it is observed that the smoothing spline 
hyperparameters parameters for all models are significant since zero 
cannot be  found within the respective credible intervals, thus 
indicating that the Bayesian models were able to capture the nonlinear 
and complex relationships existing between the variables and the 
prices. The distributional parameters for all models are also significant, 

TABLE 7 Forecast (out-of-sample) comparison evaluations.

Data Months Model MAPE MAE MSE

Wheat data 1 Dynamic trend Bayesian GAM 3.3794 169.4890 169.4890

Static trend Bayesian GAM 3.7160 179.1426 179.1426

ARIMAX 1.3416 67.2850 67.2850

3 Dynamic trend Bayesian GAM 3.6288 193.3900 241.5701

Static trend Bayesian GAM 3.7115 190.3417 236.9468

ARIMAX 5.4834 299.9751 345.4252

7 Dynamic trend Bayesian GAM 6.3153 336.7404 433.0864

Static trend Bayesian GAM 6.2446 334.9361 430.3574

ARIMAX 6.7445 378.9979 456.1811

36 Dynamic Trend Bayesian GAM 5.6299 337.3350 426.8076

Static Trend Bayesian GAM 5.8742 338.2871 426.3977

ARIMAX 9.8808 656.2789 893.5226

48 Dynamic Trend Bayesian GAM 4.9155 296.4596 384.7516

Static Trend Bayesian GAM 5.0454 297.9752 385.1952

ARIMAX 9.0748 599.7106 808.5518

Maize data 1 Dynamic trend Bayesian GAM 1.8403 56.1745 56.1745

Static trend Bayesian GAM 0.1384 4.2250 4.2250

ARIMAX 0.9137 27.8913 27.8913

3 Dynamic trend Bayesian GAM 15.8514 460.5865 568.9676

Static trend Bayesian GAM 15.3323 445.9448 566.5436

ARIMAX 9.4861 288.9082 343.2198

7 Dynamic trend Bayesian GAM 9.4636 277.4070 392.6742

Static trend Bayesian GAM 9.4711 276.2903 394.4979

ARIMAX 11.2400 312.1423 360.1979

36 Dynamic trend Bayesian GAM 5.6648 204.5546 272.9765

Static trend Bayesian GAM 5.5237 200.3908 263.8638

ARIMAX 12.8918 528.2148 718.6700

48 Dynamic trend Bayesian GAM 5.8137 215.2864 276.2165

Static trend Bayesian GAM 5.6955 211.2321 268.3828

ARIMAX 11.3446 464.6113 645.7544

The values in bold indicate the best performing model.
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suggesting that the student-t distribution was able to capture the tail 
properties of the respective data. Furthermore, the autoregressive 
estimates were statistically significant, which indicates that the model 
was able to capture the underlying autocorrelation structures in the 
models. In the regression coefficients, the intercept parameters for all 
models are significant, which justifies the inclusion of the intercept 
term in the model.

A look at the local trend estimates also indicates a significant 
variability in the local trend intercept and slopes, which may be due 
to localized events across the years. The variability is more prominent 
in the local trend intercept (where it, respectively, averaged at R33.81 
and R125.26 per year for wheat and maize prices) compared to the 
respective annual averages of R0.32 and 1.27 for the local trend slopes 
for wheat and maize prices. Maize prices have higher local trend 
variabilities compared to wheat prices as observed in the average 
estimated standard deviations, highlighting the volatile nature of 
maize prices compared to wheat prices as observed in Ceballos et al. 
(45). The results suggest significant heterogeneity in global trend 
across the years, while consistent but significant local time-specific 
variabilities also exist across the years. Observations from Figure 6 
confirm the changing local trends over the years for the prices of 
maize and wheat. The greatest change in the magnitude of the local 
trends for maize and wheat prices occurred between 2002 and 2003. 
The decline in wheat prices coincides with the increase in wheat 
imports from more than 458,518 tonnes to more than a million tonnes 
from the 2003 and 2004 marketing year (46) which caused a decline 
in local market prices for reasons such as increased supply and market 
saturation. The decline in maize prices also coincided with the 
appreciation of the rand, which gained approximately 14%. 
Furthermore, there was a decrease in anticipated exports to 
neighbouring countries, which led to high stock levels totalling more 
than 2.5 million tons.

In terms of the impacts of inflation and rainfall on maize and 
wheat prices, Tables 4, 5 show that, while the average direction of the 
impact of previous inflation rates on maize and wheat prices is positive 
and significant (credible interval does not contain zero), the impacts 
of previous precipitation amount on prices are negative and significant 
(credible interval does not contain zero) for maize prices but not 
significant for wheat prices (credible interval contains zero). These 
results indicate that the previous increase in inflation generally leads 
to proportionally higher current maize and wheat prices, while a rise 
in the previous precipitation led to proportionally lower maize and 
wheat prices. However, a look at the conditional plots in Figures 7, 8 
reveal that not all increases in inflation led to an increase in maize and 
wheat prices and not all increases in rainfall also led to a reduction in 
wheat and maize prices. For example, Figure 7 indicates that changes 
in inflation lead to sustained increases in maize prices until an index 
of 100 where maize prices steadily declined amid an increasing price 
index until the decline bottomed up at approximately an index of 110 
before maize prices began to rise at a level with rising consumer price 
indices. Therefore, these complex relationships observed are nonlinear 
in nature; specifically, they are polynomial in nature. The observed 
relationship therefore implies that similar proportional increases in 
inflation do not always lead to similar proportional increase in maize 
and wheat prices, while similar proportional increases in precipitation 
do not always lead to similar proportional decreases in prices.

The observed non-linear dynamics of the grain price-inflation 
relationship may be due to factors such as previous exchange rate 

dynamics, market perception and sentiment, supply chain factors, 
government policies, and trade dynamics, among others (47–49). For 
example, previous government interventions, such as subsidies for 
maize and wheat or tariffs on imports, can affect the dynamics of 
futures grain price-inflation relationships (47, 49). This could lead to 
maize futures prices that do not reflect expected general or 
proportional inflation rates. Furthermore, global market conditions 
such as previous changes in global maize production, trade policies, 
and international demand can distort the grain price-inflation 
relationship (48); therefore, the surplus or deficit of wheat in other 
regions can influence futures prices regardless of the previous 
domestic inflation rate, which may lead to the observed polynomial 
grain price-inflation dynamics.

The observed non-linear impacts of precipitation on maize and 
wheat prices indicate a direct impact of rainfall on crop yields, crop 
quality, and agricultural productivity, which affect supply and demand, 
which in turn affect maize and wheat prices. Precipitation can affect 
crop yield positively or positively. Adequate and timely rainfall is 
crucial for optimal growth and development of maize and wheat; 
therefore, sufficient moisture can lead to high crop yields, which can 
improve supply and potentially lower prices. However, insufficient 
rainfall or reduced amounts of precipitation can reduce crop yields, 
leading to higher prices for both maize and wheat. For example, in 
Figure 8, consistent increases in precipitation indices were associated 
with lower maize prices until it slightly stabilized between 62.5 and 
75% before continuing with the price decline. In the case of wheat, as 
observed in Figure  8, prices were slightly lower and stable for 
precipitation indices of up to 50% and then steadily increased between 
50 and 75% before settling above 75%.

Although the non-linear impact observed by precipitation on wheat 
prices appears to be on the increase side compared to the price of maize, 
both impacts are negative. This can be supported by the average estimates 
in Tables 4, 5 which indicate an average reduction of R2.32 for maize 
compared to the reduction of R4.21 in the price of wheat for the same 
amount of change in rainfall. The relatively higher reduction in maize 
prices due to increased rainfall compared to wheat prices is supported by 
the tolerance mechanisms of both crops. Wheat is more tolerant to 
drought than maize and can grow successfully with relatively smaller 
amounts of rainfall per growing season, depending on the variety and 
environmental conditions (50). However, wheat has a relatively shallow 
root system, so excessive rainfall can result in root diseases, reduced 
oxygen availability, and ultimately decline in production due to 
waterlogging (51).

Other factors that may explain the impact of rainfall on prices 
include market price speculation and the hoarding of commodities by 
farmers and investors. Farmers and traders often adjust their 
expectations of future prices based on weather forecasts. Anticipation 
of adverse weather conditions, such as droughts or excessive rains, can 
lead to speculation that can increase prices even before actual crop 
losses are realized (52). In addition, when rainfall patterns are 
uncertain, investors and consumers can start to hoard grains, which 
can temporarily increase prices before harvests are confirmed.

5 Conclusion

This study aimed to forecast the future prices of maize and wheat 
in South Africa using flexible Bayesian dynamic local trend GAMs. 
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The models were then compared to the static trend Bayesian GAM 
model (where the local trend is not modelled) and the ARIMA model. 
External factors such as inflation and rainfall that are known to affect 
grain prices were incorporated into the models to improve prediction 
and forecast accuracy. Subsequently, this also allowed us to understand 
the non-linear impact dynamics of these factors on wheat and maize 
prices. The data used include aggregated monthly prices of wheat and 
white maize futures, consumer prices, and precipitation indices. Based 
on the assessment of the estimated model and the examination of the 
impacts of consumer price and precipitation indices, the key findings 
of the study are summarized below.

In terms of parameter estimation efficiency, dynamic local trend 
models generally produced lower posterior standard deviation and 
shorter credible intervals, suggesting that added complexity and 
flexibility generally improved efficiency of parameter estimations 
because the models were able to accurately capture the underlying 
changing uncertainty around the local trends in the prices of maize 
and wheat. Subsequently this led to improved posterior predictions 
and forecasts, thus the models were generally superior to the static 
local trend models for long-term posterior forecasts. For wheat price-
data, dynamic local trend models produced competitive short-term 
forecasts, except for forecasts a step ahead, where ARIMA models 

FIGURE 6

Estimated dynamics local trends for wheat and maize prices.
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were superior. Hence, the dynamic local trend model has potential to 
improve short-term forecasts.

Evidence from the trend estimates suggests significant variability 
in the local trend intercept and slopes which may be due to localized 
events across the years. Local trend variabilities are more prominent 
in  local intercepts than in  local slopes for prices of both grains; 
however, maize prices have higher local trend variabilities compared 
to wheat prices as observed in the average estimated standard 
deviations, thus highlighting the volatile nature of maize prices 
compared to wheat prices. The evidence also revealed prominent shifts 
in the magnitude of the local trends in wheat and maize prices 

occurred between 2002 and 2003. These shifts could be attributed to 
factors such as increased supply and market saturation, the 
appreciation of the rand, and the anticipated decline in exports to 
neighboring countries.

From the estimated impacts, a direct significant nonlinear 
polynomial impact of inflation on wheat and maize prices was 
observed, suggesting that similar proportional increases in inflation do 
not always lead to similar proportional increases in maize and wheat 
prices, while similar proportional increases in precipitation do not 
always lead to similar proportional decreases in prices. Non-linear 
factors such as previous exchange rate dynamics, market perception 

FIGURE 7

Conditional impact of inflation and rainfall on wheat prices.
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and sentiment, supply chain factors, government policies, and trade 
dynamics were identified as some of the possible causes of the 
non-linear relationships between inflation and grain prices. It was also 
observed that although the impacts of rainfall on wheat and maize 
prices were indirect and non-linear, only the impact on maize prices as 
significant, so changes in the amount of rainfall may not proportionately 
lead to lower levels of grain prices. Factors such as crop yields, quality 
of crops, agricultural productivity which are directly affected by rainfall 
and consequently affect supply and demand were identified as possible 

causes of the observed non-linear relationships. Furthermore, 
speculation on market prices and the hoarding of commodities by 
farmers and investors due to anticipated adverse weather conditions, 
such as droughts or excessive rain, were also identified as a 
possible cause.

The contributions of this study are three-fold: (1) the identification 
of a better alternative framework in forecasting grain prices, (2) the 
need to model local trends, and (3) the unveiling of the complex 
dynamics of the relationships among grain prices and the exogenous 

FIGURE 8

Conditional impact of inflation and rainfall on maize prices.
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factors-consumer price and precipitation indices. These contributions 
are summarized below.

 • The study has made contributions to literature by unveiling the 
superiority of the Bayesian GAM of dynamic local trend over the 
static version and the commonly used ARIMA model, thus 
providing a better alternative model in forecasting grain prices 
and the impacts of external pressures on grain prices.

 • Furthermore, we argue that heterogeneity exists in single subject 
nonstationary time series data due to data aggregation effects, 
although this can obscure heterogeneity in  local trend 
fluctuations when ignored, thus potentially yielding biased fixed 
effect estimates and less accurate predictions and forecasts when 
ignored. This argument has been empirically substantiated in this 
study, thus providing support for the incorporation of dynamic 
local trends in single subject nonstationary time in models where 
this property is not explicitly modelled.

 • Previous studies have mainly focused on the impacts of food 
prices on inflation (53–55), but the reverse relationship has been 
grossly neglected, although inflation can induce grain prices 
through a feedback mechanism due to factors such as cost of 
inputs, purchasing power and substitution effect, among others. 
Therefore, this study has contributed to our understanding of the 
inflation-grain price feedback mechanisms. Particularly the 
non-linear feedback mechanisms which have also grossly been 
neglected even in the most studied inflation-grain price 
feedback mechanisms.

 • Furthermore, the study has made contributions to understanding 
the complex dynamics of the impact of precipitation, which is a 
major driver of grain production. In particular, the contribution 
is in the direction of revealing the nonlinear impacts of 
precipitation on the futures prices of wheat and maize, which 
previous studies such as Aker (56) have not considered.

 • Finally, most studies have not examined the nonlinear lagged 
effect of inflation and precipitation on maize and wheat prices, 
especially within the South African context; therefore, our study 
is also a contribution in this regard.

In conclusion, the dynamic Bayesian GAM framework is 
identified as a better alternative to the ARIMA model when 
forecasting and modelling grain prices. However, the dynamic local 
trend version is preferred to the static trend version due to its 
efficiency and superiority in forecasting single subject 
non-stationarity times series such as maize and wheat prices. 
Therefore, the proposed dynamic local trend Bayesian GAM is 
recommended for forecasting grain prices and examining the 
complex relationships in single subject nonstationary time series and 
exogenous factors.

A major limitation of our proposed model and dynamic 
Bayesian GAM in general is their reliance on heavy computational 
power and memory, especially with large datasets which may 
prolong estimation time or fail to run in the absence of adequate 
computational power and memory. To alleviate this problem, 
we recommend the use of computers with high performance and 
memory capabilities. It is also recommended that parallel 
computation capabilities of different programming languages such 
as R and within the MCMC algorithm itself be  used to reduce 
computational time.
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