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In minimal risk portfolios, costs associated with transactions are essential in calculating 
the net performance. The transaction costs of maintaining such portfolios are 
predominantly negative due to the fact that traditional portfolio optimization 
strategies, which focus solely on risk and return, neglecting transaction costs 
typically incurred through rebalancing. This research analyzes the impact of costs 
associated with transactions while constructing minimum risk portfolios centered 
around risk parity models and provides a way to control those costs. We investigate 
the performance of portfolios under fixed and flexible costs and include these 
parameters in the optimization model to achieve more realistic results. Applying 
real-world data on conventional stock portfolios and highly volatile cryptocurrency 
markets, we  demonstrate the performance of mean–variance optimization  
(M-V), risk parity with standard deviation (RP-Std), and risk parity with Conditional 
Value at Risk (RP-CVaR) through empirical data for both stock portfolios and 
cryptocurrencies. We found that potential transaction costs can cause portfolio 
returns to change by anywhere between 0.5 to 2% per year depending on how often 
one trades, and market conditions. By highlighting how crucial it is to incorporate 
transaction costs into the decision-making process, this study contributes to the 
expanding literature of research on portfolio optimization. For investors looking 
to create and manage their portfolios in a way that balances risk, return, and cost 
effectiveness, our findings offer useful insights. Future studies might investigate 
adaptive models that dynamically adapt to shifting cost structures and market 
situations, or they could generalize these findings to other asset classes.
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1 Introduction

Minimum risk portfolios seek to minimize risk while achieving a certain threshold of 
returns. As such, these portfolios are constructed using mean–variance optimization or other 
risk-minimizing techniques. Yet, in practice, the construction and management of such 
portfolios have hidden costs such as brokerage commissions, bid-ask spreads, taxes, and 
market impact costs. These transaction costs can offset the benefits from portfolio optimization, 
in particular from active strategies that require constant rebalancing. This research examines 
the impact of transaction costs on minimum risk portfolios, in addition to existing literature 
on how to model these costs in a portfolio optimization framework.

Transaction costs are a significant addition to the problem, which is both difficult from a 
control perspective because the solution now requires singular control and extremely relevant 
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from a financial one. Some works propose a data-driven approach to 
portfolio optimization that tackles transaction costs and estimation 
error simultaneously by treating the transaction costs as a 
regularization term to be calibrated (1).

In the financial markets, liquidity is crucial and influences a wide 
range of variables, such as risk, returns, and stock prices. The order book, 
which records traders’ orders to purchase and sell stocks at various price 
points, is typically used to gauge liquidity in the stock market (2).

Few portfolio managers in the real world ignore transaction costs at 
the portfolio-selection stage and simply pay them after the fact. Doing so 
can be expected to result in worse net performance (that is, performance 
after transaction costs), at least for high-turnover strategies. Therefore, 
Ledoit and Wolf propose a way to account for transaction costs at the 
portfolio-selection stage (3).

Transaction costs are a source of concern for portfolio managers. 
Due to the change in expectation of a future return of securities, most 
applications of portfolio optimization involve the revision of an existing 
portfolio. This revision entails both purchases and sales of securities 
along with transaction costs (4).

By considering investor’s preferences such as transaction costs and 
liquidity needs, Wang et al. have developed a class of uncertain mean-
CVaR portfolio models that are more realistic to real-world stock trading 
markets (5).

In their paper, Gou et  al. include the peer effect into the return 
forecast where the predicted return of one risky asset not only depends on 
its past return data but also the other risky assets in the financial market, 
which gives a more accurate prediction (6). An adaptive moving average 
method with peer impact (AOLPI) is proposed, in which the decaying 
factors can be adjusted automatically in the investment process (6).

De Miguel et al. evaluate the out-of-sample performance of the 
sample-based mean–variance model, and its extensions designed to 
reduce estimation error, relative to the naive 1/N portfolio (7). Of the 14 
models they evaluate across seven empirical datasets, none is consistently 
better than the 1/N rule in terms of Sharpe ratio, certainty-equivalent 
return, or turnover, which indicates that, out of sample, the gain from 
optimal diversification is more than offset by estimation error (7).

Transaction costs are the expenses incurred when buying or selling 
financial assets. They can be  categorized into explicit costs (e.g., 
brokerage fees, taxes) and implicit costs (e.g., bid-ask spreads, market 
impact). In the context of minimum risk portfolios, transaction costs 
arise during initial portfolio construction, periodic rebalancing to 
maintain the desired risk profile and adjustments due to changes in 
market conditions or investor preferences

Studies have shown that transaction costs can reduce portfolio 
returns by 0.5 to 2% annually, depending on the trading frequency and 
market conditions (8).

Transaction costs can alter the risk–return profile of a portfolio. For 
instance, a portfolio optimized without considering transaction costs 
may appear efficient in theory but could underperform in practice due 
to the drag of these costs. Key impacts include:

 • Reduced Net Returns: transaction costs directly reduce the net 
returns of a portfolio, making it harder to achieve the desired 
risk-adjusted performance (9).

 • Suboptimal Asset Allocation: ignoring transaction costs may lead 
to the selection of assets that are expensive to trade, resulting in 
a suboptimal portfolio (10).

 • Increased Tracking Error: for portfolios benchmarked against an 
index, transaction costs can increase tracking error, as frequent 
rebalancing may deviate from the benchmark (7).

As mentioned (4, 5, 7), most of the literature uses few models to 
optimize the financial portfolio with transaction cost due to their 
complexity to integrate and implement. Our focus is not only in the 
simple models like the uniform portfolio, or the traditional Mean 
Variance and Conditional Value at Risk, but also in the novelty of the 
Risk Parity models in the recent years. Integrating the transaction cost, 
with the traditional portfolio composed by stocks or the recent 
portfolios created using cryptocurrency (11), will make a better 
estimation for the investors and speculators in purpose to gain more 
from market.

The aim of this work is to present the comparison cases of 
transaction cost in case of fixed cost and variable cost between the 
minimum risk case and the Risk Parity cases. For the minimum risk 
we use the standard deviation and the Conditional Value at Risk as 
risk measures. The Risk Parity cases are calculated with three different 
methods, in which one uses the standard deviation and the other two 
the Conditional Value at Risk and the worst-case scenario that we call 
Risk Parity with CVaR Naïve.

This article is organized as follows: Section 2 outlines the 
theoretical framework for the models used. Section 3 considers case 
studies, and Section 4 concludes.

2 Models and methodology

The models used in this paper includes a variety of models with 
differing complexities, starting from the simplest Naïve or Uniform, 
passing through the traditional Mean Variance, Conditional Value 
at Risk, to the more recent Risk parity Strategies. From the 
optimization point of view, we also compare quadratic optimization 
(Mean Variance) with linear optimization (CVaR and Risk 
parity strategies).

Firstly, we describe a portfolio created by n-assets with allocation 
weights w = (w1, w2, …,wn), the square root of the variance is 
given by

 

( )σ σ
= =

= = ′Λ∑∑
1 1

n n

P ij i j
i j

w w w w w

 (1)

in which Λ  is the covariance matrix from for the returns.
If the returns are μ = (μ 1, μ 2, …, μ n) then the constrain for the 

portfolio return is

 
µ µ µ

=
= ′=∑

1

n

P i
i
w w

 (2)

These two equations, Equations 1 and 2 are needed for the Mean 
Variance portfolio, in case that the short selling are not allowed 
(Equation 9), and the weights expressed in percentage of the 
investment (Equation 8).
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The other model used in this paper is Expected Shortfall or 
(Equation 3) Conditional Value at Risk which can be  calculated 
as follow:

 
( ) ( )µ µβ β = − ≤ − PE VaR|S w E wP  (3)

As in continuous case (Equation 4), we have

 
( ) ( )β

β =
β ∫0
1 VaR w dvES w v

 (4)

With an ( )β∈ 0,1
Also, with the Conditional Value at Risk, like in the case of 

Mean Variance, the short selling is not allowed ( ≥ 0w ), and the 
weights expressed in percentage of the investment. These two 
categories try to minimize the risk for a level of return, and if the 
constrain of expected returns is not considered (Equation 2), they 
will give the minimal risk of the portfolio. Usually, the models that 
rely on the expected return constrain tend to have high 
concentrations. For that the novice Risk Parity strategies 
are created.

The Equally Risk Contribution (risk parity condition) using the 
standard deviation as a risk measure (Equation 5) can be divided in 
totally risk contribution (Equation 6) of each asset i:
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The Risk Parity model can be  formulated as the following 
optimization problem (Equation 7):
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 ≥ 0iw  (9)

The same result starting from the Expected Shortfall given in 
Equations 3 and 4, which is equivalent to the ( )αCVaR x , as Tasche 
and Acerbi (12) and Stefanovits (13) showed in their work, under the 
condition that −  < ∞ E X . They used only in the case where the 
variables are normally distributed, which is far from the reality.

In the same way, we divide the Total Risk contribution for each 
asset i of a portfolio is given by the following expression (Equation 10):
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Equations 11 and 12 are necessary for the numerical 
approximation in case of discrete data that we will use. Passing from 
standard deviation to Conditional Value at risk, we can study if there 
is a significant difference also in terms of transaction costs. The Risk 
parity strategies are considered as true diversification since they 
equalize the Total Risk contribution. From this point of view Mean 
Variance equalize the Marginal risk contribution given only by the 
part of the partial derivative. We  also implement the worst-case 
scenario for the Conditional Value at risk. We call it Risk Parity with 
CVaR naïve.

After we calculate the optimal weights, we use them to calculate 
the transaction costs (Equation 13). If we will take in consideration 
the variable transaction cost:

 α +
=

= −∑ 1
1

nt t t
i i iiVC w w∣ ∣ (13)

Where t
iw  denotes the weight of asset i at time t and α  is the 

variable cost.
For the fixed cost for the asset
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In Equation 14, γ i is the fixed cost applied.
In this index function in application, we put a threshold ε  of 

tolerance for which if the difference is smaller than a certain limit 
(Equation 15), we consider them as equal

 

+ +

+ +
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For the level of tolerance, we will have different results. The total 
cost at the time t is calculated as follows (Equation 16):

 ( )=
= +∑ 1

nt t t
i iiC FC VC

 (16)
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FIGURE 1

The out-of-sample performance of portfolios composed of 10 
stocks.

Gârleanu and Pedersen provide empirical evidence that 
incorporating transaction costs into dynamic trading strategies 
improves net returns (14). In this case, we can include the transaction 
costs at the objective function (Equation 17):

 
( )=

−∑ 1

max
ìT t t t

t t w C
w  (17)

We propose in case of minimum risk the following addition 
(Equation 18)
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Since the framework is for the minimum risk, we can reach that 
by not including the expected portfolio return constrain. In case of 
minimum Conditional Value at Risk we change the risk measure in 
the objective function.

For the Risk Parity model the linear programing formulation 
including the transaction costs will be as follow (Equation 19):
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We do not allow the short selling (Equation 20) and express the 
budget invested in percentage of the total capital (Equation 21). From 
the optimization we have to deal with a Least squared methods, which 
is quadratic and a linear optimization for the cost. All the calculation 
is done in Matlab 2016 (c) on a windows operation system using 
12 Gb of Ram and Intel(R) Core(TM) i7-7500U CPU.

3 Empirical application

3.1 The case of a portfolio only with stocks

In this study, we choose 10 stocks for Top EA Bridgeway Blue 
Chip ETF (BBLU) dataset for the period from January 9, 2024 to 
January 8, 2025 with daily frequency, of 1 year or 252 trading days in 
total. The data is available at nasdaq.com (Table 1).

In order to have a portfolio updated, we calculate each week, 
based on the past 25 weeks, the asset allocation. For that we create a 
rolling window with L = 125 days (6 months) and H = 5 days, where 
L are the daily observation used to estimate the weights and H is the 
holding period during of which we calculate the performance of the 
portfolio using the compound return, thus, we have to do 25 more 
iterations. The performance is given by the following graph (Figure 1):

Figure 1 illustrates the compound return of different portfolio 
optimization strategies over time, using a rolling window approach for 
the portfolios composed by 10 stocks. Strategies like Risk Parity CVaR 
and Risk Parity CVaR Naive may have smoother compound return 
curves since they are intended to reduce tail risk and deliver more 
steady performance during market downturns. The M-V approach 
may exhibit increased unpredictability in compound returns because 
it is susceptible to changes in expected returns and variances, which 
can shift dramatically over short periods of time. The Risk Parity with 
standard deviation strategy, which focuses on distributing risk across 
assets, may provide a balanced compound return profile. The rolling 
window technique guarantees that the compound return represents 
the most recent 6 months’ performance, which is updated every 
5 days. This helps to capture the changing nature of the market and 
the flexibility of each approach.

The Risk Parity CVaR strategy might outperform others during 
periods of high market volatility, as it explicitly accounts for tail risk. 
The M-V strategy could outperform during stable or bullish market 
conditions, where mean and variance estimates are more reliable. The 
Risk Parity CVaR Naive strategy might underperform compared to the 
refined Risk Parity CVaR approach, especially during extreme market 

TABLE 1 The list of top EA Bridgeway Blue Chip ETF (BBLU).

Nr. Name of the stock (TICKET)

1 Meta Platforms, Inc. Class A Common Stock (META)

2 NVIDIA Corporation Common Stock (NVDA)

3 JP Morgan Chase & Co. Common Stock (JPM)

4 Broadcom Inc. Common Stock (AVGO)

5 Tesla, Inc. Common Stock (TSLA)

6 Apple Inc. Common Stock (AAPL)

7 Visa Inc. (V)

8 Microsoft Corporation Common Stock (MSFT)

9 Eli Lilly and Company Common Stock (LLY)

10 Wells Fargo & Company Common Stock (WFC)

Source: Nasdaq.com.
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events. The uniform strategy will have no transaction cost but also 
more drawdown.

We assume a transaction cost threshold of ε = 0.0001 to ponder 
as a significant difference between the weights in order to apply the 
turnover. The level of variable cost is α =1% and for fixed cost 
we assume a flat structure γ = 20  USD according to Lyons (15). By 
considering a volume of trade is V = 10,000 USD.

Figure 2 highlights the trade-offs between different strategies in 
terms of transaction costs, which is crucial for portfolio optimization 
for 3 levels of tolerance of the threshold. The data provided represents 
the total cost for different portfolio optimization strategies under 
varying values of ε (epsilon), which acts as a tolerance level in the 
model. The strategies include Risk Parity with Standard Deviation 
(RP-Std), Mean–Variance Optimization (M-V), Risk Parity with 
Conditional Value-at-Risk (RP-CVaR) in both naive and refined 
forms, and standalone Conditional Value-at-Risk (CVaR).

In Table 2, as ε increases from 0.00001 to 0.01, the total cost 
generally decreases for most strategies, indicating that larger values 
of ε lead to more cost-efficient outcomes. For instance, Risk Parity 
with standard deviation decreases from 609.63 to 249.63, M-V 
decreases from 802.53 to 582.53, and Risk Parity CVaR Naive 
shows a significant drop from 544.37 to 104.37. However, Risk 
Parity CVaR remains constant at 429.48 for ε = 0.00001 and 
ε = 0.001, before decreasing to 249.48 at ε = 0.01, while CVaR 
decreases slightly from 747.13 to 607.13. The Risk Parity CVaR 
Naive strategy demonstrates the most dramatic reduction in total 
cost, making it the most sensitive to changes in ε and potentially 
the most efficient at higher ε values. This analysis highlights the 
impact of ε on optimization outcomes and helps in identifying the 
most cost-effective strategies under different conditions. If 
we change the threshold ε = 0.01  for the tolerance, it will less cost 
for the Risk Parity strategies, especially for the Risk Parity Naïve 
will have even less transaction costs.

3.2 The case of a portfolio only with 
cryptocurrencies

For the second case we  choose a portfolio composed by 
cryptocurrency only. The interval of data is for 1 year, but we have to 
remind that the crypto market is always opened.

We select from March 7, 2024 to February 20, 2025 for a total of 
348 observation. The following Table  3 gives the list of the 10 
cryptocurrencies from the whom we are going to create our portfolios. 
Cryptos are interesting to be studied since they have higher volatility.

We use the data of half of 1 year as an in-sample period L = 182 
and holding period L = 6 days with a total of 27 iterations. The 
following Figure  3 gives the performance in terms of 
compound returns.

Figure  3 illustrates the compound return of various portfolio 
optimization strategies applied to a portfolio of 10 cryptocurrencies 
over time. The graph shows how the compound return of each strategy 

FIGURE 2

The cost for increasing the level of tolerance. (A) ε =0.0001, (B) ε =0.001, (C) ε =0.01.

TABLE 2 The total cost for each level of ε.

Level of 
tolerance

RP-
Std

M-V RP-
CVaR 
Naive

RP-
CVaR

CVaR

ε  = 0.0001 609.63 802.53 544.37 429.48 747.13

ε  = 0.001 409.63 742.53 364.37 429.48 627.13

ε  = 0.01 249.63 582.53 104.37 249.48 607.13

TABLE 3 The list of cryptocurrencies selected, their ticket, average price 
and market cap.

Cryptocurrency Ticket Price 
(USD)

Market 
cap (USD)

Bitcoin BTC ~$30,000 ~$600 billion

Ethereum ETH ~$1,600 ~$200 billion

Binance Coin BNB ~$250 ~$40 billion

Ripple (XRP) XRP ~$0.55 ~$30 billion

Cardano ADA ~$0.25 ~$10 billion

Solana SOL ~$25 ~$10 billion

Dogecoin DOGE ~$0.07 ~$10 billion

TRON TRX ~$0.08 ~$8 billion

Polygon MATIC ~$0.60 ~$6 billion

Litecoin LTC ~$70 ~$5 billion

Source: Nasdaq February 20, 2025.
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evolves over time, reflecting the dynamic performance of the 
cryptocurrency portfolio under different market conditions. Strategies 
like Risk Parity CVaR and Risk Parity Naive may exhibit smoother 
compound return curves, as they are designed to mitigate tail risk and 
provide more stable performance during market downturns. The M-V 
strategy might show higher variability in compound returns, as it is 
sensitive to changes in expected returns and variances, which can 
fluctuate significantly in the volatile cryptocurrency market. The 
Uniform strategy serves as a baseline and may underperform more 
sophisticated strategies, especially during periods of high volatility.

The transaction cost the Fixed Costs are rare in most 
cryptocurrencies, except for XRP and Stellar, which have minimal 
fixed fees. Variable Costs: Depend on network congestion, transaction 
size, and blockchain used. For that we consider the level of variable 
cost is α =1% and for fixed cost we assume a flat structure γ = 50 USD, 
which can be  the subscription to the trading platforms. As in the 
previous case the volume of trade id V = 10,000 USD.

In Figure 4A, for the lowest level of tolerance ε  = 0.0001, all 
curves are relatively flat but high but Mean Variance shows the 
steepest spikes. For ε  = 0.001, Figure 4B, Risk Parity CVaR curve 

begins to separate from Risk Parity with standard deviation/Risk 
Parity CVaR Naive, trending downward. Mean Variance cost decreases 
but remains pronounced. These two are very similar with each other.

In Figure 4C, with the highest level of tolerance ε  = 0.01, the total 
cost decreases significant for all risk parity strategies, reaching the 
smallest value for Risk Parity with CVaR Naïve (also in Table 4). The 
weights selected with CVaR, almost unchanged in all three levels of 
tolerance, showing the same total cost.

For a better understanding we sum all the total cost for each level 
of tolerance, given in Table 4.

Mean Variance (M-V) has higher costs than Risk Parity with 
standard deviation across all ε values, indicating that standard 
deviation-based risk parity is more efficient than mean–variance 
optimization in this context. The CVaR strategy consistently yields the 
lowest cost (197.12) across all ε values, suggesting it is the most robust 
or conservative approach. This implies that CVaR optimization 
effectively minimizes tail risk regardless of the risk tolerance level. For 
most methods (except CVaR), increasing ε (allowing more risk) 
reduces the cost.

4 Conclusion

This study has explored the impact of transaction costs on the 
construction and management of minimum risk portfolios, with a 
particular focus on risk parity models. By incorporating both fixed 
and variable transaction costs into the optimization framework, 
we have demonstrated how these costs can significantly affect portfolio 
performance, particularly in the context of frequent rebalancing and 
dynamic market conditions. Our empirical investigation, which 

FIGURE 4

The cost for increasing the level of tolerance. (A) ε =0.0001, (B) ε =0.001, (C) ε =0.01.

TABLE 4 The total cost for each level of ε  in case of cryptos.

Level of 
tolerance

RP-
Std

M-V RP-
CVaR 
Naive

RP-
CVaR

CVaR

ε  = 0.0001 1363.63 1583.11 1201.91 880.41 197.12

ε  = 0.001 713.63 1233.11 701.91 830.41 197.12

ε  = 0.01 113.63 833.11 51.91 180.41 197.12

FIGURE 3

The out-of-sample performance of portfolios composed by 
cryptocurrencies.
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included both standard stock portfolios and cryptocurrency 
portfolios, emphasizes the trade-offs between different optimization 
algorithms as well as the need of taking transaction costs into account 
while managing a portfolio.

Transaction costs can significantly affect net returns, especially for 
methods requiring regular rebalancing, such as mean–variance 
optimization (M-V). Ignoring these costs might result in inefficient 
asset allocation and higher tracking error, reducing the efficacy of the 
portfolio strategy.

Risk parity strategies, particularly those that use Conditional Value 
at Risk (CVaR), offer more consistent performance, particularly during 
periods of significant market volatility. These models are intended to 
reduce tail risk and offer more evenly distributed risk contributions 
across assets, making them more robust to market downturns.

The degree of tolerance for weight modifications is significant in 
calculating transaction costs. Higher tolerance levels often result in 
reduced transaction costs since fewer deals are conducted. However, 
this must be evaluated against the possibility of increased tracking 
inaccuracy or departure from the targeted risk profile.

Cryptocurrencies, with their extreme volatility and distinctive 
transaction cost structures, pose new obstacles to portfolio 
optimization. Our study demonstrates that risk parity methods, 
particularly those based on CVaR, can be helpful in controlling the 
inherent hazards of cryptocurrency markets while keeping transaction 
costs relatively low.

The findings emphasize that while Risk Parity methods are effective 
in both asset classes, their implementation must account for market-
specific traits. Equities benefit from moderate rebalancing tolerance and 
RP-CVaR, whereas cryptocurrencies demand dynamic adjustments, 
with RP-CVaR Naïve or pure CVaR being preferable. This comparative 
analysis underscores that transaction costs and volatility regimes are 
critical in determining the optimal portfolio strategy, necessitating 
tailored approaches for equities versus cryptocurrencies.

While this study provides valuable insights into transaction cost-
aware portfolio optimization, several limitations must be acknowledged 
to guide future research. The analysis assumes fixed transaction costs 
and a uniform trade volume of $10,000, which may not reflect real-
world variability in execution costs or liquidity constraints. In practice, 
transaction costs are dynamic and depend on factors like bid-ask 
spreads, market impact, and asset liquidity—especially critical for 
cryptocurrencies, where slippage and thin order books can significantly 
alter execution costs. The fixed-volume assumption also overlooks 
whether markets can absorb such trades without adverse price 
movements. Future work should incorporate: (1) sensitivity analysis to 
test how varying cost levels and trade volumes affect strategy 
performance, (2) liquidity-adjusted models that account for bid-ask 
spreads and execution feasibility, and (3) dynamic cost frameworks 
that adapt to market depth and volatility regimes. Addressing these 
gaps would strengthen the practical applicability of the findings, 

particularly for high-frequency rebalancing or large-scale portfolios 
where execution costs dominate returns.
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