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This paper aims to provide a rigorous analytical investigation of multisoliton

dynamics within a conformable concatenated nonlinear framework that unifies

the nonlinear Schrödinger, Sasa Satsuma, and Lakshmanan Porsezian Daniel

equations through the incorporation of a conformable fractional derivative.

By extending classical calculus to encompass fractional-order dynamics, the

model captures intricate higher-order dispersion and non-linear interactions

that critically influence pulse propagation in optical fibers. Employing advanced

techniques such as the modified simplest equation method and the Kudryashov

method, we derive a comprehensive family of exact soliton solutions including

bright, dark, and mixed profiles and establish explicit parameter relations

governing their stability and evolution. Detailed numerical simulations further

elucidate the e�ects of the fractional parameter on soliton propagation,

interaction dynamics, and energy conservation.
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1 Introduction

In recent years, there has been an unprecedented surge in the exploration of nonlinear

mathematical models aimed at describing pulse propagation in optical fibers. These models

play a critical role in advancing our understanding of wave dynamics [1], enabling

significant progress in fields such as nonlinear optics, plasma physics, fluid dynamics,

and quantum mechanics [2–4]. Among these, the nonlinear Schrödinger equation (NLSE)

stands out as a fundamental model that provides a framework for studying various soliton

solutions, which are essential for describing stable waveforms capable of maintaining their

structure over long distances [5]. Soliton solutions hold a prominent place in scientific

research due to their applications in fiber optic communication, signal processing, and data

transmission [5–7]. They are indispensable for enhancing the efficiency and reliability of

global communication networks cornerstones of modern technological infrastructure. By

maintaining their shape and amplitude through nonlinear and dispersive effects, solitons

mitigate signal degradation, thereby facilitating long-distance data transmission without

distortion. The growing interest in soliton theory has driven the development of advanced

analytical and numerical techniques for deriving soliton solutions to nonlinear evolution

equations [8]. Researchers have explored numerous nonlinear physical models to predict

soliton behavior under various conditions, fostering breakthroughs in nonlinear optics
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and ferromagnetic materials [9–11]. Optical solitons, in particular,

stand out for their ability to resist dispersive spreading, making

them invaluable for applications in photonic circuits, high-speed

data networks, and optical switching technologies. Soliton solutions

are generally classified into bright, dark, and mixed forms,

each exhibiting distinct physical characteristics and applications.

Bright solitons are mobile, traveling through a medium with a

localized peak, and are commonly employed in data transmission

systems. In contrast, dark solitons manifest as localized dips

in the continuous wave background, often remaining stationary

or exhibiting minimal mobility. This stationary nature, termed

quiescence, results from a precise balance between nonlinear

effects and dispersive forces, making dark solitons ideal for stable,

localized light sources. The versatility of soliton solutions extends to

mixed dark-bright solitons, enabling more intricate pulse shaping

for specialized optical applications [12–14]. Despite the wide-

ranging applications of soliton solutions, the inherent complexity

of nonlinear equations often presents challenges in obtaining

explicit analytical solutions. As a result, sophisticated mathematical

methods are essential for deriving accurate solutions to these

intricate models. Notable approaches include the Sardar sub-

equation method [15, 16], the modified extended tanh-function

method [17, 18], the Riccati expansionmethod [19], the generalized

exponential rational function method [20, 21], and the generalized

Arnousmethod [22]. Each of these techniques contributes uniquely

to the field, broadening our understanding of nonlinear wave

dynamics and soliton interactions under perturbative conditions.

This study delves into a concatenated model that merges

three significant equations: the Sasa Satsuma (SS) equation, the

Lakshmanan Porsezian Daniel (LPD) equation, and the nonlinear

Schrödinger equation (NLSE) [23, 24]. The concatenation of

these models provides a more comprehensive framework for

examining nonlinear wave phenomena, capturing the combined

effects of higher-order dispersion, self-phase modulation, and

nonlinear interactions. This integrated model plays a crucial role

in investigating soliton dynamics in complex optical systems and

diverse waveguiding structures. The core focus of this paper

is to derive and analyze novel soliton solutions within the

conformable concatenation model, characterized by the presence

of a conformable derivative. This approach generalizes classical

derivative definitions by incorporating fractional-order dynamics,

thereby enabling more accurate modeling of nonlinearity and

dispersion at finer scales. Several formulations of fractional

derivatives in the complex plane have been introduced to expand

analytical capabilities [25]. Notably, Li et al. conducted an in-

depth investigation into the properties of fractional operators in

complex domains, further advancing traditional formulations [26].

For additional theoretical developments and broader mathematical

perspectives on fractional calculus and its applications, we refer the

reader to [27–31].

This study focuses on the conformable concatenation model,

which unifies the nonlinear Schrödinger equation (NLSE), the

Lakshmanan Porsezian Daniel (LPD) model, and the Sasa Satsuma

(SS) equation [32]. This integrated framework allows for a

comprehensive analysis of nonlinear wave dynamics by capturing

the combined effects of higher-order dispersion, cubic and quintic

nonlinearities, and self-phase modulation. The concatenation

model facilitates the exploration of complex soliton interactions

and pulse propagation behaviors, providing deeper insights into the

nonlinear optical systems governed by these equations. The soliton

solutions derived in this study possess direct physical relevance

in optical fiber communication and nonlinear wave dynamics.

In practical terms, bright solitons modeled by the conformable

framework are essential for long-distance data transmission in

anomalous dispersion regimes, as they maintain their shape and

amplitude over time, minimizing signal distortion in high-capacity

fiber networks. Dark solitons, on the other hand, are suited for

applications such as optical switching and signal gating in normal

dispersion settings, offering enhanced stability and localization.

Notably, these soliton types can be applied to two-mode optical

fibers and soliton wavelength-division multiplexing systems, where

managing multiple pulse channels requires precise control over

nonlinear and dispersive dynamics [33]. The incorporation of the

conformable fractional derivative introduces tunable control over

dispersion and nonlinearity, reflecting the behavior of complex

photonic media with memory or nonlocal effects. This fractional

framework aligns with recent advances in modeling coupled

nonlinear Schrödinger systems that govern pulse propagation

in structured fiber channels [33]. Such flexibility is particularly

advantageous for emerging technologies like adaptive waveguides,

programmable photonic circuits, and 5G backbone infrastructure.

Furthermore, the multi-soliton interaction dynamics, including

energy exchange and peak modulation, provide insights relevant

to soliton-based logic gates, wavelength-division multiplexing, and

nonlinear optical filtering, reinforcing the practical utility of the

solutions across a range of optical and photonic systems. The

structure of the paper is the following. In Section 2, we present

a brief review of solitary waves. In Section 3, we introduce

the governing conformable concatenated nonlinear model, which

merges the Sasa–Satsuma equation, the Lakshmanan–Porsezian–

Daniel equation, and the nonlinear Schrödinger equation. In

Section 4, the modified simplest equation method is applied

to derive exact optical soliton solutions for the conformable

concatenation model. This process includes balancing terms,

solving the resulting algebraic system, and constructing explicit

soliton profiles. In Section 5, we explore the application of the

Kudryashov method to obtain additional soliton solutions. Soliton

dynamics are further investigated, and a detailed analysis of

peak intensities, spatial profiles, and propagation behaviors is

provided. Multi-soliton interactions and collisions are examined,

including energy conservation during soliton encounters. Finally,

we conclude in Section 6.

2 Solitary waves

The concept of solitons, or solitary waves, dates back to the

early 19th century, when Scottish civil engineer and naval architect

John Scott Russell made the first recorded observation [34].

Russell identified what he termed the “great wave of translation”

and conducted extensive water tank experiments to investigate

its fundamental properties. Although he emphasized the wave’s

significance, his claims were initially met with skepticism by

the scientific community. Historically, George Airy and George
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G. Stokes attempted to explain solitary waves theoretically, but

without success. Airy incorrectly attributed them to his linear

shallow water theory, while Stokes questioned their persistence.

The first formal theoretical descriptions of solitary waves came

from Boussinesq in 1871 and Rayleigh in 1876. However,

substantial progress occurred in 1895, when Korteweg and de

Vries introduced the renowned KdV equation [35]. Despite this

advancement, the full significance of solitary waves was not

recognized until 1965, when Zabusky and Kruskal conducted a

numerical analysis of the KdV equation [36]. Their simulations

revealed that solitary waves behave like particles, maintaining their

shape and speed after interactions, leading them to coin the term

“solitons.” Since then, solitons have found applications in various

areas of applied science. In particular, many integrable dynamical

systems have been shown to admit soliton solutions, which can be

studied through the inverse scattering transform (IST) a nonlinear

analog of the Fourier transform for linear partial differential

equations. Developed by Gardner, Greene, Kruskal, and Miura, the

IST is regarded as one of the most significant breakthroughs in

20th-century mathematical physics [37]. Solitons arise as solutions

to specific nonlinear partial differential equations characterized by

the presence of nonlinear terms within their structure [38].

3 Mathematical formulation

The model is expressed as:

i

(

∂α8

∂tα

)

+ a
∂28

∂x2
+ b|8|28

+ c1

(

τ1
∂48

∂x4
+ τ2

(

∂8

∂x

)2

8∗ + τ3

∣

∣

∣

∣

∂8

∂x

∣

∣

∣

∣

2

8

+ τ4|8|2
∂28

∂x2
+ τ58

2 ∂28∗

∂x2
+ τ6|8|48

)

+ ic2

[

τ7
∂38

∂x3
+ τ8|8|2

∂8

∂x
+ τ98

2 ∂8∗

∂x

]

= 0 0 < α ≤ 1.

(1)

where 8(x, t) represents the wave profile, a signifies chromatic

dispersion, b denotes Kerr nonlinearity and τi encapsulate higher-

order dispersion terms. The term ∂α

∂tα represents the conformable

fractional derivative, a pivotal component that enhances the

accuracy of soliton modeling by incorporating fractional dynamics.

This definition generalizes the classical derivative to accommodate

memory and nonlocal effects inherent in complex optical media.

The Equation 1 models the propagation of optical pulses where

the second derivative captures dispersion and the nonlinear terms

model self-phase modulation and higher-order effects.

The parameter α ∈ (0, 1] in the model represents the order

of the conformable fractional time derivative and governs the

degree of memory and nonlocal temporal effects in the evolution

of the optical field 8(x, t). When α = 1, the model reduces to

the classical (integer-order) nonlinear Schrödinger-type equation,

recovering standard dispersive and nonlinear dynamics. Values

α < 1 introduce fractional temporal behavior, which accounts

for complex physical mechanisms such as anomalous dispersion,

non-instantaneous nonlinear response, or temporal heterogeneity

in the propagation medium. While mathematically general, the use

of fractional α also has physical relevance in optical systems where

pulse propagation is influenced by viscoelasticity, nonlocal media,

or memory effects.

This formulation not only extends the classical nonlinear

Schrödinger framework but also allows for a more refined

representation of pulse evolution in optical fibers, accounting for

nonlinearity and dispersion effects at varying temporal scales.

Definition 3.1. The fractional derivative is defined as [39]:

Lβ (q)(z) = lim
d→0

8(z + dz1−β )− 8(z)

d
, β ∈ (0, 1]. (2)

where 81 and 82 are conformable differentiable of order β , and

s1, s2 ∈ R.

Properties 3.1. The following properties hold [39]:

1. Lβ (s181 + s282) = s1Lβ (81)+ s2Lβ (82).

2. Lβ (x
l) = lxl−β for all l ∈ R.

3. Lβ (8182) = 82Lβ (81)+ 81Lβ (82).

4. Lβ

(

81
82

)

= 82Lβ (81)−81Lβ (82)

82
2

.

The application of the conformable derivative to optical

fibers enables the modeling of complex physical phenomena,

such as nonlinearity and dispersion, surpassing the constraints of

traditional calculus. As an extension of the classical derivative, it

introduces fractional-order dynamics into mathematical models,

providing a more refined description of the behavior of optical

fibers. Fractional dynamics have been shown to accurately capture

realistic physical behavior while ensuring numerical stability

[40]. This advancement allows for improved simulations of

pulse propagation and soliton dynamics. Using the conformable

derivative, researchers can systematically explore how different

degrees of nonlinearity and dispersion affect the stability, shape,

and velocity of soliton. This flexibility is crucial for optimizing

optical fibers to meet specific technological requirements. The

development enhances signal processing, facilitating high-capacity

data transmission, optical switching, and light-pulse management

in photonic circuits. The core objective of this study is to

investigate the dynamic characteristics of optical soliton solutions

within a concatenated model involving fractional time, which

integrates the Sasa Satsuma equation, the Lakshmanan Porsezian

Daniel equation, and the nonlinear Schrödinger equation. To

achieve this, the research employs advanced methods, including

the modified simplest equation technique and the Kudryashov

approach, yielding novel optical solutions applicable to diverse

aspects of pulse propagation in optical fibers.

To place the proposed model in perspective, we note that

the classical nonlinear Schrödinger equation (NLSE) effectively

describes soliton propagation under Kerr nonlinearity but does

not incorporate higher-order dispersion or nonlocal effects [41].

The Sasa-Satsuma (SS) equation addresses third-order dispersion

and self-steepening terms [42], while recent studies have extended

the NLS framework to include fourth-order effects, enabling the

derivation of more intricate soliton structures using algebraic

techniques [5]. However, these models do not capture fractional

temporal dynamics. By introducing a conformable fractional
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derivative, our concatenated model offers enhanced flexibility for

modeling complex dispersive and nonlinear phenomena in optical

media, albeit with increased analytical complexity.

Equation 1 governs the evolution of a complex wave function

8(x, t), which typically represents the envelope of an optical field

and may carry internal degrees of freedom such as polarization or

charge. In principle, such equations are expected to originate from

a variational principle via the Euler-Lagrange formalism, ensuring

the conservation of associated physical quantities. However, the

presence of explicit conjugate terms such as
(

∂8
∂x

)2
8∗ and 82 ∂28∗

∂x2

indicates that Equation 1 does not arise from a conventional

Lagrangian and may violate conservation laws such as charge

conservation. This suggests that the model is phenomenological

in nature, constructed to capture essential nonlinear and higher-

order dispersive effects, such as self-steepening and non-Kerr

nonlinearities rather than to enforce strict symmetry constraints.

Its utility lies inmodeling pulse dynamics in complex optical media,

where such non-conservative effects are physically relevant.

We employ the following wave transformation:

8(x, t) = 9(ξ )eiθ(x,t), (3)

where 9(ξ ) represents the amplitude component of the wave,

and θ(x, t) is the phase function. The variable ξ is defined as the

traveling wave coordinate:

ξ = h

(

x−
vtα

α

)

, (4)

where v is the soliton velocity. The phase function θ(x, t) takes

the form:

θ(x, t) = −kx+
wtα

α
+ φ, (5)

where k is the wave number,ω is the angular frequency, and φ is the

phase offset. These transformations convert the PDE into an ODE,

simplifying the analysis and focusing on the traveling wave profile.

By substituting the wave transformation into the original

governing equation, the problem is reduced to an ordinary

differential equation in terms of 9(ξ ). This transformation

simplifies the analysis and facilitates the derivation of soliton

solutions. The constant φ represents the phase center,w denotes the

soliton wave, k stands for the soliton frequency, and v represents the

soliton velocity. By inserting the wave transformation (Equation 3)

into the governing Equation 1, the equation separates into its real

and imaginary components. The real part yields a fourth-order

nonlinear ordinary differential equation.

c1τ1h
49(4)(ξ )+ (c1τ4h

2 + c1τ5k
2)9(ξ )29 ′′(ξ )+ (c1τ1h

2

+ c1τ3h
2)9(ξ )9 ′′(ξ )2 + (ah2 − 6c1τ1h

2k2

+ 3c2τ7k
2)9 ′′(ξ )+ c1τ69(ξ )5

+ (b− c1τ2k
2 + c1τ3k

2 − c1τ4k
2 − c1τ5k

2

+ c2τ8k− c2τ9k)9(ξ )3 + (c1τ1k
4 − c2τ7k

3

− ak2 − w)9(ξ ) = 0,

(6)

This fourth-order ODE governs the soliton structure

by capturing the intricate balance between higher-order

dispersion and nonlinear effects. The imaginary part, in

contrast, leads to a lower-order equation involving first and

third derivatives:

(c2τ7h
3 − 4c1τ1h

3k)9(3)(ξ )+ (4c1τ1hk
3 − 3c2τ7hk

2 − 2ahk

− hw)9 ′(ξ )+ (2c1τ5hk− 2c1τ2hk− 2c1τ4hk

+ c2τ8h+ c2τ9h)9(ξ )29 ′(ξ ) = 0.

(7)

This lower-order equation imposes constraints on the phase

and velocity of the traveling wave, enabling consistent separation

of amplitude and phase dynamics.

Starting with Equation 7, we can isolate and express the

variables v and k explicitly. More precisely, v and k are

given by:

v = 4c1τ1k
3 − 3c2τ7k

2 − 2ak, k =
c2τ7

4c1τ1
,

τ2 =
2τ1(τ8 + τ9)

τ7
− τ4 + τ5. (8)

Equation 6 can be rewritten as:

̺19
(4)(ξ ) + ̺29(ξ )29 ′′(ξ )+ ̺39(ξ )9 ′(ξ )2 + ̺49

′′(ξ )

+ ̺59(ξ )5 + ̺69(ξ )3 + ̺79(ξ ) = 0, (9)

where

̺1 = c1τ1h
4, ̺5 = c1τ6,

̺2 = c1(τ4 + τ5)h
2, ̺6 = b+ k2(−c1τ2 + c1τ3

−c1τ4 − c1τ5)+ k(c2τ8 − c2τ9),

̺3 = c1(τ1 + τ3)h
2, ̺7 = c1τ1k

4 − c2τ7k
3 − ak2 − w,

̺4 = ah2 − 6c1τ1h
2k2

+3c2τ7h
2k.

(10)

4 Derivation of optical soliton
solutions using the modified simplest
equation method

We derive new conformable optical soliton solutions for

the conformable concatenation model by applying the modified

simplest equation method. This powerful analytical technique

is instrumental in solving nonlinear differential equations that

arise in optical fiber models and wave propagation studies. The

method facilitates the construction of closed-form solutions, which

are crucial for understanding the dynamics of solitons and their

stability in nonlinear systems.

We begin by assuming that the solution to Equation 9 follows

the form of a finite series expansion:

9(ξ ) = η0 +
N
∑

i=1

ηiχ(ξ )
i, (11)
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where η0, η1, . . . , ηN are real constants and N denotes the

balancing parameter that dictates the highest power of χ(ξ )

present in the expansion. This approach provides a versatile

framework for approximating the complex non-linear behavior of

soliton waves.

To determine the appropriate value of N, we apply the

balancing principle to the highest-order derivative 9(4)(ξ ) and the

nonlinear term9(ξ )5 in Equation 9. This yieldsN = 1, simplifying

the series to the following form:

9(ξ ) = η0 + η1χ(ξ ), (12)

where χ(ξ ) satisfies the following nonlinear ordinary

differential equation:

χ ′(ξ ) = γ0 + χ(ξ )2. (13)

This relation plays a fundamental role in characterizing soliton

profiles and their propagation properties. The explicit solutions to

Equation 13 are obtained by analyzing the value of the parameter

γ0. These solutions demonstrate distinct soliton behaviors in

nonlinear optical systems.

Case 1:When γ0 < 0, the solution is expressed as:

χ1(ξ ) =
√
−γ0 tanh

(√
−γ0(ξ + s)

)

,

χ2(ξ ) =
√
−γ0 coth

(√
−γ0(ξ + s)

)

,

χ3(ξ ) =
√
−γ0

(

− tanh
(

2
√
−γ0(ξ + s)

)

+ i sech
(

2
√
−γ0(ξ + s)

)

)

,

χ4(ξ ) =
√
−γ0

(

− coth
(

2
√
−γ0(ξ + s)

)

+ csch
(

2
√
−γ0(ξ + s)

)

)

,

χ5(ξ ) =
√
−γ0

2

(

tanh

(√
−γ0

2
(ξ + s)

)

+ coth

(√
−γ0

2
(ξ + s)

)

)

.

(14)

Case 2: If γ0 > 0.

χ6(ξ ) =
√

γ0 tan
(√

γ0(ξ + s)
)

,

χ7(ξ ) =
√

γ0 cot
(√

γ0(ξ + s)
)

,

χ8(ξ ) =
√

γ0
(

− tan
(

2
√

γ0(ξ + s)
)

+ sec
(

2
√

γ0(ξ + s)
))

,

χ9(ξ ) =
√

γ0
(

− cot
(

2
√

γ0(ξ + s)
)

+ csc
(

2
√

γ0(ξ + s)
))

,

χ10(ξ ) =
√

γ0

2

(

tan

(√
γ0

2
(ξ + s)

)

+ cot

(√
γ0

2
(ξ + s)

))

.

(15)

where s is an arbitrary integration constant. This form represents

a hyperbolic tangent solution, often associated with dark solitons

that maintain localized waveforms while propagating over long

distances in optical fibers. By substituting Equations 12 and 13

into Equation 9, we obtain a polynomial expression involving

powers of χ(ξ ). The subsequent step involves systematically

arranging the terms based on their respective powers and

equating the coefficients of each term to zero. The following

system of algebraic equations is obtained by equating the powers

of χ(ξ ):

(χ(ξ ))0 : ̺5β
5
1 + 2̺2β

3
1 + ̺3β

3
1 + 24̺1β1 = 0,

(χ(ξ ))1 : 5̺5β0β
4
1 + 4̺2β0β

2
1 + ̺3β0β

2
1 = 0,

(χ(ξ ))2 : 10̺5β
2
0β

3
1 + 2̺2β

3
1γ0 + 2̺3β

3
1γ0 + 2̺2β

2
0β1

+ ̺6β
3
1 + 40̺1β1γ0 + 2̺4β1 = 0,

(χ(ξ ))3 : 10̺5β
3
0β

2
1 + 4̺2β0β

2
1γ0 + 2̺3β0β

2
1γ0 + 3̺6β0β

2
1 = 0

(χ(ξ ))4 : ̺3β
3
1γ

2
0 + 5̺5β

4
0β1 + 2̺2β

2
0β1γ0 + 16̺1β1γ

2
0

+ 3̺6β
2
0β1 + 2̺4β1γ0 + ̺7β1 = 0,

(χ(ξ ))5 : ̺3β
2
1β0γ

2
0 + ̺5β

5
0 + ̺6β

3
0 + ̺7β0 = 0.

(16)

Solving this system yields constraints on the solution

parameters, enabling closed-form expressions for soliton profiles.

4.1 Solution of the system: first case

Upon solving the above system, we obtain the following results:

̺1 =
−4

(

̺2 + ̺3
2

)

̺4γ
2
0 + (−2̺2̺7 − 2̺3̺7 − 2̺4̺6) γ0 − ̺6̺7

32γ 2
0

((

̺2 − ̺3
4

)

γ0 + ̺6
2

) ,

̺5 =
−16

(

(

̺2 − ̺3
4

)

̺7 − 3̺4̺2
4 γ0 − 3̺6̺7

4

)

((

̺2 − ̺3
4

)

γ0 + ̺6
2

)

(6̺4γ0 + 5̺7)
2

,

β0 = 0, β1 = −
√

γ0 (4̺2γ0 − ̺3γ0 + 2̺6) (6̺4γ0 + 5̺7)

γ0 (4̺2γ0 − ̺3γ0 + 2̺6)
.

(17)

By incorporating Equations 3, 8, 14, and 17, we derive the

following optical soliton solutions:

81(x, t) = β1
√
−γ0 tanh

(√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

ei(−kx+ wtα

α
+φ),

82(x, t) = β1
√
−γ0 coth

(√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

ei(−kx+ wtα

α
+φ),

83(x, t) = β1
√
−γ0

(

− tanh

(

2
√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

+ i sech

(

2
√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

)

ei(−kx+ wtα

α
+φ),

84(x, t) = β1
√
−γ0

(

− coth

(

2
√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

+ csch

(

2
√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

)

ei(−kx+ wtα

α
+φ),

85(x, t) = β1
√
−γ0

(

tanh

(√
−γ0

2

(

h

(

x−
λ1t

α

α

)

+ s

))

+ coth

(√
−γ0

2

(

h

(

x−
λ1t

α

α

)

+ s

))

)

ei(−kx+ wtα

α
+φ),
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By applying Equations 3, 8, 14, and 15, the resulting optical

solutions are derived as follows:

86(x, t) = β1
√

γ0 tan

(

√
γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

ei(−kx+ wtα

α
+φ),

87(x, t) = β1
√

γ0 cot

(

√
γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

ei(−kx+ wtα

α
+φ),

88(x, t) = β1
√

γ0

(

− tan

(

2
√

γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

+ sec

(

2
√

γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

)

ei(−kx+ wtα

α
+φ),

89(x, t) = β1
√

γ0

(

− cot

(

2
√

γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

+ csc

(

2
√

γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

)

ei(−kx+ wtα

α
+φ),

810(x, t) = β1
√

γ0

(

tan

(√
γ0

2

(

h

(

x−
λ1t

α

α

)

+ s

))

+ cot

(√
γ0

2

(

h

(

x−
λ1t

α

α

)

+ s

))

)

ei(−kx+ wtα

α
+φ),

where

λ1 = −
τ 37 c

3
2

8τ 21 c
2
1

−
aτ7c2

2τ1c1
.

The curves presented in the figures are plotted using the

following parameter values:

a = 0.2 τ1 = 0.1 h = 0.1 b = 0.2 τ3 = 0.1 c1 = 0.1

w = 2 τ4 = 0.5

c2 = 0.1 τ5 = 0.5 τ7 = 0.7 γ0 = −10 τ8 = 1 τ9 = 2

φ = 0.1 s = 0.5

Figure 1 presents three-dimensional (3D) intensity plots of the

soliton solutions |81(x, t)|2 and |82(x, t)|2 for different values of

α. The top row displays |81|2 with a hyperbolic tangent (tanh)

profile, while the bottom row shows |82|2 characterized by a

hyperbolic cotangent (coth) profile. The propagation of the solitons

is evident along the time axis, and the plots illustrate the evolution

of intensity as the solitons propagate through space. A clear decay in

intensity is observed over time, highlighting the dispersive behavior

of the wave. Contour plots in Figure 2 demonstrate the spatial

and temporal evolution of soliton intensity for different α values.

The left panels show the evolution of |81(x, t)|2, where solitons

maintain a localized structure while propagating along the x-axis.

On the right, |82(x, t)|2 exhibits sharper, more concentrated peaks,

indicating a stronger localization effect. The contour patterns

highlight how higher α values lead to faster-moving solitons with

less dispersion, reinforcing the α-dependent soliton behavior. In

Figure 3, the spatial profiles of |81|2 and |82|2 at a fixed time slice

t0 = 100 are plotted. This figure illustrates the variation in soliton

shapes as α varies. For 81, the soliton’s amplitude broadens as

α increases, while for 82, the soliton retains a narrow and steep

profile. This contrast underscores the influence of α on soliton

localization, with82 retains a pronounced peak even at later stages.

Heatmaps in Figure 4 visualize the evolution of soliton intensity

over time and space for |81|2 and |82|2. The plots highlight

regions of high intensity, with 81 demonstrating a more gradual

decay in intensity along the spatial axis. Conversely, 82 exhibits

sharp intensity peaks that persist over time. This figure emphasizes

the differences in stability and dispersion characteristics of the

two soliton types, driven by their unique mathematical profiles.

Figure 5 illustrates the vector field representation of the soliton

intensity gradients. This vector field reveals the flow direction of

soliton energy in space and time. For lower α values, the vectors

indicate slower-moving solitons with more dispersive spreading,

whereas higher α values yield solitons that travel with minimal

dispersion, maintaining a compact structure. The peak magnitude

evolution of |81|2 and |82|2 over time is shown in Figure 6. The

plot reveals that for |81|2, the peak decays smoothly, suggesting

gradual energy loss. In contrast, |82|2 exhibits distinct spikes,

indicating sudden intensity bursts at specific time intervals. This

behavior reflects the intermittent and highly localized nature of

the 82 soliton compared to the more stable 81. Figure 7 depicts a

waterfall plot, further illustrating the evolution of peak magnitudes

for 81 and 82. The soliton dynamics unfold as a function of

both time and space, with 81 spreading more uniformly over

time. The 82 soliton, maintains its peak intensity over specific

regions, highlighting its robustness and reduced dispersion under

certain conditions. In Figure 8, the wave front position is plotted

as a function of time for different α values. The plot shows that

for smaller α, the wave front moves more slowly for smaller

α, and faster for larger α values. This behavior reflects the key

property of fractional solitons: α modulates wave speed and

affects dispersion.

The real part of the soliton wave function is visualized in

Figure 9. The oscillatory nature of the 81 wave is apparent,

while 82 exhibits significantly more localized peaks. This figure

highlights the contrast between the oscillatory pattern of 81 and

the sharply localized nature of 82, underscoring the distinct phase

behavior governed by the hyperbolic functions. Figure 10 presents

soliton profiles at a fixed time, allowing for direct comparison

between different α values. As α increases, the solitons become

more localized and sharper. This time-slice comparison highlights

the impact of α on soliton shape and spatial extent. Figure 11

presents cross-sectional views of soliton intensity profiles for

various α values.

The pronounced localization and peak amplitude of 82

indicate reduced dispersion relative to 81. This comparison

highlights the differential spreading characteristics driven by

soliton type and α variations. Additionally, Figure 12 illustrates the

full temporal evolution of the soliton waves.

The gradual propagation of 81 is contrasted with the sharp,

distinct peaks of 82, further reflecting their unique soliton

structures and temporal dynamics.

The soliton solutions 81 through 810 are classified based

on the sign of the Riccati parameter γ0, which determines

the functional form of the solutions to the auxiliary equation
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FIGURE 1

3D soliton intensity plots of |81(x, t)|2 (tanh profile) and |82(x, t)|2 (coth profile) for Various α values. (Top row), |81(x, t)|2, (Bottom row), |82(x, t)|2.

FIGURE 2

Contour plots of soliton intensity |81|2 and |82|2 for di�erent α values, showing spatial and temporal evolution.
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FIGURE 3

Spatial profiles of soliton intensity |81|2 and |82|2 at fixed time t0 = 100.

FIGURE 4

Heatmap visualization of |81|2 and |82|2 for various α values, highlighting intensity distribution over time and space.

χ ′(ξ ) = χ2 + γ0. Specifically, when γ0 < 0, the solutions

involve hyperbolic functions (e.g. tanh, coth), and when γ0 >

0, they involve trigonometric functions (e.g. tan, cot). The

subsequent set of solutions 811 to 820 is obtained by solving

an alternative branch of the algebraic system arising from the

modified simplest equation method. Although this second case

introduces different values for the algebraic parameters ρi, β0,

and β1, classification into trigonometric or hyperbolic types

remains strictly governed by the sign of γ0. Hence, 811-815

correspond to γ0 < 0, and 816-820 correspond to γ0 > 0.
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FIGURE 5

Vector field representation of soliton intensity |81|2 for di�erent α values, depicting gradient flow in space-time.

FIGURE 6

Peak magnitude evolution of |81|2 and |82|2 over time for various

α values.

This clarification is provided to avoid confusion: the division

into cases is determined by the structure of the differential

equation (through γ0), not by the values of the algebraic

coefficients themselves.

4.2 Solution of the system: second case

The coefficients ̺3, ̺4,β0, and β1 are given by the

following expressions:

FIGURE 7

Waterfall plot showing temporal evolution of peak magnitude |81|2
and |82|2 over time.

̺3 =

−24̺1γ
2
0 ̺6 − 4̺7̺2γ0 − ̺7̺6

+
√

−(4̺7̺5 − ̺2
6)(24̺1γ

2
0 − ̺7)2

2̺7γ0
,

̺4 =

(−4̺1γ
2
0 + ̺7)

√

−(4̺7̺5 − ̺2
6)(24̺1γ

2
0 − ̺7)2

+ 96γ0
(

̺1γ0̺6 + ̺7̺2
2

) (

̺1γ
2
0 − ̺7

24

)

γ0

(

24̺1γ
2
0 ̺6 − ̺6̺7−

√

−(4̺7̺5 − ̺2
6)(24̺1γ

2
0 − ̺7)2

)

,

β0 = 0, (18)
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β1 =

(

− 2γ0

(

− 24̺1γ
2
0 ̺6 + ̺7̺6

+
√

−(4̺7̺5 − ̺2
6)(24̺1γ

2
0 − ̺7)2

)

̺7(24̺1γ
2
0 − ̺7)

)
1
2

γ0

(

− 24̺1γ
2
0 ̺6 + ̺7̺6

+
√

−(4̺7̺5 − ̺2
6)(24̺1γ

2
0 − ̺7)2

)

.

FIGURE 8

Wave front position as a function of time for di�erent α values,

illustrating propagation dynamics.

Utilizing Equations 3, 8, 14, and 18, we obtain the following

optical solutions:

811(x, t) = β1
√
−γ0 tanh

(√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

e
i
(

−kx+ wtα

α
+φ

)

, (19)

FIGURE 10

Soliton profiles at fixed time, demonstrating the e�ect of α on

soliton shape.

FIGURE 9

Real part of soliton wave function |8(x, t)| over time for various α values.
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FIGURE 11

Cross-sectional view of soliton intensity |8(x, t)|2 for di�erent α values.

FIGURE 12

Temporal evolution of soliton wave |8(x, t)| over time, showing

propagation dynamics for di�erent α values.

812(x, t) = β1
√
−γ0 coth

(√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

e
i
(

−kx+ wtα

α
+φ

)

, (20)

813(x, t) = β1
√
−γ0

(

− tanh

(

2
√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

+ i sech

(

2
√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

)

e
i
(

−kx+ wtα

α
+φ

)

, (21)

814(x, t) = β1
√
−γ0

(

− coth

(

2
√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

(22)

+ csch

(

2
√
−γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

)

e
i
(

−kx+ wtα

α
+φ

)

,

815(x, t) = β1
√
−γ0

(

tanh

(√
−γ0

2

(

h

(

x−
λ1t

α

α

)

+ s

))

(23)

+ coth

(√
−γ0

2

(

h

(

x−
λ1t

α

α

)

+ s

))

)

e
i
(

−kx+ wtα

α
+φ

)

.

Additionally, applying Equations 3, 8, 14, 15, and 18 yields the

following optical solutions:

816(x, t) = β1
√

γ0 tan

(

√
γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

e
i
(

−kx+ wtα

α
+φ

)

, (24)
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817(x, t) = β1
√

γ0 cot

(

√
γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

e
i
(

−kx+ wtα

α
+φ

)

, (25)

818(x, t) = β1
√

γ0

(

− tan

(

2
√

γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

+ sec

(

2
√

γ0

(

h

(

x−
λ1t

α

α

)

+ s

)))

ei(−kx+ wtα

α
+φ), (26)

819(x, t) = β1
√

γ0

(

− cot

(

2
√

γ0

(

h

(

x−
λ1t

α

α

)

+ s

))

+ csc

(

2
√

γ0

(

h

(

x−
λ1t

α

α

)

+ s

)))

ei(−kx+ wtα

α
+φ),

(27)

820(x, t) = β1
√

γ0

(

tan

(√
γ0

2

(

h

(

x−
λ1t

α

α

)

+ s

))

+ cot

(√
γ0

2

(

h

(

x−
λ1t

α

α

)

+ s

)))

ei(−kx+ wtα

α
+φ). (28)

The following figures present various aspects of soliton

solutions 811(x, t) for two different values of the fractional-order

parameter α = 0.5 and α = 1.5. The simulations are based on the

following parameters:

a = −0.9, b = 0.2, w = 2,

τ1 = 0.1, τ3 = 0.1, τ4 = 0.5,

τ5 = 0.5, τ6 = 0.5, τ7 = 0.7,

τ8 = 1, τ9 = 2, h = 0.1,

c1 = 0.1, c2 = 0.1, γ0 = −10,

φ = 0.1, s = 0.5.

The results are presented for different values of the fractional

order parameter α.

The figures provide a comparative analysis of soliton intensity,

spatial profiles, peak magnitudes, and wave front dynamics. The

results demonstrate the influence of varying α on the dynamics and

shape of the solitons. As shown in Figure 13, the soliton intensity

|811(x, t)|2 varies with α. For α = 0.5, the soliton maintains

a broader profile, indicating slower propagation. In contrast, at

α = 1.5, the soliton exhibits a sharper, faster-evolving profile.

Figure 14 highlights the spatial profile of 811 at a fixed time. The

soliton for α = 1.5 is narrower and shifts forward compared to

α = 0.5. This indicates that higher α accelerates the soliton’s

evolution and alters its spatial localization. Figure 15 shows how the

peak magnitude evolves over time. For α = 0.5, the peak stabilizes

slowly, while for α = 1.5, the soliton reaches its peak faster.

This reflects the faster temporal evolution of solitons at higher

α. Figure 16 illustrates the propagation of the soliton wave front

over time. For α = 1.5, the wave front progresses more rapidly

compared to α = 0.5, indicating enhanced soliton mobility and

faster response to perturbations. These results demonstrate that the

fractional parameter α significantly affects the soliton’s propagation

speed, spatial profile, and peak intensity. Higher values of α lead

to faster, more localized solitons, while lower α values result in

broader, slower-moving solitons.

FIGURE 13

3D Soliton intensity plots of |811(x, t)|2 (tanh profile) for various

α values.

FIGURE 14

Spatial profile of 811(x, t) at a fixed time.

5 Application of the Kudryashov
method

5.1 Kudryashov method

The Kudryashov method is a powerful and efficient analytical

approach for deriving exact solutions to nonlinear differential

equations, particularly in the context of soliton theory and

wave propagation [43]. This method has been widely applied to

nonlinear evolution equations, offering explicit forms of soliton

solutions that are crucial for understanding complex dynamical

systems. In this section, we employ the Kudryashov method

to obtain new conformable optical soliton solutions for the

concatenated nonlinear model, providing deeper insights into the

propagation of solitons in optical fibers.
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FIGURE 15

Peak magnitude evolution of |811(x, t)|2 over time.

FIGURE 16

Wave front position over time for 811(x, t).

The Kudryashov method is a systematic approach for deriving

exact solutions to nonlinear differential equations. The process

begins by formulating the governing nonlinear equation and

applying a traveling wave transformation, typically ξ = h(x− vtα

α
),

to reduce the partial differential equation (PDE) to an ordinary

differential equation (ODE). An ansatz is then assumed for the

solution, often in the form 8(ξ ) = η0 +
∑N

i=1 ηiχ
i(ξ ), where χ(ξ )

is a known function, such as a hyperbolic or trigonometric function.

To determine the expansion degree N, the balancing principle

is applied, equating the highest-order derivative term with the

dominant nonlinear term in the equation. The assumed solution

is substituted into the reduced ODE, leading to a polynomial

equation in terms of χ(ξ ). By collecting like terms and setting the

coefficients of each power of χ(ξ ) to zero, a system of algebraic

equations is obtained. Solving this system provides the unknown

constants (ηi, k, etc.), which are then used to construct the

explicit soliton solutions. These solutions are further analyzed and

visualized to examine soliton dynamics, stability, and propagation

characteristics. The method also allows for the evaluation of

physical properties such as energy, peak intensity, and interaction

behaviors, offering deeper insights into the complex dynamics of

soliton systems.

The following solution, applicable to this model, is adopted

from [44]:

χ(ξ ) =
1

(c1 − c2) sinh(ξ )+ (c1 + c2) cosh(ξ )
, (29)

where c1 and c2 are arbitrary constants that can be tuned to satisfy

the boundary conditions and the constraints of the governing

nonlinear equation. This function represents a general form of

solitary wave solutions that exhibit localized behavior over an

extended spatial domain [45]. The function χ(ξ ) satisfies the

following fundamental relation:

(

dχ(ξ )

dξ

)2

= χ(ξ )2
(

1− 4c1c2χ(ξ )
2
)

. (30)

Equation 30 highlights the nonlinearity inherent in the system,

which governs the shape and amplitude of solitons. This quadratic

relationship implies that the soliton amplitude is influenced by the

interaction between the coefficients c1 and c2, making it possible to

control the soliton profile through these adjustable parameters.

To construct explicit soliton solutions to Equation 9,

we adopt the following series representation using the

Kudryashov approach:

8(ξ ) = η0 +
N
∑

i=1

ηiχ(ξ )
i, (31)

where η0, η1, . . . , ηN are unknown constants that need to be

determined. The parameter N denotes the highest power of χ(ξ )

in the series expansion and is determined by balancing the highest-

order derivative term and the nonlinear term in the governing

equation. This series form enables the extraction of various

soliton profiles by solving a system of algebraic equations for the

coefficients ηi.

This procedure results in a system of algebraic equations

as follows:

(χ(ξ ))0 : 384c21c
2
2ρ1β1 − 8c1c2ρ2β

3
1 − 4c1c2ρ3β

3
1 + ρ5β

5
1 = 0,

(χ(ξ ))1 :−16c1c2ρ2β0β
2
1 − 4c1c2ρ3β0β

2
1 + 5ρ5β0β

4
1 = 0,

(χ(ξ ))2 :−8c1c2ρ2β
2
0β1 + 10ρ5β

2
0β

3
1 − 8c1c2ρ1β1 − 8c1c2ρ1β1

+ (ρ2 + ρ3 + ρ6)β
3
1 = 0,

(χ(ξ ))3 : 10ρ5β
3
0β

2
1 + 2ρ2β0β

2
1 + ρ3β0β

2
1 + 3ρ6β0β

2
1 = 0,

(χ(ξ ))4 : 5ρ5β
4
0β1 + ρ2β

2
0β1 + 3ρ6β

2
0β1 + (ρ1 + ρ4 + ρ7)β1 = 0,

(χ(ξ ))5 : ρ5β
5
0 + ρ6β

3
0 + ρ7β0 = 0.

(32)
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Once again, two cases can be considered. First case: The

solutions to the above system are given by:

ρ1 = −ρ4 − ρ7,

ρ5 =

3
(

(

−ρ2 + ρ3
2 + 2ρ6

)

ρ4 + 4ρ7

(

−ρ2 + ρ3
3 + 3ρ6

2

))

(ρ2 + ρ3 + ρ6)

(9ρ4 + 10ρ7)2
,

β0 = 0,

β1 = −
2
√
−2 (ρ2 + ρ3 + ρ6) c1c2 (9ρ4 + 10ρ7)

ρ2 + ρ3 + ρ6
.

(33)

Using Equations 4, 5, 8, and 33, the following optical solutions

are derived

821(x, t) =
β1e

i
(

−kx+ wtα

α
+φ

)

(c1 − c2) sinh
(

h
(

x− λ1t
α

α

))

+ (c1 + c2) cosh
(

h
(

x− λ1t
α

α

))

,

822(x, t) =
β1

2c2
sech

(

h

(

x−
λ1t

α

α

))

e
i
(

−kx+ wtα

α
+φ

)

,

823(x, t) = −
β1

2c2
csch

(

h

(

x−
λ1t

α

α

))

e
i
(

−kx+ wtα

α
+φ

)

.

(34)

A second case can be considered: The solutions to the algebraic

system yield the following expressions:

ρ4 = −ρ7 − ρ1,

ρ5 =
3 (ρ6 + ρ2 + ρ3)

((

ρ2 − ρ3
2 − 2ρ6

)

ρ1 − ρ7
(

ρ2 + ρ3
3

))

(9ρ1 − ρ7)2
,

β0 = 0,

β1 =
2
√
2 (ρ6 + ρ2 + ρ3) c1c2 (9ρ1 − ρ7)

ρ6 + ρ2 + ρ3
.

(35)

Utilizing Equations 4, 5, 8, and 35, the following optical

solutions are derived:

824(x, t) =
β1e

i
(

−kx+ wtα

α
+φ

)

(c1 − c2) sinh
(

h
(

x− λ1t
α

α

))

+(c1 + c2) cosh
(

h
(

x− λ1t
α

α

))

,

825(x, t) =
β1

2c2
sech

(

h

(

x−
λ1t

α

α

))

e
i
(

−kx+ wtα

α
+φ

)

,

826(x, t) = −
β1

2c2
csch

(

h

(

x−
λ1t

α

α

))

e
i
(

−kx+ wtα

α
+φ

)

.

(36)

5.2 Visualization and analysis of soliton
dynamics

Figure 17 displays the time evolution of |824(x, t)|2 for four

distinct time slices (t = 1, 3, 5, 7). The soliton maintains a smooth

bell-shaped profile as it propagates in the positive x-direction. The

peak intensity gradually decreases, and the soliton broadens slightly

over time, indicating a stable, spreading wave. The curve shifts

FIGURE 17

Temporal evolution of |824(x, t)|2 at di�erent time slices.

FIGURE 18

Temporal evolution of |825(x, t)|2 at di�erent time slices.

rightward, highlighting the directional propagation of the wave.

Figure 18 illustrates the evolution of |825(x, t)|2, where the soliton
retains a bright, localized peak as it propagates. The peak remains

nearly constant in intensity, a characteristic of bright solitons.

Over time, the soliton maintains its structure while moving along

the positive x-axis, demonstrating its robustness and stability.

Figure 19 presents the evolution of |826(x, t)|2, which features

sharp peaks caused by the singularity of the csch function. The

soliton exhibits high-intensity spikes at different time steps, with

the peaks shifting rightward as time progresses. The peak intensities

are significantly larger compared to 824 and 825, highlighting

the soliton’s distinct singular nature. Figure 20 illustrates the

logarithmic peak intensity evolution of the soliton solutions 824,

825, and 826 over time. All the figures presented were generated

using the parameter values listed in Table 1.
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FIGURE 19

Temporal evolution of |826(x, t)|2 at di�erent time slices.

FIGURE 20

Log peak intensity evolution of 824, 825, and 826 over time.

The soliton solutions 824 and 825 maintain stable peak

intensities throughout their evolution, exhibiting only minimal

decay over time. This behavior highlights their inherent stability

as soliton structures, making them resilient to dispersive and

nonlinear effects. In contrast, 826 displays pronounced high-

intensity spikes and irregular fluctuations, a hallmark of singular

solutions driven by the hyperbolic cosecant function embedded

in its formulation. These sharp intensity variations reflect its

susceptibility to rapid amplitude changes. Notably, after t = 6, 826

experiences a rapid decay in energy, leading to a transition into a

lower energy state. This post-peak energy loss further emphasizes

the transient and unstable nature of 826 compared to the more

stable profiles of 824 and 825.

5.3 Multi-soliton interactions and collisions

We analyzed the structural relationships in soliton interactions

and examined their properties. This part delves into the interaction

dynamics between two distinct soliton solutions, namely the Sech-

based soliton 825 and the Csch-based soliton 826, derived using

the Kudryashov method. These soliton solutions exhibit distinct

characteristics: 825 is known for its localized and stable bell-

shaped profile, while 826 introduces a singular behavior due to its

hyperbolic cosecant structure [46].

The interaction between solitons is modeled here via linear

superposition of two exact solutions (825 and 826). While

this approach does not yield a true multi-soliton solution,

it offers a tractable approximation for non-integrable systems.

Notably, Equation 1 contains non-variational terms involving 8∗,

precluding a Lagrangian formulation and thus the use of action-

based interaction analysis. The superposition method is therefore

used as a qualitative tool to capture essential features of soliton

dynamics such as amplitudemodulation and energy redistribution.

The combined soliton solution for the multi-soliton interaction

is constructed by superimposing the two solitons:

8total(x, t) = 825(x, t)+ 826(x, t), (37)

where

825(x, t) =
β1

2c2
sech

(

h

(

x−
λ1t

α

α

))

ei(−kx+ wtα

α
+φ), (38)

and

826(x, t) = −
β1

2c2
csch

(

h

(

x−
λ1t

α

α

))

ei(−kx+ wtα

α
+φ). (39)

The interaction between 825 and 826 reveals complex

dynamics driven by the interplay of the hyperbolic secant

and cosecant functions, leading to energy exchange, intensity

fluctuations, and non-trivial collision behavior.

Figure 21 presents the log10 contour plot of the combined

soliton interaction over time and space. The color gradient

effectively visualizes the soliton trajectories and intensity variations.

The Sech-based soliton (825) contributes a smooth, bell-shaped

trajectory, while the Csch-based soliton (826) introduces sharp

gradients and localized spikes due to its singular nature.

The contour plot illustrates the propagation of solitons

over the spatial domain, with visible energy exchanges during

interactions. High-intensity regions are marked in warmer colors,

while regions of lower intensity are displayed in cooler tones.

The log scale enhances the visualization of both strong and weak

intensity regions.

To further analyze the interaction dynamics, Figure 22 displays

the evolution of the peak intensity over time on a logarithmic

scale. The plot captures the oscillatory behavior of the intensity

peaks, reflecting energy fluctuations during the interaction process.

The logarithmic scale highlights subtle variations and abrupt

intensity spikes. The observed fluctuations are characteristic of the
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TABLE 1 Parameters used to generate all figures in the Kudryashov method, including the log peak intensity plot.

Parameter Symbol Value Parameter Symbol Value

Chromatic dispersion a –0.9 Higher dispersion τ7 0.7

Kerr nonlinearity b 0.2 Nonlinear interaction τ8 1

Angular frequency w 2 Nonlinear interaction τ9 2

Dispersion term τ1 0.1 Scaling factor h 0.1

Nonlinearity term τ3 0.1 Coefficient 1 c1 0.1

Self-Phase modulation τ4 0.5 Coefficient 2 c2 0.1

Nonlinear term τ5 0.5 Fractional derivative α 1.2

Fifth-Order term τ6 0.5 Arbitrary constant φ 0.1

Conformable parameter s 0.5 Scaling constant c1 1

Scaling constant c2 0.8 Conformal derivative γ0 -10

Amplitude factor β1 1

FIGURE 21

log10 Contour plot of multi-soliton interaction between 825 and

826. The plot highlights the evolution of soliton intensities and their

propagation paths over time.

interaction between stable and singular soliton structures, where

transient energy surges occur at collision points.

To provide a clearer and more concise understanding of soliton

evolution, Figure 23 presents intensity profiles at specific time

slices, revealing how the spatial structures of the solitons 825 and

826 evolve during their interaction. These snapshots depict the

dynamic nature of the soliton profiles, showcasing key phenomena

such as energy exchange, stability, and collision dynamics. The

interaction between the sech-based soliton 825 and the csch-based

soliton 826 demonstrates transient energy redistribution,

where peak intensities undergo periodic amplification

and suppression.

Notably, 825 retains structural stability despite the interaction,

while 826 exhibits significant fluctuations due to its inherent

singular characteristics. During collision events, sharp intensity

FIGURE 22

log10 Peak intensity evolution of the multi-soliton interaction.

Fluctuations indicate energy exchange and dynamic interactions

between 825 and 826.

spikes are observed, followed by the gradual restoration of

each soliton’s original profile, reflecting the hallmark elastic

behavior of soliton interactions. The contrasting behaviors of these

two soliton types result in complex nonlinear dynamics. 825

displays localized energy concentration and stable propagation,

making it ideal for applications that demand signal consistency.

In contrast, 826 undergoes rapid intensity shifts and strong

localization effects, which are commonly observed in singular

soliton dynamics and have implications in fields such as plasma

physics and hydrodynamics.

The logarithmic intensity analysis provides deeper insight into

both dominant and subtle features, capturing energy fluctuations

across strong and weak regions within the system.

To quantify these interactions, the total energy of the system is

computed using the expression:
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FIGURE 23

Soliton intensity profiles at selected time nodes, illustrating the

evolution and collision dynamics of 825 and 826 during interaction.

E(t) =
∫ ∞

−∞

∣

∣825(x, t)+ 826(x, t)
∣

∣

2
dx,

where 825(x, t) and 826(x, t) represent the individual soliton

waveforms, and |8(x, t)|2 corresponds to the soliton intensity.

Expanding the square modulus gives:

E(t) =
∫ ∞

−∞

(

|825(x, t)|2 + |826(x, t)|2

+ 2ℜ
[

825(x, t)8
∗
26(x, t)

] )

dx,

where the total energy includes contributions from each soliton

and an interaction term reflecting interference effects. The energy

dynamics were calculated numerically using the trapezoidal rule

for spatial integration, with the results plotted over time on a

logarithmic scale (log10) to highlight fluctuations and ensure clear

visibility of energy variations. The energy evolution, illustrated in

Figure 24, reveals distinct patterns for the two solitons. The Sech-

based soliton 825 maintains a stable energy profile, indicating its

robustness against interaction-induced perturbations. In contrast,

the Csch-based soliton 826 undergoes frequent energy spikes and

fluctuations, a direct consequence of its singular nature. Despite

these localized changes, the total energy of the system remains

largely conserved, adhering to the principles of integrable systems

where energy conservation is a fundamental characteristic. This

conservation persists even during intense soliton interactions,

underscoring the stability of the system. The energy exchange

between the solitons highlights how transient redistributions occur

without violating global conservation laws. Such behavior is

pivotal in understanding energy transfer mechanisms in nonlinear

media, with practical applications in optical communication, fluid

dynamics, and plasma physics. The combined analysis of intensity

evolution and energy dynamics emphasizes the diverse behaviors

that arise from the interaction of Sech-based and Csch-based

FIGURE 24

Energy exchange dynamics between the Sech-based soliton 825

and the Csch-based soliton 826.

solitons. It also showcases the effectiveness of fractional calculus

in modeling complex soliton systems, enabling the accurate

depiction of nonlinear interactions, stability considerations, and

energy conservation. These insights not only deepen the theoretical

understanding of soliton behavior but also pave the way for

future explorations in applied fields where soliton dynamics play

a critical role.

6 Conclusion

This study presents a comprehensive analysis of multi-

soliton dynamics within a conformable concatenated nonlinear

model, integrating the nonlinear Schrödinger equation (NLSE),

the Sasa-Satsuma (SS) equation, and the Lakshmanan-Porsezian-

Daniel (LPD) model. Through the application of advanced

analytical techniques—specifically, the modified simplest equation

method and the Kudryashov approach—a wide array of exact

soliton solutions was systematically derived, including bright,

dark, and mixed types. These solutions offer valuable insights

into the complex interplay between higher-order dispersion

and nonlinear effects, which strongly affect soliton stability,

propagation dynamics, and spatial evolution in optical fibers.

A key contribution of this research lies in the incorporation of

a conformable fractional derivative, which significantly extends the

analytical scope of the model. This fractional framework enables

precise and accurate modeling of fractional-order dynamics,

capturing intricate behaviors such as energy dissipation, temporal

evolution, and soliton stability under varying system parameters.

The study reveals how small variations in the fractional

order significantly alter soliton profiles, peak intensities, and

interaction dynamics, thereby enhancing the flexibility and depth

of soliton analysis.

The energy dynamics of soliton interactions were also

meticulously examined, emphasizing both individual soliton
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energies and the total system energy. Using numerical integration

techniques, it was demonstrated that—despite complex interaction

events such as elastic and inelastic collisions—the total energy of

the system remains largely conserved. This observation reflects

a fundamental property of soliton systems within integrable

models, demonstrating that localized fluctuations do not disrupt

overall energy conservation. The application of a logarithmic

scale in visualizations further confirmed these fluctuations while

reinforcing conservation principles.

Numerical simulations validated the analytical solutions and

illustrated how temporal and fractional parameters influence

soliton dynamics, peak intensities, and propagation behaviors.

Comparative analysis between sech- and csch-based solitons

revealed rich nonlinear phenomena, including energy exchange,

amplitude modulation, and collision-induced structural changes.

In particular, the energy stability of sech-based solitons contrasted

with the pronounced fluctuations of csch-based solitons, providing

valuable insight into the diverse dynamics governing nonlinear

wave systems.

The insights gained from this study not only deepen the

understanding of nonlinear wave dynamics but also pave the

way for the development of next-generation telecommunication

systems. The ability to model, predict, and control soliton behavior

with high precision holds immense potential to enhance data

transmission efficiency, reduce signal degradation, and optimize

optical network infrastructures. Ultimately, the integration of

fractional calculus into soliton research opens new avenues for

the exploration of complex nonlinear systems across diverse

scientific fields, including fluid dynamics, plasma physics, and

quantum mechanics.
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