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This paper aims to provide a rigorous analytical investigation of multisoliton dynamics within a conformable concatenated nonlinear framework that unifies the nonlinear Schrödinger, Sasa Satsuma, and Lakshmanan Porsezian Daniel equations through the incorporation of a conformable fractional derivative. By extending classical calculus to encompass fractional-order dynamics, the model captures intricate higher-order dispersion and non-linear interactions that critically influence pulse propagation in optical fibers. Employing advanced techniques such as the modified simplest equation method and the Kudryashov method, we derive a comprehensive family of exact soliton solutions including bright, dark, and mixed profiles and establish explicit parameter relations governing their stability and evolution. Detailed numerical simulations further elucidate the effects of the fractional parameter on soliton propagation, interaction dynamics, and energy conservation.
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1 Introduction

In recent years, there has been an unprecedented surge in the exploration of nonlinear mathematical models aimed at describing pulse propagation in optical fibers. These models play a critical role in advancing our understanding of wave dynamics [1], enabling significant progress in fields such as nonlinear optics, plasma physics, fluid dynamics, and quantum mechanics [2–4]. Among these, the nonlinear Schrödinger equation (NLSE) stands out as a fundamental model that provides a framework for studying various soliton solutions, which are essential for describing stable waveforms capable of maintaining their structure over long distances [5]. Soliton solutions hold a prominent place in scientific research due to their applications in fiber optic communication, signal processing, and data transmission [5–7]. They are indispensable for enhancing the efficiency and reliability of global communication networks cornerstones of modern technological infrastructure. By maintaining their shape and amplitude through nonlinear and dispersive effects, solitons mitigate signal degradation, thereby facilitating long-distance data transmission without distortion. The growing interest in soliton theory has driven the development of advanced analytical and numerical techniques for deriving soliton solutions to nonlinear evolution equations [8]. Researchers have explored numerous nonlinear physical models to predict soliton behavior under various conditions, fostering breakthroughs in nonlinear optics and ferromagnetic materials [9–11]. Optical solitons, in particular, stand out for their ability to resist dispersive spreading, making them invaluable for applications in photonic circuits, high-speed data networks, and optical switching technologies. Soliton solutions are generally classified into bright, dark, and mixed forms, each exhibiting distinct physical characteristics and applications. Bright solitons are mobile, traveling through a medium with a localized peak, and are commonly employed in data transmission systems. In contrast, dark solitons manifest as localized dips in the continuous wave background, often remaining stationary or exhibiting minimal mobility. This stationary nature, termed quiescence, results from a precise balance between nonlinear effects and dispersive forces, making dark solitons ideal for stable, localized light sources. The versatility of soliton solutions extends to mixed dark-bright solitons, enabling more intricate pulse shaping for specialized optical applications [12–14]. Despite the wide-ranging applications of soliton solutions, the inherent complexity of nonlinear equations often presents challenges in obtaining explicit analytical solutions. As a result, sophisticated mathematical methods are essential for deriving accurate solutions to these intricate models. Notable approaches include the Sardar sub-equation method [15, 16], the modified extended tanh-function method [17, 18], the Riccati expansion method [19], the generalized exponential rational function method [20, 21], and the generalized Arnous method [22]. Each of these techniques contributes uniquely to the field, broadening our understanding of nonlinear wave dynamics and soliton interactions under perturbative conditions. This study delves into a concatenated model that merges three significant equations: the Sasa Satsuma (SS) equation, the Lakshmanan Porsezian Daniel (LPD) equation, and the nonlinear Schrödinger equation (NLSE) [23, 24]. The concatenation of these models provides a more comprehensive framework for examining nonlinear wave phenomena, capturing the combined effects of higher-order dispersion, self-phase modulation, and nonlinear interactions. This integrated model plays a crucial role in investigating soliton dynamics in complex optical systems and diverse waveguiding structures. The core focus of this paper is to derive and analyze novel soliton solutions within the conformable concatenation model, characterized by the presence of a conformable derivative. This approach generalizes classical derivative definitions by incorporating fractional-order dynamics, thereby enabling more accurate modeling of nonlinearity and dispersion at finer scales. Several formulations of fractional derivatives in the complex plane have been introduced to expand analytical capabilities [25]. Notably, Li et al. conducted an in-depth investigation into the properties of fractional operators in complex domains, further advancing traditional formulations [26]. For additional theoretical developments and broader mathematical perspectives on fractional calculus and its applications, we refer the reader to [27–31].

This study focuses on the conformable concatenation model, which unifies the nonlinear Schrödinger equation (NLSE), the Lakshmanan Porsezian Daniel (LPD) model, and the Sasa Satsuma (SS) equation [32]. This integrated framework allows for a comprehensive analysis of nonlinear wave dynamics by capturing the combined effects of higher-order dispersion, cubic and quintic nonlinearities, and self-phase modulation. The concatenation model facilitates the exploration of complex soliton interactions and pulse propagation behaviors, providing deeper insights into the nonlinear optical systems governed by these equations. The soliton solutions derived in this study possess direct physical relevance in optical fiber communication and nonlinear wave dynamics. In practical terms, bright solitons modeled by the conformable framework are essential for long-distance data transmission in anomalous dispersion regimes, as they maintain their shape and amplitude over time, minimizing signal distortion in high-capacity fiber networks. Dark solitons, on the other hand, are suited for applications such as optical switching and signal gating in normal dispersion settings, offering enhanced stability and localization. Notably, these soliton types can be applied to two-mode optical fibers and soliton wavelength-division multiplexing systems, where managing multiple pulse channels requires precise control over nonlinear and dispersive dynamics [33]. The incorporation of the conformable fractional derivative introduces tunable control over dispersion and nonlinearity, reflecting the behavior of complex photonic media with memory or nonlocal effects. This fractional framework aligns with recent advances in modeling coupled nonlinear Schrödinger systems that govern pulse propagation in structured fiber channels [33]. Such flexibility is particularly advantageous for emerging technologies like adaptive waveguides, programmable photonic circuits, and 5G backbone infrastructure. Furthermore, the multi-soliton interaction dynamics, including energy exchange and peak modulation, provide insights relevant to soliton-based logic gates, wavelength-division multiplexing, and nonlinear optical filtering, reinforcing the practical utility of the solutions across a range of optical and photonic systems. The structure of the paper is the following. In Section 2, we present a brief review of solitary waves. In Section 3, we introduce the governing conformable concatenated nonlinear model, which merges the Sasa–Satsuma equation, the Lakshmanan–Porsezian–Daniel equation, and the nonlinear Schrödinger equation. In Section 4, the modified simplest equation method is applied to derive exact optical soliton solutions for the conformable concatenation model. This process includes balancing terms, solving the resulting algebraic system, and constructing explicit soliton profiles. In Section 5, we explore the application of the Kudryashov method to obtain additional soliton solutions. Soliton dynamics are further investigated, and a detailed analysis of peak intensities, spatial profiles, and propagation behaviors is provided. Multi-soliton interactions and collisions are examined, including energy conservation during soliton encounters. Finally, we conclude in Section 6.



2 Solitary waves

The concept of solitons, or solitary waves, dates back to the early 19th century, when Scottish civil engineer and naval architect John Scott Russell made the first recorded observation [34]. Russell identified what he termed the “great wave of translation” and conducted extensive water tank experiments to investigate its fundamental properties. Although he emphasized the wave's significance, his claims were initially met with skepticism by the scientific community. Historically, George Airy and George G. Stokes attempted to explain solitary waves theoretically, but without success. Airy incorrectly attributed them to his linear shallow water theory, while Stokes questioned their persistence. The first formal theoretical descriptions of solitary waves came from Boussinesq in 1871 and Rayleigh in 1876. However, substantial progress occurred in 1895, when Korteweg and de Vries introduced the renowned KdV equation [35]. Despite this advancement, the full significance of solitary waves was not recognized until 1965, when Zabusky and Kruskal conducted a numerical analysis of the KdV equation [36]. Their simulations revealed that solitary waves behave like particles, maintaining their shape and speed after interactions, leading them to coin the term “solitons.” Since then, solitons have found applications in various areas of applied science. In particular, many integrable dynamical systems have been shown to admit soliton solutions, which can be studied through the inverse scattering transform (IST) a nonlinear analog of the Fourier transform for linear partial differential equations. Developed by Gardner, Greene, Kruskal, and Miura, the IST is regarded as one of the most significant breakthroughs in 20th-century mathematical physics [37]. Solitons arise as solutions to specific nonlinear partial differential equations characterized by the presence of nonlinear terms within their structure [38].



3 Mathematical formulation

The model is expressed as:

i(∂αΦ∂tα)+a∂2Φ∂x2+b|Φ|2Φ        +c1(τ1∂4Φ∂x4+τ2(∂Φ∂x)2Φ*+τ3|∂Φ∂x|2Φ        +τ4|Φ|2∂2Φ∂x2+τ5Φ2∂2Φ*∂x2+τ6|Φ|4Φ)        +ic2[τ7∂3Φ∂x3+τ8|Φ|2∂Φ∂x+τ9Φ2∂Φ*∂x]        =0 0<α≤1.      (1)

where Φ(x, t) represents the wave profile, a signifies chromatic dispersion, b denotes Kerr nonlinearity and τi encapsulate higher-order dispersion terms. The term ∂α∂tα represents the conformable fractional derivative, a pivotal component that enhances the accuracy of soliton modeling by incorporating fractional dynamics. This definition generalizes the classical derivative to accommodate memory and nonlocal effects inherent in complex optical media. The Equation 1 models the propagation of optical pulses where the second derivative captures dispersion and the nonlinear terms model self-phase modulation and higher-order effects.

The parameter α ∈ (0, 1] in the model represents the order of the conformable fractional time derivative and governs the degree of memory and nonlocal temporal effects in the evolution of the optical field Φ(x, t). When α = 1, the model reduces to the classical (integer-order) nonlinear Schrödinger-type equation, recovering standard dispersive and nonlinear dynamics. Values α < 1 introduce fractional temporal behavior, which accounts for complex physical mechanisms such as anomalous dispersion, non-instantaneous nonlinear response, or temporal heterogeneity in the propagation medium. While mathematically general, the use of fractional α also has physical relevance in optical systems where pulse propagation is influenced by viscoelasticity, nonlocal media, or memory effects.

This formulation not only extends the classical nonlinear Schrödinger framework but also allows for a more refined representation of pulse evolution in optical fibers, accounting for nonlinearity and dispersion effects at varying temporal scales.

Definition 3.1. The fractional derivative is defined as [39]:

Lβ(q)(z)=limd→0Φ(z+dz1-β)-Φ(z)d, β∈(0,1].      (2)

where Φ1 and Φ2 are conformable differentiable of order β, and s1, s2 ∈ ℝ.

Properties 3.1. The following properties hold [39]:

1. Lβ(s1Φ1 + s2Φ2) = s1Lβ(Φ1) + s2Lβ(Φ2).

2. Lβ(xl)=lxl-β for all l ∈ ℝ.

3. Lβ(Φ1Φ2) = Φ2Lβ(Φ1) + Φ1Lβ(Φ2).

4. Lβ(Φ1Φ2)=Φ2Lβ(Φ1)-Φ1Lβ(Φ2)Φ22.

The application of the conformable derivative to optical fibers enables the modeling of complex physical phenomena, such as nonlinearity and dispersion, surpassing the constraints of traditional calculus. As an extension of the classical derivative, it introduces fractional-order dynamics into mathematical models, providing a more refined description of the behavior of optical fibers. Fractional dynamics have been shown to accurately capture realistic physical behavior while ensuring numerical stability [40]. This advancement allows for improved simulations of pulse propagation and soliton dynamics. Using the conformable derivative, researchers can systematically explore how different degrees of nonlinearity and dispersion affect the stability, shape, and velocity of soliton. This flexibility is crucial for optimizing optical fibers to meet specific technological requirements. The development enhances signal processing, facilitating high-capacity data transmission, optical switching, and light-pulse management in photonic circuits. The core objective of this study is to investigate the dynamic characteristics of optical soliton solutions within a concatenated model involving fractional time, which integrates the Sasa Satsuma equation, the Lakshmanan Porsezian Daniel equation, and the nonlinear Schrödinger equation. To achieve this, the research employs advanced methods, including the modified simplest equation technique and the Kudryashov approach, yielding novel optical solutions applicable to diverse aspects of pulse propagation in optical fibers.

To place the proposed model in perspective, we note that the classical nonlinear Schrödinger equation (NLSE) effectively describes soliton propagation under Kerr nonlinearity but does not incorporate higher-order dispersion or nonlocal effects [41]. The Sasa-Satsuma (SS) equation addresses third-order dispersion and self-steepening terms [42], while recent studies have extended the NLS framework to include fourth-order effects, enabling the derivation of more intricate soliton structures using algebraic techniques [5]. However, these models do not capture fractional temporal dynamics. By introducing a conformable fractional derivative, our concatenated model offers enhanced flexibility for modeling complex dispersive and nonlinear phenomena in optical media, albeit with increased analytical complexity.

Equation 1 governs the evolution of a complex wave function Φ(x, t), which typically represents the envelope of an optical field and may carry internal degrees of freedom such as polarization or charge. In principle, such equations are expected to originate from a variational principle via the Euler-Lagrange formalism, ensuring the conservation of associated physical quantities. However, the presence of explicit conjugate terms such as (∂Φ∂x)2Φ* and Φ2∂2Φ*∂x2 indicates that Equation 1 does not arise from a conventional Lagrangian and may violate conservation laws such as charge conservation. This suggests that the model is phenomenological in nature, constructed to capture essential nonlinear and higher-order dispersive effects, such as self-steepening and non-Kerr nonlinearities rather than to enforce strict symmetry constraints. Its utility lies in modeling pulse dynamics in complex optical media, where such non-conservative effects are physically relevant.

We employ the following wave transformation:

Φ(x,t)=Ψ(ξ)eiθ(x,t),      (3)

where Ψ(ξ) represents the amplitude component of the wave, and θ(x, t) is the phase function. The variable ξ is defined as the traveling wave coordinate:

ξ=h(x-vtαα),      (4)

where v is the soliton velocity. The phase function θ(x, t) takes the form:

θ(x,t)=-kx+wtαα+ϕ,      (5)

where k is the wave number, ω is the angular frequency, and ϕ is the phase offset. These transformations convert the PDE into an ODE, simplifying the analysis and focusing on the traveling wave profile.

By substituting the wave transformation into the original governing equation, the problem is reduced to an ordinary differential equation in terms of Ψ(ξ). This transformation simplifies the analysis and facilitates the derivation of soliton solutions. The constant ϕ represents the phase center, w denotes the soliton wave, k stands for the soliton frequency, and v represents the soliton velocity. By inserting the wave transformation (Equation 3) into the governing Equation 1, the equation separates into its real and imaginary components. The real part yields a fourth-order nonlinear ordinary differential equation.

c1τ1h4Ψ(4)(ξ)+(c1τ4h2+c1τ5k2)Ψ(ξ)2Ψ″(ξ)                     +(c1τ1h2+c1τ3h2)Ψ(ξ)Ψ″(ξ)2+(ah2−6c1τ1h2k2                     +3c2τ7k2)Ψ″(ξ)+c1τ6Ψ(ξ)5                     +(b−c1τ2k2+c1τ3k2−c1τ4k2−c1τ5k2                     +c2τ8k−c2τ9k)Ψ(ξ)3+(c1τ1k4−c2τ7k3                     −ak2−w)Ψ(ξ)=0,      (6)

This fourth-order ODE governs the soliton structure by capturing the intricate balance between higher-order dispersion and nonlinear effects. The imaginary part, in contrast, leads to a lower-order equation involving first and third derivatives:

(c2τ7h3−4c1τ1h3k)Ψ(3)(ξ)+(4c1τ1hk3−3c2τ7hk2−2ahk           −hw)Ψ′(ξ)+(2c1τ5hk−2c1τ2hk−2c1τ4hk           +c2τ8h+c2τ9h)Ψ(ξ)2Ψ′(ξ)=0.      (7)

This lower-order equation imposes constraints on the phase and velocity of the traveling wave, enabling consistent separation of amplitude and phase dynamics.

Starting with Equation 7, we can isolate and express the variables v and k explicitly. More precisely, v and k are given by:

v=4c1τ1k3-3c2τ7k2-2ak, k=c2τ74c1τ1,τ2=2τ1(τ8+τ9)τ7-τ4+τ5.      (8)

Equation 6 can be rewritten as:

ϱ1Ψ(4)(ξ)+ϱ2Ψ(ξ)2Ψ″(ξ)+ϱ3Ψ(ξ)Ψ′(ξ)2+ϱ4Ψ″(ξ)        +ϱ5Ψ(ξ)5+ϱ6Ψ(ξ)3+ϱ7Ψ(ξ)=0,      (9)

where

ϱ1=c1τ1h4,ϱ2=c1(τ4+τ5)h2, ϱ3=c1(τ1+τ3)h2,ϱ4=ah2−6c1τ1h2k2+3c2τ7h2k.ϱ5=c1τ6,ϱ6=b+k2(−c1τ2+c1τ3−c1τ4−c1τ5)+k(c2τ8−c2τ9),ϱ7=c1τ1k4−c2τ7k3−ak2−w,        (10)



4 Derivation of optical soliton solutions using the modified simplest equation method

We derive new conformable optical soliton solutions for the conformable concatenation model by applying the modified simplest equation method. This powerful analytical technique is instrumental in solving nonlinear differential equations that arise in optical fiber models and wave propagation studies. The method facilitates the construction of closed-form solutions, which are crucial for understanding the dynamics of solitons and their stability in nonlinear systems.

We begin by assuming that the solution to Equation 9 follows the form of a finite series expansion:

Ψ(ξ)=η0+∑i=1Nηiχ(ξ)i,      (11)

where η0, η1, …, ηN are real constants and N denotes the balancing parameter that dictates the highest power of χ(ξ) present in the expansion. This approach provides a versatile framework for approximating the complex non-linear behavior of soliton waves.

To determine the appropriate value of N, we apply the balancing principle to the highest-order derivative Ψ(4)(ξ) and the nonlinear term Ψ(ξ)5 in Equation 9. This yields N = 1, simplifying the series to the following form:

Ψ(ξ)=η0+η1χ(ξ),      (12)

where χ(ξ) satisfies the following nonlinear ordinary differential equation:

χ′(ξ)=γ0+χ(ξ)2.      (13)

This relation plays a fundamental role in characterizing soliton profiles and their propagation properties. The explicit solutions to Equation 13 are obtained by analyzing the value of the parameter γ0. These solutions demonstrate distinct soliton behaviors in nonlinear optical systems.

Case 1: When γ0 < 0, the solution is expressed as:

χ1(ξ)=-γ0tanh(-γ0(ξ+s)),χ2(ξ)=-γ0coth(-γ0(ξ+s)),χ3(ξ)=-γ0(-tanh(2-γ0(ξ+s))        +isech(2-γ0(ξ+s))),χ4(ξ)=-γ0(-coth(2-γ0(ξ+s))        +csch(2-γ0(ξ+s))),χ5(ξ)=-γ02(tanh(-γ02(ξ+s))        +coth(-γ02(ξ+s)).      (14)

Case 2: If γ0 > 0.

χ6(ξ)=γ0tan(γ0(ξ+s)),χ7(ξ)=γ0cot(γ0(ξ+s)),χ8(ξ)=γ0(-tan(2γ0(ξ+s))+sec(2γ0(ξ+s))),χ9(ξ)=γ0(-cot(2γ0(ξ+s))+csc(2γ0(ξ+s))),χ10(ξ)=γ02(tan(γ02(ξ+s))+cot(γ02(ξ+s))).      (15)

where s is an arbitrary integration constant. This form represents a hyperbolic tangent solution, often associated with dark solitons that maintain localized waveforms while propagating over long distances in optical fibers. By substituting Equations 12 and 13 into Equation 9, we obtain a polynomial expression involving powers of χ(ξ). The subsequent step involves systematically arranging the terms based on their respective powers and equating the coefficients of each term to zero. The following system of algebraic equations is obtained by equating the powers of χ(ξ):

(χ(ξ))0:   ϱ5β15+2ϱ2β13+ϱ3β13+24ϱ1β1=0,(χ(ξ))1: 5ϱ5β0β14+4ϱ2β0β12+ϱ3β0β12=0,(χ(ξ))2: 10ϱ5β02β13+2ϱ2β13γ0+2ϱ3β13γ0+2ϱ2β02β1    +ϱ6β13+40ϱ1β1γ0+2ϱ4β1=0,(χ(ξ))3: 10ϱ5β03β12+4ϱ2β0β12γ0+2ϱ3β0β12γ0+3ϱ6β0β12=0(χ(ξ))4: ϱ3β13γ02+5ϱ5β04β1+2ϱ2β02β1γ0+16ϱ1β1γ02    +3ϱ6β02β1+2ϱ4β1γ0+ϱ7β1=0,(χ(ξ))5: ϱ3β12β0γ02+ϱ5β05+ϱ6β03+ϱ7β0=0.      (16)

Solving this system yields constraints on the solution parameters, enabling closed-form expressions for soliton profiles.


4.1 Solution of the system: first case

Upon solving the above system, we obtain the following results:

ϱ1=-4(ϱ2+ϱ32)ϱ4γ02+(-2ϱ2ϱ7-2ϱ3ϱ7-2ϱ4ϱ6)γ0-ϱ6ϱ732γ02((ϱ2-ϱ34)γ0+ϱ62),ϱ5=-16((ϱ2-ϱ34)ϱ7-3ϱ4ϱ24γ0-3ϱ6ϱ74)((ϱ2-ϱ34)γ0+ϱ62)(6ϱ4γ0+5ϱ7)2,β0=0, β1=-γ0(4ϱ2γ0-ϱ3γ0+2ϱ6)(6ϱ4γ0+5ϱ7)γ0(4ϱ2γ0-ϱ3γ0+2ϱ6).      (17)

By incorporating Equations 3, 8, 14, and 17, we derive the following optical soliton solutions:

Φ1(x,t)=β1-γ0tanh(-γ0(h(x-λ1tαα)+s))   ei(-kx+wtαα+ϕ),Φ2(x,t)=β1-γ0coth(-γ0(h(x-λ1tαα)+s))   ei(-kx+wtαα+ϕ),Φ3(x,t)=β1-γ0(-tanh(2-γ0(h(x-λ1tαα)+s))   +isech(2-γ0(h(x-λ1tαα)+s)))ei(-kx+wtαα+ϕ),Φ4(x,t)=β1-γ0(-coth(2-γ0(h(x-λ1tαα)+s))   +csch(2-γ0(h(x-λ1tαα)+s)))ei(-kx+wtαα+ϕ),Φ5(x,t)=β1-γ0(tanh(-γ02(h(x-λ1tαα)+s))   +coth(-γ02(h(x-λ1tαα)+s)))ei(-kx+wtαα+ϕ),

By applying Equations 3, 8, 14, and 15, the resulting optical solutions are derived as follows:

Φ6(x,t)=β1γ0tan(γ0(h(x-λ1tαα)+s))   ei(-kx+wtαα+ϕ),Φ7(x,t)=β1γ0cot(γ0(h(x-λ1tαα)+s))   ei(-kx+wtαα+ϕ),Φ8(x,t)=β1γ0(-tan(2γ0(h(x-λ1tαα)+s))   +sec(2γ0(h(x-λ1tαα)+s)))ei(-kx+wtαα+ϕ),Φ9(x,t)=β1γ0(-cot(2γ0(h(x-λ1tαα)+s))   +csc(2γ0(h(x-λ1tαα)+s)))ei(-kx+wtαα+ϕ),Φ10(x,t)=β1γ0(tan(γ02(h(x-λ1tαα)+s))   +cot(γ02(h(x-λ1tαα)+s)))ei(-kx+wtαα+ϕ),

where

λ1=-τ73c238τ12c12-aτ7c22τ1c1.

The curves presented in the figures are plotted using the following parameter values:

a=0.2τ1=0.1h=0.1b=0.2τ3=0.1c1=0.1 w=2τ4=0.5c2=0.1τ5=0.5τ7=0.7γ0=-10τ8=1τ9=2 ϕ=0.1s=0.5

Figure 1 presents three-dimensional (3D) intensity plots of the soliton solutions |Φ1(x,t)|2 and |Φ2(x,t)|2 for different values of α. The top row displays |Φ1|2 with a hyperbolic tangent (tanh) profile, while the bottom row shows |Φ2|2 characterized by a hyperbolic cotangent (coth) profile. The propagation of the solitons is evident along the time axis, and the plots illustrate the evolution of intensity as the solitons propagate through space. A clear decay in intensity is observed over time, highlighting the dispersive behavior of the wave. Contour plots in Figure 2 demonstrate the spatial and temporal evolution of soliton intensity for different α values. The left panels show the evolution of |Φ1(x,t)|2, where solitons maintain a localized structure while propagating along the x-axis. On the right, |Φ2(x,t)|2 exhibits sharper, more concentrated peaks, indicating a stronger localization effect. The contour patterns highlight how higher α values lead to faster-moving solitons with less dispersion, reinforcing the α-dependent soliton behavior. In Figure 3, the spatial profiles of |Φ1|2 and |Φ2|2 at a fixed time slice t0 = 100 are plotted. This figure illustrates the variation in soliton shapes as α varies. For Φ1, the soliton's amplitude broadens as α increases, while for Φ2, the soliton retains a narrow and steep profile. This contrast underscores the influence of α on soliton localization, with Φ2 retains a pronounced peak even at later stages. Heatmaps in Figure 4 visualize the evolution of soliton intensity over time and space for |Φ1|2 and |Φ2|2. The plots highlight regions of high intensity, with Φ1 demonstrating a more gradual decay in intensity along the spatial axis. Conversely, Φ2 exhibits sharp intensity peaks that persist over time. This figure emphasizes the differences in stability and dispersion characteristics of the two soliton types, driven by their unique mathematical profiles. Figure 5 illustrates the vector field representation of the soliton intensity gradients. This vector field reveals the flow direction of soliton energy in space and time. For lower α values, the vectors indicate slower-moving solitons with more dispersive spreading, whereas higher α values yield solitons that travel with minimal dispersion, maintaining a compact structure. The peak magnitude evolution of |Φ1|2 and |Φ2|2 over time is shown in Figure 6. The plot reveals that for |Φ1|2, the peak decays smoothly, suggesting gradual energy loss. In contrast, |Φ2|2 exhibits distinct spikes, indicating sudden intensity bursts at specific time intervals. This behavior reflects the intermittent and highly localized nature of the Φ2 soliton compared to the more stable Φ1. Figure 7 depicts a waterfall plot, further illustrating the evolution of peak magnitudes for Φ1 and Φ2. The soliton dynamics unfold as a function of both time and space, with Φ1 spreading more uniformly over time. The Φ2 soliton, maintains its peak intensity over specific regions, highlighting its robustness and reduced dispersion under certain conditions. In Figure 8, the wave front position is plotted as a function of time for different α values. The plot shows that for smaller α, the wave front moves more slowly for smaller α, and faster for larger α values. This behavior reflects the key property of fractional solitons: α modulates wave speed and affects dispersion.


[image: Four 3D plots depict functions |Φ1(x,t)|2 and |Φ2(x,t)|2 over time and x-axis for α = 0.5 and α = 1. Top plots feature a wavy yellow-to-blue gradient surface, while bottom plots show flat purple surfaces with a spike.]
FIGURE 1
 3D soliton intensity plots of |Φ1(x,t)|2 (tanh profile) and |Φ2(x,t)|2 (coth profile) for Various α values. (Top row), |Φ1(x,t)|2, (Bottom row), |Φ2(x,t)|2.



[image: Four contour plots show |Φ1(x,t)|2 and |Φ2(x,t)|2 over time and x-axis. Top left and bottom left are for α = 0.7 and α = 0.9 respectively, showing a shifting pattern. Top right and bottom right show |Φ2(x,t)|2 for α = 0.7 × 109 and α = 0.9 × 109, mostly dark blue. Each plot has a color bar indicating values.]
FIGURE 2
 Contour plots of soliton intensity |Φ1|2 and |Φ2|2 for different α values, showing spatial and temporal evolution.



[image: Four graphs display the squared magnitudes of |Φ1(x,100)|2 and |Φ2(x,100)|2 for α = 0.5 and α = 1. The top left graph and the bottom left graph show |Φ1(x,100)|2 with a dip in the center. The top right and bottom right graphs illustrate |Φ2(x,100)|2 with sharp peaks at α = 0.5 and α = 1. All graphs have an x-axis ranging from -30 to 10, with varied y-axis scales.]
FIGURE 3
 Spatial profiles of soliton intensity |Φ1|2 and |Φ2|2 at fixed time t0 = 100.



[image: Four heatmaps display the square magnitude of ϕ1 and ϕ2 over time (t) and position (x) for α values 0.5 and 1.5. The left maps show ϕ1 with a gradient from yellow to blue indicating higher values, while the right maps depict ϕ2 with predominantly blue colors, representing lower magnitudes.]
FIGURE 4
 Heatmap visualization of |Φ1|2 and |Φ2|2 for various α values, highlighting intensity distribution over time and space.



[image: Two vector field graphs depict |Φ1(x,t)|2, with the left graph for α = 0.5 and the right for α = 1. Both graphs show a dense central cluster of blue dots along the x-axis from -40 to 20, and the y-axis from -1 to 6, indicating different densities based on the α value.]
FIGURE 5
 Vector field representation of soliton intensity |Φ1|2 for different α values, depicting gradient flow in space-time.



[image: Line graph showing peak magnitude over time, with four datasets distinguished by color and line style. Peaks occur mainly between 1.0 and 2.5 on the time axis. The legend indicates different conditions with parameters α being 0.5 or 1 and values of 10−10.]
FIGURE 6
 The vertical axis is labeled “Peak Magnitude,” and the horizontal axis is labeled “Time (t).” Peak magnitude evolution of |Φ1|2 and |Φ2|2 over time for various α values.



[image: Two 3D waterfall plots showing |Φ1(x,t)|2 over time and the x-axis. The top plot is for α = 0.5 and the bottom for α = 0.7. Both plots display a curved surface with a dip, transitioning from yellow at the top to blue at the dip, against a cyan base. The x-axis ranges from −30 to 10, and time ranges from 0 to 6.]
FIGURE 7
 Waterfall plot showing temporal evolution of peak magnitude |Φ1|2 and |Φ2|2 over time.



[image: A line plot showing wave front position over time for two values of alpha. The blue line represents alpha equals 0.5, descending more gradually, while the orange line represents alpha equals 1, descending more steeply. Time is on the horizontal axis, ranging from 0 to 5, and wave front position is on the vertical axis, ranging from 0 to -6. A legend in the top right differentiates the two lines.]
FIGURE 8
 Wave front position as a function of time for different α values, illustrating propagation dynamics.


The real part of the soliton wave function is visualized in Figure 9. The oscillatory nature of the Φ1 wave is apparent, while Φ2 exhibits significantly more localized peaks. This figure highlights the contrast between the oscillatory pattern of Φ1 and the sharply localized nature of Φ2, underscoring the distinct phase behavior governed by the hyperbolic functions. Figure 10 presents soliton profiles at a fixed time, allowing for direct comparison between different α values. As α increases, the solitons become more localized and sharper. This time-slice comparison highlights the impact of α on soliton shape and spatial extent. Figure 11 presents cross-sectional views of soliton intensity profiles for various α values.


[image: Four 3D surface plots are shown. Top left: Plot of real part of θ 1 for alpha equals 0.5, showing a layered wave pattern. Top right: Similar plot for alpha equals 1 with denser waves. Bottom left: Plot of real part of θ2 for alpha equals 0.5, displaying a mostly flat surface with minor fluctuations. Bottom right: Similar plot for alpha equals 1, showing more pronounced changes on a flat surface. Axes are labeled t, x, and real part of the respective function.]
FIGURE 9
 Real part of soliton wave function |Φ(x, t)| over time for various α values.



[image: Plot showing the function |Φα(x,100)|2 against x for different alpha values (0.5, 0.7, 0.9, 1, 1.5). The graph has a V-shaped dip centered around x = −10, with the dip depth increasing with alpha. Each line color corresponds to a different alpha value, as indicated in the legend.]
FIGURE 10
 Soliton profiles at fixed time, demonstrating the effect of α on soliton shape.



[image: Five line graphs showing cross-sections for different values of alpha (0.5, 0.7, 0.9, 1, and 1.5) against x-axis values from -30 to 10. Each graph displays three curves for times t = 0.72864, 2.4874, and 4.4262. Each set of curves varies in shape and peak positions.]
FIGURE 11
 Cross-sectional view of soliton intensity |Φ(x, t)|2 for different α values.


The pronounced localization and peak amplitude of Φ2 indicate reduced dispersion relative to Φ1. This comparison highlights the differential spreading characteristics driven by soliton type and α variations. Additionally, Figure 12 illustrates the full temporal evolution of the soliton waves.


[image: Two graphs show the peak magnitude evolution over time for |Φ1|2 and |Φ2|2 with α = 1. The top graph depicts a gradual decline from approximately 13.9111 to 13.9105 over a time span of 0 to 5 units. The bottom graph displays sharp spikes at intervals, with a significant peak at around 2.5 units, reaching nearly fifteen billion, and smaller peaks at regular intervals.]
FIGURE 12
 Temporal evolution of soliton wave |Φ(x, t)| over time, showing propagation dynamics for different α values.


The gradual propagation of Φ1 is contrasted with the sharp, distinct peaks of Φ2, further reflecting their unique soliton structures and temporal dynamics.

The soliton solutions Φ1 through Φ10 are classified based on the sign of the Riccati parameter γ0, which determines the functional form of the solutions to the auxiliary equation χ′(ξ)=χ2+γ0. Specifically, when γ0 < 0, the solutions involve hyperbolic functions (e.g. tanh, coth), and when γ0 > 0, they involve trigonometric functions (e.g. tan, cot). The subsequent set of solutions Φ11 to Φ20 is obtained by solving an alternative branch of the algebraic system arising from the modified simplest equation method. Although this second case introduces different values for the algebraic parameters ρi, β0, and β1, classification into trigonometric or hyperbolic types remains strictly governed by the sign of γ0. Hence, Φ11-Φ15 correspond to γ0 < 0, and Φ16-Φ20 correspond to γ0 > 0. This clarification is provided to avoid confusion: the division into cases is determined by the structure of the differential equation (through γ0), not by the values of the algebraic coefficients themselves.



4.2 Solution of the system: second case

The coefficients ϱ3, ϱ4, β0, and β1 are given by the following expressions:

ϱ3=−24ϱ1γ02ϱ6−4ϱ7ϱ2γ0−ϱ7ϱ6+−(4ϱ7ϱ5−ϱ62)(24ϱ1γ02−ϱ7)22ϱ7γ0,ϱ4=(−4ϱ1γ02+ϱ7)−(4ϱ7ϱ5−ϱ62)(24ϱ1γ02−ϱ7)2+96γ0(ϱ1γ0ϱ6+ϱ7ϱ22)(ϱ1γ02−ϱ724)γ0(24ϱ1γ02ϱ6−ϱ6ϱ7−−(4ϱ7ϱ5−ϱ62)(24ϱ1γ02−ϱ7)2),β0=0,β1=(−2γ0(−24ϱ1γ02ϱ6+ϱ7ϱ6+−(4ϱ7ϱ5−ϱ62)(24ϱ1γ02−ϱ7)2)ϱ7(24ϱ1γ02−ϱ7))12γ0(−24ϱ1γ02ϱ6+ϱ7ϱ6+−(4ϱ7ϱ5−ϱ62)(24ϱ1γ02−ϱ7)2).      (18)

Utilizing Equations 3, 8, 14, and 15, we obtain the following optical solutions:

Φ11(x,t)=β1-γ0tanh(-γ0(h(x-λ1tαα)+s))

   ei(-kx+wtαα+ϕ),      (19)

Φ12(x,t)=β1-γ0coth(-γ0(h(x-λ1tαα)+s))

   ei(-kx+wtαα+ϕ),      (20)

Φ13(x,t)=β1-γ0(-tanh(2-γ0(h(x-λ1tαα)+s))+isech(2-γ0(h(x-λ1tαα)+s))

   ei(-kx+wtαα+ϕ),      (21)

Φ14(x,t)=β1-γ0(-coth(2-γ0(h(x-λ1tαα)+s))      (22)

+csch(2-γ0(h(x-λ1tαα)+s)))   ei(-kx+wtαα+ϕ),

Φ15(x,t)=β1-γ0(tanh(-γ02(h(x-λ1tαα)+s))      (23)

+coth(-γ02(h(x-λ1tαα)+s)))   ei(-kx+wtαα+ϕ).

Additionally, applying Equations 3, 8, 14, 15, and 18 yields the following optical solutions:

Φ16(x,t)=β1γ0tan(γ0(h(x-λ1tαα)+s))

   ei(-kx+wtαα+ϕ),      (24)

Φ17(x,t)=β1γ0cot(γ0(h(x−λ1tαα)+s))                  ei(−kx+wtαα+ϕ),      (25)

Φ18(x,t)=β1γ0(−tan(2γ0(h(x−λ1tαα)+s))              +sec(2γ0(h(x−λ1tαα)+s)))                  ei(−kx+wtαα+ϕ),      (26)

Φ19(x,t)=β1γ0(−cot(2γ0(h(x−λ1tαα)+s))              +csc(2γ0(h(x−λ1tαα)+s)))ei(−kx+wtαα+ϕ),      (27)

Φ20(x,t)=β1γ0(tan(γ02(h(x−λ1tαα)+s))              +cot(γ02(h(x−λ1tαα)+s)))                  ei(−kx+wtαα+ϕ).       (28)

The following figures present various aspects of soliton solutions Φ11(x, t) for two different values of the fractional-order parameter α = 0.5 and α = 1.5. The simulations are based on the following parameters:

a=-0.9,b=0.2,w=2,τ1=0.1,τ3=0.1,τ4=0.5,τ5=0.5,τ6=0.5,τ7=0.7,τ8=1,τ9=2,h=0.1,c1=0.1,c2=0.1,γ0=-10,ϕ=0.1,s=0.5.

The results are presented for different values of the fractional order parameter α.

The figures provide a comparative analysis of soliton intensity, spatial profiles, peak magnitudes, and wave front dynamics. The results demonstrate the influence of varying α on the dynamics and shape of the solitons. As shown in Figure 13, the soliton intensity |Φ11(x,t)|2 varies with α. For α = 0.5, the soliton maintains a broader profile, indicating slower propagation. In contrast, at α = 1.5, the soliton exhibits a sharper, faster-evolving profile. Figure 14 highlights the spatial profile of Φ11 at a fixed time. The soliton for α = 1.5 is narrower and shifts forward compared to α = 0.5. This indicates that higher α accelerates the soliton's evolution and alters its spatial localization. Figure 15 shows how the peak magnitude evolves over time. For α = 0.5, the peak stabilizes slowly, while for α = 1.5, the soliton reaches its peak faster. This reflects the faster temporal evolution of solitons at higher α. Figure 16 illustrates the propagation of the soliton wave front over time. For α = 1.5, the wave front progresses more rapidly compared to α = 0.5, indicating enhanced soliton mobility and faster response to perturbations. These results demonstrate that the fractional parameter α significantly affects the soliton's propagation speed, spatial profile, and peak intensity. Higher values of α lead to faster, more localized solitons, while lower α values result in broader, slower-moving solitons.


[image: Two 3D plots depict intensity variation over time and the x-axis for different alpha values. The first plot with α = 0.5 shows a yellow gradient surface with a deep central dip. The second plot with α = 1.5 features a similar surface with a wider dip. Both plots illustrate changes in intensity.]
FIGURE 13
 3D Soliton intensity plots of |Φ11(x,t)|2 (tanh profile) for various α values.



[image: Two line graphs depicting spatial profiles for different alpha values. The top graph shows a profile for alpha equals 0.5, with a peak around negative 20 and a distinct dip near zero on the x-axis. The bottom graph, for alpha equals 1.5, displays a similar pattern, with peaks around negative 20 and 10, and a deeper dip at zero. Both graphs have the y-axis labeled as the squared absolute value of Phi sub 11.]
FIGURE 14
 Spatial profile of Φ11(x, t) at a fixed time.



[image: Two line graphs display peak magnitude over time for different alpha values. The left graph shows a gradual increase stabilizing around 4.487479 for alpha equals 0.5. The right graph shows a similar pattern for alpha equals 1.5, reaching nearly the same peak magnitude. Both graphs have a horizontal time axis from zero to six and a vertical peak magnitude axis.]
FIGURE 15
 Peak magnitude evolution of |Φ11(x,t)|2 over time.



[image: Two line graphs compare wave front positions over time for different alpha values. Left graph: alpha equals 0.5; wave front position steadily increases from 0 to about 13 as time progresses from 0 to 5. Right graph: alpha equals 1.5; wave front position rises more sharply from 0 to about 23 over the same time period. Both graphs display wave front position on the y-axis and time on the x-axis.]
FIGURE 16
 Wave front position over time for Φ11(x, t).





5 Application of the Kudryashov method


5.1 Kudryashov method

The Kudryashov method is a powerful and efficient analytical approach for deriving exact solutions to nonlinear differential equations, particularly in the context of soliton theory and wave propagation [43]. This method has been widely applied to nonlinear evolution equations, offering explicit forms of soliton solutions that are crucial for understanding complex dynamical systems. In this section, we employ the Kudryashov method to obtain new conformable optical soliton solutions for the concatenated nonlinear model, providing deeper insights into the propagation of solitons in optical fibers.

The Kudryashov method is a systematic approach for deriving exact solutions to nonlinear differential equations. The process begins by formulating the governing nonlinear equation and applying a traveling wave transformation, typically ξ=h(x-vtαα), to reduce the partial differential equation (PDE) to an ordinary differential equation (ODE). An ansatz is then assumed for the solution, often in the form Φ(ξ)=η0+∑i=1Nηiχi(ξ), where χ(ξ) is a known function, such as a hyperbolic or trigonometric function. To determine the expansion degree N, the balancing principle is applied, equating the highest-order derivative term with the dominant nonlinear term in the equation. The assumed solution is substituted into the reduced ODE, leading to a polynomial equation in terms of χ(ξ). By collecting like terms and setting the coefficients of each power of χ(ξ) to zero, a system of algebraic equations is obtained. Solving this system provides the unknown constants (ηi, k, etc.), which are then used to construct the explicit soliton solutions. These solutions are further analyzed and visualized to examine soliton dynamics, stability, and propagation characteristics. The method also allows for the evaluation of physical properties such as energy, peak intensity, and interaction behaviors, offering deeper insights into the complex dynamics of soliton systems.

The following solution, applicable to this model, is adopted from [44]:

χ(ξ)=1(c1-c2)sinh(ξ)+(c1+c2)cosh(ξ),      (29)

where c1 and c2 are arbitrary constants that can be tuned to satisfy the boundary conditions and the constraints of the governing nonlinear equation. This function represents a general form of solitary wave solutions that exhibit localized behavior over an extended spatial domain [45]. The function χ(ξ) satisfies the following fundamental relation:

(dχ(ξ)dξ)2=χ(ξ)2(1-4c1c2χ(ξ)2).      (30)

Equation 30 highlights the nonlinearity inherent in the system, which governs the shape and amplitude of solitons. This quadratic relationship implies that the soliton amplitude is influenced by the interaction between the coefficients c1 and c2, making it possible to control the soliton profile through these adjustable parameters.

To construct explicit soliton solutions to Equation 9, we adopt the following series representation using the Kudryashov approach:

Φ(ξ)=η0+∑i=1Nηiχ(ξ)i,      (31)

where η0, η1, …, ηN are unknown constants that need to be determined. The parameter N denotes the highest power of χ(ξ) in the series expansion and is determined by balancing the highest-order derivative term and the nonlinear term in the governing equation. This series form enables the extraction of various soliton profiles by solving a system of algebraic equations for the coefficients ηi.

This procedure results in a system of algebraic equations as follows:

(χ(ξ))0:384c12c22ρ1β1-8c1c2ρ2β13-4c1c2ρ3β13+ρ5β15=0,(χ(ξ))1:-16c1c2ρ2β0β12-4c1c2ρ3β0β12+5ρ5β0β14=0,(χ(ξ))2:-8c1c2ρ2β02β1+10ρ5β02β13-8c1c2ρ1β1-8c1c2ρ1β1     +(ρ2+ρ3+ρ6)β13=0,(χ(ξ))3:10ρ5β03β12+2ρ2β0β12+ρ3β0β12+3ρ6β0β12=0,(χ(ξ))4:5ρ5β04β1+ρ2β02β1+3ρ6β02β1+(ρ1+ρ4+ρ7)β1=0,(χ(ξ))5:ρ5β05+ρ6β03+ρ7β0=0.      (32)

Once again, two cases can be considered. First case: The solutions to the above system are given by:

ρ1=−ρ4−ρ7,ρ5=3((−ρ2+ρ32+2ρ6)ρ4+4ρ7(−ρ2+ρ33+3ρ62))(ρ2+ρ3+ρ6)(9ρ4+10ρ7)2,β0=0,β1=−2−2(ρ2+ρ3+ρ6)c1c2(9ρ4+10ρ7)ρ2+ρ3+ρ6.      (33)

Using Equations 4, 5, 8, and 33, the following optical solutions are derived

Φ21(x,t)=β1ei(−kx+wtαα+ϕ)(c1−c2)sinh(h(x−λ1tαα))+(c1+c2)cosh(h(x−λ1tαα)),Φ22(x,t)=β12c2sech(h(x−λ1tαα))ei(−kx+wtαα+ϕ),Φ23(x,t)=−β12c2csch(h(x−λ1tαα))ei(−kx+wtαα+ϕ).      (34)

A second case can be considered: The solutions to the algebraic system yield the following expressions:

ρ4=−ρ7−ρ1,ρ5=3(ρ6+ρ2+ρ3)((ρ2−ρ32−2ρ6)ρ1−ρ7(ρ2+ρ33))(9ρ1−ρ7)2,β0=0,β1=22(ρ6+ρ2+ρ3)c1c2(9ρ1−ρ7)ρ6+ρ2+ρ3.      (35)

Utilizing Equations 4, 5, 8, and 35, the following optical solutions are derived:

Φ24(x,t)=β1ei(−kx+wtαα+ϕ)(c1−c2)sinh(h(x−λ1tαα))+(c1+c2)cosh(h(x−λ1tαα)),Φ25(x,t)=β12c2sech(h(x−λ1tαα))ei(−kx+wtαα+ϕ),Φ26(x,t)=−β12c2csch(h(x−λ1tαα))ei(−kx+wtαα+ϕ).      (36)



5.2 Visualization and analysis of soliton dynamics

Figure 17 displays the time evolution of |Φ24(x,t)|2 for four distinct time slices (t = 1, 3, 5, 7). The soliton maintains a smooth bell-shaped profile as it propagates in the positive x-direction. The peak intensity gradually decreases, and the soliton broadens slightly over time, indicating a stable, spreading wave. The curve shifts rightward, highlighting the directional propagation of the wave. Figure 18 illustrates the evolution of |Φ25(x,t)|2, where the soliton retains a bright, localized peak as it propagates. The peak remains nearly constant in intensity, a characteristic of bright solitons. Over time, the soliton maintains its structure while moving along the positive x-axis, demonstrating its robustness and stability. Figure 19 presents the evolution of |Φ26(x,t)|2, which features sharp peaks caused by the singularity of the csch function. The soliton exhibits high-intensity spikes at different time steps, with the peaks shifting rightward as time progresses. The peak intensities are significantly larger compared to Φ24 and Φ25, highlighting the soliton's distinct singular nature. Figure 20 illustrates the logarithmic peak intensity evolution of the soliton solutions Φ24, Φ25, and Φ26 over time. All the figures presented were generated using the parameter values listed in Table 1.


[image: Graph of |Φ24(x,t)|2 over different time slices t = 1, 3, 5, 7 in red, green, blue, and magenta respectively. The x-axis ranges from -20 to 20, and the y-axis from 0 to 0.35, showing peaks shifting right over time.]
FIGURE 17
 Temporal evolution of |Φ24(x,t)|2 at different time slices.



[image: Line graph titled “Phi25(x,t) for Different Time Slices” showing four curves representing different times t = 1, 3, 5, 7. The x-axis is labeled x, ranging from -20 to 20, and the y-axis is labeled |Phi25(x,t)|2, ranging from 0 to 0.4. Each curve displays a peak that shifts rightward and gradually decreases in height with increasing time.]
FIGURE 18
 Temporal evolution of |Φ25(x,t)|2 at different time slices.



[image: Graph showing |Φ26(x,t)|2 for different time slices, with x-axis from -20 to 20 and y-axis from 0 to 14,000. Peaks occur at different x values for times t = 1 (red), t = 3 (green), t = 5 (purple), and t = 7 (blue).]
FIGURE 19
 Temporal evolution of |Φ26(x,t)|2 at different time slices.



[image: Graph showing the log peak intensity evolution over time for three variables: Φ24 in red, Φ25 in green, and Φ26 in blue. Φ24 and Φ25 remain steady, while Φ26 increases with fluctuations before sharply decreasing after time 7.]
FIGURE 20
 Log peak intensity evolution of Φ24, Φ25, and Φ26 over time.


TABLE 1  Parameters used to generate all figures in the Kudryashov method, including the log peak intensity plot.


	Parameter
	Symbol
	Value
	Parameter
	Symbol
	Value





	Chromatic dispersion
	a
	–0.9
	Higher dispersion
	τ7
	0.7

 
	Kerr nonlinearity
	b
	0.2
	Nonlinear interaction
	τ8
	1

 
	Angular frequency
	w
	2
	Nonlinear interaction
	τ9
	2

 
	Dispersion term
	τ1
	0.1
	Scaling factor
	h
	0.1

 
	Nonlinearity term
	τ3
	0.1
	Coefficient 1
	c1
	0.1

 
	Self-Phase modulation
	τ4
	0.5
	Coefficient 2
	c2
	0.1

 
	Nonlinear term
	τ5
	0.5
	Fractional derivative
	α
	1.2

 
	Fifth-Order term
	τ6
	0.5
	Arbitrary constant
	ϕ
	0.1

 
	Conformable parameter
	s
	0.5
	Scaling constant
	c1
	1

 
	Scaling constant
	c2
	0.8
	Conformal derivative
	γ0
	-10

 
	Amplitude factor
	β1
	1
	
	
	






The soliton solutions Φ24 and Φ25 maintain stable peak intensities throughout their evolution, exhibiting only minimal decay over time. This behavior highlights their inherent stability as soliton structures, making them resilient to dispersive and nonlinear effects. In contrast, Φ26 displays pronounced high-intensity spikes and irregular fluctuations, a hallmark of singular solutions driven by the hyperbolic cosecant function embedded in its formulation. These sharp intensity variations reflect its susceptibility to rapid amplitude changes. Notably, after t = 6, Φ26 experiences a rapid decay in energy, leading to a transition into a lower energy state. This post-peak energy loss further emphasizes the transient and unstable nature of Φ26 compared to the more stable profiles of Φ24 and Φ25.



5.3 Multi-soliton interactions and collisions

We analyzed the structural relationships in soliton interactions and examined their properties. This part delves into the interaction dynamics between two distinct soliton solutions, namely the Sech-based soliton Φ25 and the Csch-based soliton Φ26, derived using the Kudryashov method. These soliton solutions exhibit distinct characteristics: Φ25 is known for its localized and stable bell-shaped profile, while Φ26 introduces a singular behavior due to its hyperbolic cosecant structure [46].

The interaction between solitons is modeled here via linear superposition of two exact solutions (Φ25 and Φ26). While this approach does not yield a true multi-soliton solution, it offers a tractable approximation for non-integrable systems. Notably, Equation 1 contains non-variational terms involving Φ*, precluding a Lagrangian formulation and thus the use of action-based interaction analysis. The superposition method is therefore used as a qualitative tool to capture essential features of soliton dynamics such as amplitude modulation and energy redistribution.

The combined soliton solution for the multi-soliton interaction is constructed by superimposing the two solitons:

Φtotal(x,t)=Φ25(x,t)+Φ26(x,t),      (37)

where

Φ25(x,t)=β12c2sech(h(x-λ1tαα))ei(-kx+wtαα+ϕ),      (38)

and

Φ26(x,t)=-β12c2csch(h(x-λ1tαα))ei(-kx+wtαα+ϕ).      (39)

The interaction between Φ25 and Φ26 reveals complex dynamics driven by the interplay of the hyperbolic secant and cosecant functions, leading to energy exchange, intensity fluctuations, and non-trivial collision behavior.

Figure 21 presents the log10 contour plot of the combined soliton interaction over time and space. The color gradient effectively visualizes the soliton trajectories and intensity variations. The Sech-based soliton (Φ25) contributes a smooth, bell-shaped trajectory, while the Csch-based soliton (Φ26) introduces sharp gradients and localized spikes due to its singular nature.


[image: Logarithmic contour plot illustrating multi-soliton interaction over time. The x-axis represents spatial coordinates from -20 to 20, and the y-axis shows time from 0 to 10. Colors range from red, indicating high values, to blue, indicating low values, with a prominent yellow line indicating soliton interactions.]
FIGURE 21
 log10 Contour plot of multi-soliton interaction between Φ25 and Φ26. The plot highlights the evolution of soliton intensities and their propagation paths over time.


The contour plot illustrates the propagation of solitons over the spatial domain, with visible energy exchanges during interactions. High-intensity regions are marked in warmer colors, while regions of lower intensity are displayed in cooler tones. The log scale enhances the visualization of both strong and weak intensity regions.

To further analyze the interaction dynamics, Figure 22 displays the evolution of the peak intensity over time on a logarithmic scale. The plot captures the oscillatory behavior of the intensity peaks, reflecting energy fluctuations during the interaction process. The logarithmic scale highlights subtle variations and abrupt intensity spikes. The observed fluctuations are characteristic of the interaction between stable and singular soliton structures, where transient energy surges occur at collision points.


[image: Plot showing the log base 10 of peak intensity evolution in multi-soliton interaction over time. The x-axis represents time from zero to ten, and the y-axis represents peak intensity from four to nine. The data fluctuates with numerous peaks and valleys, indicating variable intensity levels over time.]
FIGURE 22
  log10 Peak intensity evolution of the multi-soliton interaction. Fluctuations indicate energy exchange and dynamic interactions between Φ25 and Φ26.


To provide a clearer and more concise understanding of soliton evolution, Figure 23 presents intensity profiles at specific time slices, revealing how the spatial structures of the solitons Φ25 and Φ26 evolve during their interaction. These snapshots depict the dynamic nature of the soliton profiles, showcasing key phenomena such as energy exchange, stability, and collision dynamics. The interaction between the sech-based soliton Φ25 and the csch-based soliton Φ26 demonstrates transient energy redistribution, where peak intensities undergo periodic amplification and suppression.


[image: Logarithmic intensity profiles plotted against spatial coordinates at time nodes t = 2.0, 4.0, 6.0, and 8.0. Lines are labeled in blue, red, yellow, and purple, respectively, showing variations in intensity peaks near x = 5. The graph title and axes are labeled, with intensity on the y-axis and spatial coordinate on the x-axis.]
FIGURE 23
 Soliton intensity profiles at selected time nodes, illustrating the evolution and collision dynamics of Φ25 and Φ26 during interaction.


Notably, Φ25 retains structural stability despite the interaction, while Φ26 exhibits significant fluctuations due to its inherent singular characteristics. During collision events, sharp intensity spikes are observed, followed by the gradual restoration of each soliton's original profile, reflecting the hallmark elastic behavior of soliton interactions. The contrasting behaviors of these two soliton types result in complex nonlinear dynamics. Φ25 displays localized energy concentration and stable propagation, making it ideal for applications that demand signal consistency. In contrast, Φ26 undergoes rapid intensity shifts and strong localization effects, which are commonly observed in singular soliton dynamics and have implications in fields such as plasma physics and hydrodynamics.

The logarithmic intensity analysis provides deeper insight into both dominant and subtle features, capturing energy fluctuations across strong and weak regions within the system.

To quantify these interactions, the total energy of the system is computed using the expression:

E(t)=∫-∞∞|Φ25(x,t)+Φ26(x,t)|2dx,

where Φ25(x, t) and Φ26(x, t) represent the individual soliton waveforms, and |Φ(x, t)|2 corresponds to the soliton intensity. Expanding the square modulus gives:

E(t)=∫-∞∞(|Φ25(x,t)|2+|Φ26(x,t)|2  +2ℜ[Φ25(x,t)Φ26*(x,t)])dx,

where the total energy includes contributions from each soliton and an interaction term reflecting interference effects. The energy dynamics were calculated numerically using the trapezoidal rule for spatial integration, with the results plotted over time on a logarithmic scale (log10) to highlight fluctuations and ensure clear visibility of energy variations. The energy evolution, illustrated in Figure 24, reveals distinct patterns for the two solitons. The Sech-based soliton Φ25 maintains a stable energy profile, indicating its robustness against interaction-induced perturbations. In contrast, the Csch-based soliton Φ26 undergoes frequent energy spikes and fluctuations, a direct consequence of its singular nature. Despite these localized changes, the total energy of the system remains largely conserved, adhering to the principles of integrable systems where energy conservation is a fundamental characteristic. This conservation persists even during intense soliton interactions, underscoring the stability of the system. The energy exchange between the solitons highlights how transient redistributions occur without violating global conservation laws. Such behavior is pivotal in understanding energy transfer mechanisms in nonlinear media, with practical applications in optical communication, fluid dynamics, and plasma physics. The combined analysis of intensity evolution and energy dynamics emphasizes the diverse behaviors that arise from the interaction of Sech-based and Csch-based solitons. It also showcases the effectiveness of fractional calculus in modeling complex soliton systems, enabling the accurate depiction of nonlinear interactions, stability considerations, and energy conservation. These insights not only deepen the theoretical understanding of soliton behavior but also pave the way for future explorations in applied fields where soliton dynamics play a critical role.


[image: Graph titled “Energy Exchange Dynamics Between ϕ25 and ϕ26” depicting energy over time. ϕ25 is shown in blue, ϕ26 in red, and total energy in black (dashed). Energy fluctuates, peaking above 7 on the log scale, with time on the x-axis ranging from 0 to 10.]
FIGURE 24
 Energy exchange dynamics between the Sech-based soliton Φ25 and the Csch-based soliton Φ26.





6 Conclusion

This study presents a comprehensive analysis of multi-soliton dynamics within a conformable concatenated nonlinear model, integrating the nonlinear Schrödinger equation (NLSE), the Sasa-Satsuma (SS) equation, and the Lakshmanan-Porsezian-Daniel (LPD) model. Through the application of advanced analytical techniques—specifically, the modified simplest equation method and the Kudryashov approach—a wide array of exact soliton solutions was systematically derived, including bright, dark, and mixed types. These solutions offer valuable insights into the complex interplay between higher-order dispersion and nonlinear effects, which strongly affect soliton stability, propagation dynamics, and spatial evolution in optical fibers.

A key contribution of this research lies in the incorporation of a conformable fractional derivative, which significantly extends the analytical scope of the model. This fractional framework enables precise and accurate modeling of fractional-order dynamics, capturing intricate behaviors such as energy dissipation, temporal evolution, and soliton stability under varying system parameters. The study reveals how small variations in the fractional order significantly alter soliton profiles, peak intensities, and interaction dynamics, thereby enhancing the flexibility and depth of soliton analysis.

The energy dynamics of soliton interactions were also meticulously examined, emphasizing both individual soliton energies and the total system energy. Using numerical integration techniques, it was demonstrated that—despite complex interaction events such as elastic and inelastic collisions—the total energy of the system remains largely conserved. This observation reflects a fundamental property of soliton systems within integrable models, demonstrating that localized fluctuations do not disrupt overall energy conservation. The application of a logarithmic scale in visualizations further confirmed these fluctuations while reinforcing conservation principles.

Numerical simulations validated the analytical solutions and illustrated how temporal and fractional parameters influence soliton dynamics, peak intensities, and propagation behaviors. Comparative analysis between sech- and csch-based solitons revealed rich nonlinear phenomena, including energy exchange, amplitude modulation, and collision-induced structural changes. In particular, the energy stability of sech-based solitons contrasted with the pronounced fluctuations of csch-based solitons, providing valuable insight into the diverse dynamics governing nonlinear wave systems.

The insights gained from this study not only deepen the understanding of nonlinear wave dynamics but also pave the way for the development of next-generation telecommunication systems. The ability to model, predict, and control soliton behavior with high precision holds immense potential to enhance data transmission efficiency, reduce signal degradation, and optimize optical network infrastructures. Ultimately, the integration of fractional calculus into soliton research opens new avenues for the exploration of complex nonlinear systems across diverse scientific fields, including fluid dynamics, plasma physics, and quantum mechanics.
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