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Introduction: Advanced statistical modeling techniques, such as copula-based

methods, have significantly improved the forecasting of weather variables

by capturing dependencies between them. However, conventional copula

approaches, such as the bivariate copula, often fail to capture complex

interactions in high-dimensional climate data. This study aims to develop a

multivariate joint distribution model for climatic variables using the Hierarchical

Archimedean Copula (HAC) framework.

Methods: Parametric methods were used to fit marginal distributions to the six

variables. The uniform variates were extracted using the inverse transformation

technique. The structure and parameter estimation of HAC models were

determined using the Recursive Maximum likelihood (RML) method. Model

selectionmethods, Goodness of Fit (GOF) approaches, and graphical assessment

were used to select the optimal HAC model.

Results: The Weibull distribution was identified as the best fit for temperature,

humidity, solar energy, and cloud cover, while the Gamma distribution was most

suitable for wind, and the logistic distribution for sea-level pressure. For high-

dimensional data, the HAC Frank copula demonstrated computational e�ciency

and e�ectively captured dependencies among variables.

Discussion: The HAC-Frank model o�ers a reliable and computationally

e�cient alternative for modeling high-dimensional climate dependencies,

thereby providing a robust framework for climate forecasting, risk assessment,

and environmental modeling.

KEYWORDS

Hierarchical Archimedean Copula, cumulative distribution function, probability

distribution, goodness-of-fit tests, vine copula, multivariate dependence, climate

forecasting

1 Introduction

The impact of climate change has been on the upward trend in recent decade, affecting,

food security, disaster management, nutritional outcomes, infrastructure, among others

[1]. The unfavorable effect of climate change in Kenya has intensified due to over reliance

on subsistence farming, which is highly dependent on favorable weather conditions [2].
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According to IPCC [3] and Obwocha et al. [4], the adverse effect

of climate change is mainly due to interaction of multiple factors,

including high temperatures, erratic rainfall patterns, soil erosion,
and extreme weather events. To mitigate the effect of climate
change, it is imperative to understand the intricate relationships

among these weather variables [5–7].

Conventionally, the Pearson correlation coefficient has long
been used as a measure of dependence between two variables,

based on the assumption that the two variables have a linear

relationship [8]. In his research on pitfalls of correlation, Embrechts
et al. [9] highlighted a number of fallacies concerning correlation

and in his subsequent work, Embrechts et al. [10] provided some

alternative measures of correlation and introduced copulas as the
best alternative to understand dependence between variables. Over

the past three decades, the application of copulas has expanded

across various fields resulting in a better understanding of concept

of copulas [5, 11–15].

During this period of evolution of copula theory, the primary

focus has been on bivariate analysis as used in Chowdhary [5],

Cong and Brady [16], Dzupire et al. [17], and Yee et al. [18] for

joint modeling of climatic variables. A number of copula functions

exist to capture different dependence structures [19]. Among these,

Archimedean Copulas (ACs) are notable as one of the most widely

used copulas due to their flexibility, symmetry, and associativity

properties [16, 18]. In addition, ACs possess different generating

functions, making it flexible for capturing diverse dependence

structures [20]. Despite over reliance on use of ACs for bivariate

analysis, they fall short due to their exchangeability property and

reliance on a single parameter for measuring dependence [21]. In

this era of big data, to capture dependence for high dimensional

data would be problematic if a single parameter is used [22]. Hence,

to capture dependence for high dimensional data, researchers have

resorted to HAC or vine copulas to ensure flexibility is retained

within the bivariate analysis.

Although simple ACs are flexible, HAC models have proven to

be more flexible than ACs [15, 23]. The different levels of hierarchy

within the HAC models are particularly useful for capturing

asymmetries in bivariate dependencies, a task that standard ACs

cannot accomplish. Additionally, HAC models provide detailed

information about marginal cumulative distribution functions at

each node of the hierarchical tree.When a single generator function

is applied, these models facilitate simplified dependence analysis

across different hierarchical levels, allowing for varying degrees

of dependence between variable variables [24–26]. For instance,

Grimaldi and Serinaldi [27] and Serinaldi and Grimaldi [28]

used a trivariate copula to measure dependence between peak

and total depth, conditioned on critical depth. Saad et al. [26]

applied a trivariate HAC for hydrometeorological flood analysis.

Ribeiro et al. [6] used HAC to examine model dependencies

among precipitation, maximum temperature, and crop yields

too. Researchers have also used vine copulas for dependence

modeling in high-dimensional settings, as demonstrated in studies

by Brechmann et al. [29], Czado et al. [11], Joe and Dorota [30],

Maina et al. [31], Vernieuwe et al. [32], and Wang et al. [33]. Due

to their flexibility, vine copulas can effectively capture both the type

and strength of dependence for each pair in a bivariate analysis [30].

Although HAC models have been used for multivariate

modeling with more than three variables, their applications vary

across different fields. For example, Ma et al. [34] used HAC to

evaluate the seismic vulnerability of multispan bridge systems,

while Yang et al. [35] used HAC to examine five-dimensional

wind and wave data close to a sea-crossing bridge. HAC was also

used by Lin-Ye et al. [36] to model the combined distribution

of upcoming marine storms. Furthermore, HAC was used by

Lin-Ye et al. [25] to investigate wave extreme events throughout

the Catalan coast. Despite these applications, there remains a

significant gap in the literature regarding the use of HAC models

for more than five variables, particularly in climatic contexts

involving a broad range of weather variables. This is attributed to

multiple dependencies which introduce computational challenges,

making parameter estimation, model selection, and validation of

nesting conditions increasingly complex. Although HACs have

been extensively used in hydrology [8, 24, 26–28] and finance

[15, 22, 37, 38], their potential in climate science is still largely

unexplored. In addition, asymmetric dependencies are frequently

observed in climate variables, which ACmodelsmay not adequately

represent in higher dimensions. In high-dimensional climate

modeling, existing research primarily relies on vine copulas and

elliptical copulas, with relatively few studies utilizingHACs. As well,

there is a lack of comprehensive comparative analysis that evaluates

HACs in the context of high-dimensional climate modeling.

Therefore, we developed a multivariate joint distribution

framework to construct a six-dimensional model for climatic

variables using HAC approach. The six climatic variables under

consideration are temperature, humidity, cloud cover, wind speed,

sea level pressure, and solar energy. The focus was on copulas

belonging to the same family, following the approach proposed

by Okhrin et al. [39] and Okhrin et al. [21] who highlighted

the limitations of heterogeneous HAC models in handling high-

dimensional data. Our research is unique in its ability to

capture dependence of more than five variables and for modeling

climatic variables specific to Kenya. After fitting the HAC model,

we conducted a comprehensive model selection process and

performed GOF tests to identify the optimal HAC structure for

these climatic variables. Graphical assessments were also used to

assess the consistency and robustness of the integrated approach.

Our third goal was to evaluate how well the vine copula and HAC

models function in high-dimensional environments, revealing the

relative advantages and disadvantages of each in terms of capturing

intricate dependency patterns.

2 Materials and methods

2.1 Datasets

The dataset used in the proposed statistical model was obtained

from Visual Crossing (VC) [40]. VC aggregates data from several

sources with Integrated Surface Database (ISD) of National Oceanic

and Atmospheric Administration (NOAA) as one of the primary

sources. ISD is a comprehensive database of weather observations

collected from weather stations throughout the world on an hourly

and sub-hourly basis. The study used recorded daily weather data

from the Nairobi Wilson Airport weather station (HKNW), while

remotely sensed data from Jomo Kenyatta International Airport

(HKJK) were integrated to fill in any missing observations.
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TABLE 1 List of the weather variables.

Variable Description Metric

temp Temperature ◦C

cloudcover Cloud cover %

windspeed Wind speed kph

humidity Relative humidity %

pressure Sea level pressure mb

solarenergy Solar energy MJ/m2

The dataset has 36 variables, over a span of 4-year period

(January 1, 2020–December 31, 2023). From this dataset, six key

variables were selected from this dataset (temperature, humidity,

cloud cover, wind speed, sea level pressure, and solar energy)

were selected for modeling. These variables were selected because

of their proven value in climatic modeling and their ability to

capture atmospheric conditions [6, 16, 41]. Their selection aligns

with the study’s focus on HAC models, which require a structured

dependency framework. HAC models are especially well suited for

this kind of data because they can capture nonlinear, asymmetric,

and tail dependencies [6, 15, 22].

The dataset obtained from VC had already undergone

preprocessing and cleaning before further analysis (for more

information about preprocessing and data cleaning [40]). The

selected variables were transformed before fitting the HAC

models using probability density functions, to enhance appropriate

representation of data for copula construction.

Temperature (temp), which is expressed in degrees Celsius

(◦C) in Table 1, represents the daily average obtained from hourly

readings taken throughout the day. Humidity, expressed as relative

humidity (%), measures the proportion of water vapor in the

air relative to its maximum capacity at a given temperature—

values below 30% indicate dry conditions, 30% − 70% are

considered comfortable, while levels above 70% denote humid

conditions. Solar energy (solarenergy), expressed in megajoules

per square meter (MJ/m2) estimates the overall amount of

solar energy that has gathered throughout the day obtained by

summing hourly record. Cloud cover (cloudcover) represents the

percentage of the sky obscured by clouds, calculated as the mean

of hourly cloud cover observations across different altitudes. To

ensure comparability across different locations, sea level pressure

(pressure), which is measured in millibars (mb), is an adjustment of

atmospheric pressure that eliminates the effects of elevation. Lastly,

wind speed (windspeed), typically recorded in kilometers per hour

(km/h), reflects the average air movement over a 2-min period

before logging. Tomaintain consistency, wind speedmeasurements

are standardized at a height of 10 meters above ground in open

areas to minimize interference from surrounding obstacles.

2.2 Copula theory

A copula is a mathematical function that connects two or more

variables, facilitating the modeling of their joint behavior while

preserving their individual marginal distributions [19, 42]. Each

variable follows its own distinct distribution pattern, known as the

marginal distribution.

Definition (Copula)

A function C :[0, 1]d → [0, 1] is called a d-dimensional copula

if there exist a probability space (�,6, P) and a random vector

U ∈ [0, 1]d such that:

P(Uj ≤ uj) = uj, for every uj ∈ [0, 1], and j = 1, 2, ..., d (1)

and:

C(u1, ..., ud) = P(U1 ≤ u1, ...,Ud ≤ ud), for every [u1, ..., ud]
T

∈ [0, 1]d. (2)

The function C is a copula. If Fi(Xi) represents the marginal

distributions, then the function:

C(F1(X1), F2(X2), ..., Fd(Xd)) = F(x1, ..., xd) (3)

defines a multivariate distribution for the random variables

X1, ...,Xd.

Consider a 6-variate case, X1,X2, ...,X6, with marginal

distribution functions F1(x1), F2(x2), ..., F6(x6), respectively. We

are interested in obtaining a joint cumulative distribution function

F(X1,X2, ...,X6) with these marginals. Sklar [42] demonstrated that

there always exists a function C such that:

F(X1 ≤ x1,X2 ≤ x2, ...,X6 ≤ x6) = C(F1(X1), F2(X2), ..., F6(X6)).

(4)

Or equivalently:

F(F−1
1 (u1), F

−1
2 (u2), ..., F

−1
6 (u6)) = C(u1, ..., u6), (5)

where F−1
i (ui) are the inverse functions of the marginal

cumulative distribution functions (CDFs) and the joint probability

density function (PDF) for continuous margins is:

f (x1, ..., x6) = c(u1, ..., u6)f1(x1)f2(x2)...f6(x6). (6)

The copula density c(u1, ..., u6) is derived by differentiating

Equation 3 as follows:

c(u1, ..., u6) =
∂6C(u1, ..., u6)

∂u1∂u2∂u3∂u4∂u5∂u6
. (7)

2.2.1 Hierarchical Archimedean copula
Unlike other copulas, such as elliptical copulas, ACs are not

constructed using Sklar’s theorem. Instead, they rely on a specific

functional form and properties necessary to obtain a valid copula

[43]. According to McNeil and Nešlehová [44] a multivariate ACs

that is exchangeable is defined by:

C(u1, ..., ud) = ϕ
(
ϕ−1(u1)+ ϕ−1(u2)+ ...+ ϕ−1(ud)

)
, (8)

where ϕ :[0,∞) → [0, 1], known as the generator, is any

continuous, decreasing, convex function satisfying ϕ(0) = 1,
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ϕ(∞) = 0. Kimberling [45] and McNeil and Nešlehová [44]

demonstrated that the copula generated by the generator ϕ, a

completely monotonic function, must also satisfy the following

condition for its pseudo-inverse:

(−1)k
∂k

∂uk
ϕ−1(u) ≥ 0, u > 0, k ∈ N. (9)

The generator function ϕ provides different types of ACs as noted

by Nelsen [19] and Okhrin et al. [43].

A list of AC generators for the various types of ACs used

in this study is provided in Table 2. According to Chowdhary

[5], Cong and Brady [16], and Mallick et al. [7], ACs are

well known for their adaptability in simulating both positive

and negative dependence structures. In addition, they have

straightforward closed-form representations, which makes them

effective for estimating parameter [24]. By employing a single

function, ACs can capture both lower and upper tail dependencies,

making them particularly useful for modeling extreme events

[18]. Because they assume symmetric dependence structures,

which might not necessarily reflect asymmetric dependencies, they

are unduly limiting for some applications due to their single

dependence parameter [21, 46]. Furthermore, Hofert and Mächler

[47] highlighted that ACs are problematic when extended to

include more relationships involving more than two variables. To

address this challenge [20] proposed the concept of HACs among

other approaches. The benefits of HAC are summarized in Yang et

al. [35].

2.2.2 Vine Copula
According to Joe andDorota [30], vines are graphical structures

that represent joint probability distributions. The joint probability

distributions are decomposed into bivariate copulas known as pair

copulas [48]. If you consider a d dimensional data, d(d−1)
2 pairs

of copulas can be constructed as building blocks in a hierarchical

framework [30, 49–51]. A wide range of bivariate copulas as

shown in Joe et al. [20] and Nelsen [19] can be used to capture

dependence at different hierarchical levels, providing flexibility

unlike the HAC models, which rely solely on ACs. This approach

has been successfully applied in finance [11, 29, 51] and in climate

[32, 33, 41], to mention a few. In this work, vine copula was used

for comparison with HAC model in terms of performance for the

climate data.

2.2.3 General HAC framework
HACs are constructed step by step through the combination

of simple ACs into more complex structures [20, 39]. Instead of

modeling just two variables in terms of dependence structures, this

TABLE 2 Description of the generating functions, parameter constraints as well as of the relationships between Copula parameter and Kendall’s tau.

Copula Generator φ(u; θ) Kendall’s τ (θ) Range θ ∈
Gumbel exp(−u1/θ ) (θ − 1)θ−1 θ ∈ [1,∞)

Clayton (θu+ 1)−1/θ θ(θ + 2)−1
θ ∈ (0,∞)

Frank − 1
θ
log

[
1− (1− e−θ )e−u

]
1+ 4

θ
{D(θ)− 1} θ ∈ (0,∞)

Joe 1− {1− e−u}1/θ 1− 4
∑∞

ℓ=1 [ℓ(θℓ + 2)(2+ θ(ℓ − 1))]−1
θ ∈ [1,∞)

AMH (1− θ)/(eu − θ) 1− 2/(3θ2){θ + (1− θ)2 log(1− θ)} θ ∈ [0, 1]

The Debye function D(θ) involved in τ (·) for the family Frank is given by D(θ) = 1
θ

∫ 1
0

uθ

exp(u)−1 du.

FIGURE 1

Fully and partially nested HAC of dimension d = 6 with structures s = ((((12)3)4)5)6 on the left and s = (((12)3)((45)6)) on the right.
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approach allows for extensions to three, four, or more variables by

nesting smaller ACs within larger ones. ACs are used to connect

variable pairs at the lowest hierarchical level and a parameter for

the pairs is estimated. The couple with the strongest dependence

is aggregated and replaced by a joint pseudo-variable [39]. At

the next hierarchy level, another AC is applied to model the

dependence between the resulting pairs of variables. This process

continues iteratively until all variables are interconnected. During

this procedure, it is essential to verify that a proper copula results

from the grouping by ensuring the sufficient nesting condition is

met (see Lemma 4.1 in McNeil [52]). The general form of a d-

dimensional HAC structure may be defined as follows:

ϕθd−1

{
ϕ
[−1]
θd−1

(ud) + ϕ
[−1]
θd−1

◦ Cd−1
(
u1, . . . , ud−1; sd−2, (θ1, . . . ,

θd−2)
T )} , (10)

where θ = (θ1, . . . , θd−2)
T represents the parameter vector of

the HAC and s denotes the structure of the HAC [15]. For example,

special case for a fully nested and partially HAC for d = 6 can be

illustrated together in Figure 1. For fully nested HAC, the copula

function in Equation 10 is given by

C(u1, u2, u3, u4, u5, u6) =
C6

{
C5

(
C4

(
C3

(
C2(u1, u2), u3

)
, u4

)
, u5

)
, u6

}
, (11)

C(u1, u2, u3, u4, u5, u6) =

ϕ6

{
ϕ−1
6 ◦ ϕ5

[
ϕ−1
5 ◦ ϕ4

(
ϕ−1
4 ◦ ϕ3

(
ϕ−1
3 ◦ ϕ2

(
ϕ−1
2 (u1)+ ϕ−1

2 (u2)
)

+ϕ−1
3 (u3)

)
+ ϕ−1

4 (u4)
)
+ ϕ−1

5 (u5)
]
+ ϕ−1

6 (u6)

}
,

(12)

which simplifies to:

C(u1, u2, u3, u4, u5, u6; s = (((((12)3)4)5)6), θ = (θ1, θ2, θ3, θ4, θ5)
T).

(13)

For a partially nested HAC, Equation 10 can also be expressed

as:

C(u1, u2, u3, u4, u5, u6) = C6
{
C5

(
C4(u1, u2), u3

)
,C3(C2(u4, u5),

u6) } ,(14)

C(u1, u2, u3, u4, u5, u6) =

ϕ6

{
ϕ−1
6 ◦ ϕ5

[
ϕ−1
5 ◦ ϕ4

(
ϕ−1
4 (u1)+ ϕ−1

4 (u2)
)
+ ϕ−1

5 (u3)
]

+ϕ−1
6 ◦ ϕ3

[
ϕ−1
3 ◦ ϕ2

(
ϕ−1
2 (u4)+ ϕ−1

2 (u5)
)
+ ϕ−1

3 (u6)
]}

, (15)

C(u1, u2, u3, u4, u5, u6; s = (((12)3)((45)6)), θ = (θ1, θ2, θ3, θ4, θ5)
T).

(16)

Note that the copula function on Equation 10 can take different

forms of HAC structures. The function in Equations 12, 15 are just

one of the many possible binary structures that can be created.

2.3 HAC estimation

In this section, we describe the HAC estimation procedure,

which is divided into three parts. The first part involves the

estimation of marginal distributions using the six variables. We

also describe the GOF tests conducted to determine the best-fitting

probability distributions and apply the inverse transformation

method to extract pseudo-observations. The second part focuses

on the estimation of the HAC structure and parameters using the

RML approach. Finally, the third section addresses model selection

and evaluation. A flowchart in Figure 2 provides a summary of the

methodology adopted in this paper.

2.3.1 Marginal distributions
To extract uniform random variables, a parametric method was

employed in this study. Among the six selected variables, seven

common univariate probability distributions were tested to fit the

data [53]. The PDFs and associated parameters are summarized in

Table 3 as described by Naghettini [54]. A comprehensive approach

was used to select the fitting distribution [5, 55]. To ensure a robust

choice of the best probability distribution model, this approach

integrated graphical analysis, information criteria, and several GOF

tests. Each distribution model is put through multiple GOF tests,

and the model that performs the best in each test is awarded

the highest score. Each model is ranked independently for each

GOF test before being aggregated together for all tests to create a

composite score. For graphical assessments, rankings are informed

by visual inspection of density plots and quantile-quantile (Q-Q)

plots, providing additional insight into the best-fitting model.

2.3.2 HAC structure and parameter estimation
Numerous studies have examined the process of estimating

parameters and structures of HAC [21, 39, 43, 46]. When

constructing HACs, the copulas can belong to the same family or to

different families, referred to as homogeneous and heterogeneous

HACs, respectively [21]. McNeil [52] provided a framework

to guarantee that the nested copulas produce a valid copula

satisfying sufficient nesting conditions (SNC). While SNC are

always guaranteed for homogeneous HACs [39], it may not

always be the case for heterogeneous HACs [47]. In this paper,

we adopted homogeneous HACs for the HAC structure and

parameter estimation using the recursive maximum likelihood

(RML) approach proposed by Okhrin et al. [39]. The algorithm

proceeds as follows:

1. Fit bivariate copulas to every pair of variables. In this case, we

fitted
(6
2

)
= 15 AC models for each copula function provided in

Table 2. The pair with the strongest dependency, denoted as l1,

is selected along with its parameter estimate θ̂1.

2. Form a pseudo-variable Z1 = C(l1,ϕ1; θ̂1), which represents the

joint dependency of the selected pair.

3. Repeat step 1 using the new pseudo-variable Z1 and the

remaining variables.

4. Determine the set of variables with the best fit at the second level.

5. Create a new pseudo-variable Z2 = C(l2,ϕ2; θ̂2), combining the

two variables.
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FIGURE 2

Step-by-step flowchart of the methodology: fitting probability distribution, HAC model selection, parameter estimation, and validation.

TABLE 3 Univariate probability distributions and their parameters.

Type Probability density function Parameters

Weibull f (x|k, λ) = k
λ

(
x
λ

)k−1
exp

(
−

[
x
λ

]k)
λ: scale

k: shape

Gamma f (x|a, b) = 1
baŴ(a) x

a−1 exp
(
− x

b

)
a: shape

b: scale

Lognormal f (x|µ, σ ) = 1
x
√
2πσ 2

exp

(
− (ln x−µ)

2

2σ 2

)
µ: log location

σ : log scale

Exponential f (x|λ) = λe−λx , x ≥ 0 λ: rate

Normal f (x|µ, σ ) = 1√
2πσ 2

exp
(
− (x−µ)2

2σ 2

)
µ: mean

σ : standard deviation

Logistic f (x|µ, s) =
exp

(
− x−µ

s

)

s
[
1+exp

(
− x−µ

s

)]2 µ: location

s: scale

Uniform f (x|a, b) = 1
b−a

, a ≤ x ≤ b a: lower bound

b: upper bound

6. Continue this procedure until only one variable remains dj = 1.

At the first stage of estimation, copula parameters are initialized

from known marginal distributions. In subsequent stages, the

parameters are refined by assuming the marginals and copula

families at lower levels are known. Let X = {xij}T be our sample

of size n for i = 1, . . . , n, j = 1, . . . , d. If we assume d variables are

joined by p nested levels, let α = (α̂1, . . . , α̂d)
T denote the vector

of parameters of marginal distributions and θ = (θ̂1, . . . , θ̂d−1)
T

are parameters of the copula starting with the smallest to the largest

value. The RML for β̂ of β = (α̂, θ̂) with parametric margins is

given by:

l(β ,X) =
n∑

i=1

log


c(ϕ, θ , s)

(
F1(x1i,α1), . . . , Fd(xdi,αd)

) d∏

j=1

fj(xji,αj)
]
, (17)

=
n∑

i=1

[
log c(ϕ, θ , s)

(
F1(x1i,α1), . . . , Fd(xdi,αd)

)

+
d∑

i=1

log fj(xji,αj)


 . (18)

The recursive ML approach solves the system and obtains the

estimators by solving the following equations:

[
∂ l1

∂α′
1

, . . . ,
∂ ld

∂α′
d

, . . . ,
∂ l1

∂θ ′1
, . . . ,

∂ ld−1

∂θ ′
d−1

]T

= 0. (19)

where j = 1, . . . , d − 1, and the process continues for the five

copula families mentioned in Table 2.

2.3.2.1 Assumptions

The construction of HAC model was based on several

assumptions that guarantees the validity of the HAC model.

Firstly, it was assumed that the marginal distributions are correctly

specified [20]. In this study, the marginal distributions were first

estimated before proceeding with HAC modeling. In instances

where margins were not explicitly specified or were uncertain, a

non-parametric approach should be employed to estimate them.

Secondly, each copula within the HAC model was assumed to
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have a generating function that is completely monotonic, ensuring

the proper construction of the hierarchical dependence structure.

Thirdly, to maintain the consistency across the nested structure, all

generator functions must belong to the same family. Furthermore,

the estimated parameters must satisfy the nesting condition,

meaning that the dependence parameter of the parent copula must

be greater than or equal to that of the child copula θparent ≥ θchild.

To preserve the hierarchical structure of the model, the lower-

level dependencies must be stronger than those at higher levels.

Finally, it is important to note that ACs in HAC models are

non-exchangeable, meaning that the order of variables affects the

dependence structure, differentiating them from elliptical copulas.

For further details on HAC model assumptions, see Okhrin et al.

[21, 23, 39].

2.4 Model selection and goodness of fit
tests

2.4.1 Model selection
Model selection techniques such as AIC, BIC, and log-

likelihood (loglik) were evaluated in order to choose the optimal

model. The model with the highest loglik, or the lowest AIC or BIC,

was selected as the best fit [16, 31, 54, 56]. AIC and BIC are defined

as follows:

AIC = −2 log lik+ 2p, (20)

BIC = −2 log lik+ p log(n), (21)

where n is the sample size and p represents the number of

generators or copula parameters [35, 57].

2.4.2 Goodness of fit tests
Once the best model was selected, GOF tests were performed

to evaluate how well the chosen model fits the data. The empirical

copula values for the variables are compared against the theoretical

values to assess accuracy.

The empirical copula Pe(i) for the six variables is computed

as follows:

Pe(i) = Ĉ(u1, u2, u3, u4, u5, u6) = n−1
n∑

i=1

d∏

j=1

I
{
F̂j(xij) ≤ uj

}
,

(22)

where F̂j(xij) denotes the estimated marginal distribution of

variable xj and I is the indicator function [58, 59]. Metrics such as

the root mean square error (RMSE), CVM (S(E)n ), and KS tests Dn

were computed as follows:

RMSE =

√√√√n−1
n∑

i=1

[
Pe(i)− Pc(i)

]2
, (23)

S(E)n =
n∑

i=1

[
Pe(i)− Pc(i)

]2
, (24)

Dn = max
x

|Pe(i)− Pc(i)|. (25)

Additionally, graphical tools such as Q–Q plots was used

to assess the closeness between the HAC model and empirical

HAC and Kendall’s tau was employed to evaluate the strength of

association between simulated HAC models and the observed data

for the six variables [56, 60].

Modified Wasserstein distance (WD) statistic was used to

compare the HAC model and the vine copula model. This was

applied in addition to the GOF tests described above. The (WD) is

a metric used to measure the discrepancy between two probability

distributions [61–63]. The modified (WD) between two CDFs, F(x)

and G(x) is given by:

W1 (F,G) =
∫ +∞

−∞
|F (x) − G (x)| dx. (26)

where F(x) represents the empirical CDF and G(x) is the

theoretical CDF derived from the HAC or vine copula model. A

better fit shows similarity between the two distributions and it is

determined by a lowerW1 (F,G) value.

3 Results

3.1 Description of the variables

A total of 1, 461 observations that spans over 4 years was

used to extract summary statistics in Table 4a. The findings

show that the six climatic variables exhibit diverse distributions.

Temperature has a narrow range (15.00 − −23.90◦C) with low

variability (SD = 1.61) and a slight negative skewness (−0.26).

Humidity shows moderate variability (SD = 9.78) with a wider

range (38.50 − −96.40%) and a nearly symmetric distribution

(skew = −0.28). Solar energy has a range of 4.60 − −31.90

MJ/m2 and moderate variability (SD = 5.27), with a slight negative

skewness (−0.31). Cloud cover demonstrates the highest variability

(SD = 15.49) and a negative skewness (−1.22), indicating

frequent higher cloud coverage. Sea level pressure, ranging from

1,012.60 to 1,028.40 mb, had low variability (SD = 2.06) and

was nearly symmetric (skew = −0.16). Wind speed had a very

wide range 9.40 − −183.60 (km/h) with significant variability

(SD = 8.87), an extreme positive skewness (7.44), and highly

leptokurtic (113.67), suggesting occasional extreme wind events.

The first five variables share characteristics of negative skewness

and platykurtosis, indicating flatter distributions with slightly left-

tailed tendencies.

3.2 Correlational analysis

Correlation plots were used to assess the dependence between

pairs of the six variables, as shown in Figure 3. The correlation

matrix highlights strong correlations among several variable pairs.

Notably, solar energy and temperature had a strong positive

correlation (r = 0.710), while temperature demonstrates strong

negative correlations with humidity (r = −0.588) and cloud

cover (r = −0.528). Weak correlation was observed between sea

level pressure and humidity (r = 0.110), indicating weaker linear

relationship. A similar conclusion was seen between wind speed
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TABLE 4 Summary statistics for the six variables: (a) actual data and (b) simulated data.

n Mean sd Median Min Max Skew Kurtosis

(a) Actual observations

Temperature 1461 19.79 1.61 19.90 15.00 23.90 (–0.26) (–0.31)

Humidity 1461 68.25 9.78 68.80 38.50 96.40 (–0.28) (–0.19)

Solar energy 1461 20.12 5.27 20.70 4.60 31.90 (–0.31) (–0.56)

Cloud cover 1461 72.99 15.49 77.10 14.20 97.00 (–1.22) 1.08

Sea level pressure 1461 1,021.10 2.06 1,021.10 1,012.60 1,028.40 (–0.16) 1.16

Windspeed 1461 25.99 8.87 25.50 9.40 183.60 7.44 113.67

(b) Simulated data

Temperature 1461 19.74 1.75 19.99 12.55 24.01 (–0.73) 0.65

Humidity 1461 68.08 10.02 68.82 28.29 95.18 (–0.44) 0.27

Solar energy 1461 20.24 5.27 20.36 2.14 35.85 (–0.13) (–0.20)

Cloud cover 1461 73.66 13.39 74.35 23.65 108.15 (–0.40) 0.13

Sea level pressure 1461 1,021.21 2.09 1,021.14 1,014.06 1,029.72 0.11 0.61

Windspeed 1461 26.29 7.06 25.44 10.74 60.20 0.64 0.54

FIGURE 3

A combination of scatter plots (Purple), Density plots (Green) Spearman Rank correlation coe�cients (Blue), Histogram (Bottom – Light gray), and

Boxplots (Right – Light gray) for Temperature, Humidity, Solar energy, Cloud cover, Sea level pressure, and Windspeed. The *** means significance

level at 1%.

and solar energy (r = −0.170). Most of the variables had a positive

and negative correlation coefficient between r = (0.3 − 0.6) that

shows a variety of weak to moderate dependencies between the six

climatic variables.

3.3 Marginal distributions

The maximum likelihood estimation approach (MLE) was

used to fit the probability distributions to the six variables. The
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results for each variable are presented in Table 5. The graphical

assessments and the results of GOF test in Table 5a shows that

the Weibull distribution consistently provided the best fit for

temperature, humidity, solar energy, and cloud cover across all

GOF tests, including the KS, AD, CVM, and chi-squared (CHI)

tests, as well as density and Q-Q plots. The sea-level pressure

was best modeled using the logistic distribution, which performed

well in most evaluation criteria. For wind speed, the lognormal

distribution exhibited strong performance across most tests. The

parameter estimates in Table 5b were obtained from the best-

fitting probability distributions. Then, the inverse transformation

method was applied using these estimates to generate empirical

cumulative distribution functions (ECDFs) with uniform margins.

These uniform variables were used to fit HAC models.

3.4 Multivariate distributions with HAC

Figure 4 shows the HAC structures estimated from the five

copula families. They reveal key insights about the hierarchical

level’s dependency patterns across the five copula families. The

Joe, Gumbel, and Frank copulas exhibited a similar hierarchical

structure as shown in Equations 27, 28:

Ĉ(u1, u2, u3, u4, u5, u6) = C
(
C(C(humid, cloud), windspeed), slp),

C(temp, solar)
)
, (27)

Ĉ (u1, ..., u6; s) =
(
((humid, cloud)windspeed)slp)(temp, solar)

)
,

(θ1, θ2, θ3, θ4, θ5)
T .(28)

For Clayton:

Ĉ(u1, u2, u3, u4, u5, u6) = C
(
C(C(humid, cloud), windspeed),

C(C(temp, solar), slp)
)
, (29)

Ĉ (u1, ..., u6; s) =
(
((humid, cloud), windspeed) ,

((temp, solar), slp))
)
, (θ1, θ2, θ3, θ4, θ5)

T . (30)

For AMH:

Ĉ(u1, u2, u3, u4, u5, u6) = C
(
C(C(C(humid, cloud), C(temp,

solar)), slp), windspeed
)
, (31)

Ĉ (u1, ..., u6; s) =
(
(((humid, cloud), (temp, solar)), slp),

windspeed) ) , (θ1, θ2, θ3, θ4, θ5)
T . (32)

The findings indicate the most tightly coupled pair, followed

by their joint relationship with wind speed. Sea-level pressure

(slp) contributed at the next level of dependency, and finally, T
A
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FIGURE 4

Hierarchical Archimedean Copula (HAC) structures and parameter estimates for climate variables across five copula families.

temperature and solar energy exhibit a distinct, parallel

relationship. Notably, the HAC Frank and HAC Clayton

structures had independence between certain variables, diverging

from the more cohesive dependence observed in Joe, Gumbel, and

AMH models. This independence highlights weaker or negligible

interactions between some variable pairs, making these copulas

more appropriate for scenarios where dependencies are sparse

or asymmetric. The temperature and solar energy in HAC Frank

had the strongest pair dependence (θ4 = 5.73, τ = 0.710) which

was closely aligned with the correlation coefficient in Figure 3.

Similarly, humidity and cloud cover exhibited consistently strong

dependence across all HAC models, emphasizing the well-

established atmospheric relationship where increased humidity

levels contribute to increased cloud formation. On the other hand,

very weak dependencies observed in the HAC Frank and HAC

Clayton, came from sea-level pressure and wind speed, sea-level

pressure and humidity, as well as humidity and wind speed,

indicating minimal direct interactions between these variables.

3.5 Model selection

The model selection criteria for the five HAC models are

displayed in Table 6a. The HAC Gumbel model, highlighted in

bold—had the best fit. The Clayton and AMH models showed

modest fits, but the HAC Frank model came in second with

comparatively good performance. The HAC Joe model, however,

showed the weakest fit, as evidenced by its lower logLik. Despite

the Gumbel HAC model’s superior performance, further GOF

tests were conducted across all five copula families to confirm the

robustness of the results.

3.5.1 Graphical assessment
Graphical methods and GOF tests were carried out to

further determine the performance of the HAC models. Figure 5

illustrates the comparison between empirical copula values (Pe)

and theoretical copula values (Pc) for five HAC models. Each plot

includes the coefficient of determination R2 to assess the fit of the

model. The HAC Joe copula demonstrates the best fit, with the

highest (R2 = 0.9976), indicating its superior ability to align the

theoretical and empirical values. The HAC Frank copula also had

a strong performance, having the second (R2 = 0.9972) after

HAC Joe. The HACGumbel, HACAMH andHACClayton copulas

exhibited comparable accuracy. All models exhibit a strong linear

relationship between (Pe) and (Pc), as evidenced by the proximity

of the data points to the red reference line.

3.6 Goodness of fit tests

The findings of the GOF tests in Table 6a indicate that all HAC

models performed well, as evidenced by their relatively small RMSE

values. The HAC Frank model had the best overall fit, achieving

the lowest RMSE value (0.0631) and strong CvM test performance

(0.0040, p = 0.8110). This implies that the Frank copula tends to

represent the data slightly better than the HAC Gumbel model,

despite the latter being identified as the optimal model based

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2025.1585707
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Otieno et al. 10.3389/fams.2025.1585707

TABLE 6 Summary of (a) model selection criteria and (b) goodness-of-fit metrics for five HAC copula models under parametric and nonparametric

marginal estimation.

(a) Parametric approach used for estimating marginal distributions

Model selection criteria Goodness-of-fit metrics

Type AIC BIC LogLik RMSE KS KS_pval CvM CvM_pval p

Gumbel (–2,104) (–2,077) 1,056.85 0.0747 0.5027 1 0.0056 0.0540 5

Clayton (–1,515) (–1,489) 762.68 0.0690 0.5056 1 0.0048 0.2550 5

Frank (–1,974) (–1,948) 992.05 0.0631 0.4274 1 0.0040 0.8110 5

Joe (–1,273) (–1,247) 641.74 0.0758 0.6089 1 0.0057 0.3080 5

AMH (–1,669) (–1,642) 839.32 0.0732 0.4985 1 0.0054 0.1080 5

(b) Non-parametric approach used for estimating marginal distributions

Model selection criteria Goodness-of-fit metrics

Type AIC BIC LogLik RMSE KS P value CvM P value p

Gumbel (1,899.30) (1,872.87) 954.65 0.0690 0.5409 1 0.0048 0.5700 5

Clayton (1,952.58) (1,926.14) 981.29 0.0631 0.4153 1 0.0040 0.7620 5

Frank (1,943.55) (1,917.11) 976.77 0.0627 0.3614 1 0.0039 0.8370 5

Joe (1,543.70) (1,517.27) 776.85 0.0730 0.3836 1 0.0053 0.6450 5

AMH (1,935.98) (1,909.55) 972.99 0.0663 0.3712 1 0.0044 0.5620 5

FIGURE 5

Comparison of empirical and theoretical copula values with goodness-of-fit metrics for five HAC models.

on model selection criteria such as loglik, AIC, and BIC. The

Gumbel HAC model exhibited a slightly higher RMSE (0.0747)

but maintained strong performance in the CvM test (0.0056, p =

0.054). However, we noted that the differences between the HAC

models were minimal across all GOF metrics, as was also reflected

in QQ plot in Figure 5, further emphasizing the marginal variations
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FIGURE 6

Density plots of temperature, humidity, solar energy, cloud cover, sea level pressure, and windspeed, shows comparison of observed data with sets of

1,461 generated random samples based on dependence parameters obtained by HAC - Frank. Blue color is observed data, and red represents

simulated samples from HAC model.

in fit quality. Using the HAC-Frank model, we extracted parameter

estimates and identified the corresponding dependency structure as

shown in Equation 33:

CHAC−F = C
(
C
(
C
(
C(humid, cloud)

θ̂=3.88, windspeed
)

θ̂=3.32
,

slp
)

θ̂=0
,C(temp, solar)

θ̂=5.73

)
θ̂=0

. (33)

These were then utilized to simulate the data, which was

subsequently transformed back to the original scale to enable a

direct comparison with the actual observations. The purpose of this

process was to evaluate the consistency between the simulated and

actual data and to evaluate the effectiveness of the HAC Frank in

capturing the dependencies. The summary statistics for the actual

and simulated dataset are provided in Tables 4a, b respectively,

while Figure 6 presents a density plot comparing their distributions.

Furthermore, the scatterplot in Figure 7 illustrates the relationships

among the six variables for the actual and simulated data from

HAC Frank. In addition, a correlation Table 7 is also presented for

assessing inter-variable dependencies.

3.6.1 Comparison between HAC and vine copula
To justify the performance of the selected HAC model, a Vine

copula model was employed for comparison. Vine copulas are

widely used for multivariate dependency modeling due to their

flexibility in capturing complex dependence structures through

cascaded bivariate copulas. Based on the established marginal

distributions, both R-vine and C-vine copulas were fitted, with the

R-vine model emerging as the best fit according to its lower AIC

and BIC values. To further validate model selection, the HAC-

Frank and R-vine models were subjected to additional comparative

tests, as presented in Table 8. The R-vine model outperformed the

HAC model, as indicated by its lower AIC (−3, 930.25) and BIC

(−3, 850.95), along with the highest logLik (1980.12). The vine

copula structures also included different rotations (90◦and 270◦)
to model negative dependencies, as shown in the contour plot

in Figure 8 which provides information on the strength and

shape of dependencies between variable pairs. However, further

GOF tests reveal a different perspective on model suitability. The

ECDF comparison highlights discrepancies in model fit. HAC

had a significantly lower RMSE (0.0631) compared to R-vine

(0.5188), indicating a closer approximation to the actual data.

HAC exhibited a much lower CVM statistic (0.0040) compared

to R-vine (0.2691) and a considerably lower KS statistic (0.4274)

compared to R-vine (0.9967), suggesting a better alignment with

the empirical distribution. Furthermore, the WD for HAC (0.0369)

was lower than that of R-vine (2.6789), implying that HAC

offers a more robust estimate of the empirical distribution. In

addition, HAC is computationally more efficient, requiring only 5

parameters compared to 15 in R-vine. This highlights the increased

computational complexity and parameter estimation challenges in

high-dimensional data when using vine copulas.
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FIGURE 7

Pairwise scatter plots of temperature, humidity, solar energy, cloud cover, sea level pressure, windspeed, shows comparison of observed data with

sets of 1,461 generated random samples based on dependence parameters obtained by HAC - Frank. Blue dots color is observed data, and red dots

are simulated samples from HAC - Frank model.

3.7 Sensitivity analysis

To assess the sensitivity of our model selection to marginal

distributional assumptions and copula structure, we conducted

an alternative analysis using pseudo-observations (pobs), which

transform raw data into uniform margins non-parametrically. We

re-fitted five HAC families—Frank, Clayton, Gumbel, Joe, and

AMH—on the transformed data and re-evaluated goodness-of-

fit statistics, including KS, CvM, RMSE, and AIC. A summary

of the findings are provides in Table 6b. The HAC-Frank

model consistently exhibited superior performance across both

parametric and pobs-based settings, confirming the robustness of

our model selection to marginal distribution specification.

Additionally, the R-Vine copula model was re-fitted using the

pseudo-observations and compared against HAC-Frank using key

fit metrics (KS, CvM, RMSE, and WD). HAC-Frank demonstrated

consistently lower variability and more stable performance under

nonparametric margins, whereas the R-Vine occasionally achieved

better log-likelihood and information criterion values.

We further compared computational runtimes for the HAC-

Frank and R-Vine copula models using parametric margins

and non-parametric margins. Results in Table 8 based on 10

replicates indicate that the R-Vine model was substantially faster,

completing in a mean time of 320.8 milliseconds, whereas the

HAC-Frank model required approximately 20.08 seconds. This

difference is attributable to the global estimation involved in

HAC structures vs. the pairwise construction in Vine copulas.

Despite this, the HAC-Frank model remains advantageous due

to its lower parameter count (5vs.15), interpretability, and

robustness to marginal assumptions, making it suitable in contexts

where model transparency and parsimony are prioritized over

computational speed.

4 Discussion

The primary objective of this study was to develop a

multivariate joint distribution model for climatic variables in

Kenya using the HAC approach. We first reviewed the correlation

analysis of the six climatic variables. Our findings revealed

notable disparities in the distribution of correlation strengths

between the six variables. These differences showed variations in

dependencies between variable in pairs, highlighting the diverse

interactions within the climate system. Specifically, temperature

and solar energy had a strong positive correlation, a relationship

that is well supported in climatology, as higher levels of solar

radiation generally led to increased temperatures due to energy

absorption at the Earth’s surface [64]. In addition, cloud cover and

humidity depicted a strong positive correlation, which coincide

with previous studies [65]. This dependence can be attributed

to the fact that increased cloud cover traps moisture within the

atmosphere, leading to higher humidity levels. Conversely, wind
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TABLE 7 Kendall’s rank correlation coe�cient of Bivariate Correlation

analysis for Actual and Simulated data.

Pairs Actual data Simulated data

Temperature, Solar energy 0.710∗∗∗ 0.502∗∗∗

Cloud cover, Humidity 0.622∗∗∗ 0.026

Cloud cover, Solar energy –0.622∗∗∗ 0.025

Solar energy, Humidity –0.620∗∗∗ 0.454∗∗∗

Temperature, Humidity 0.588∗∗∗ 0.502∗∗∗

Temperature, Cloud cover –0.528∗∗∗ 0.016

Temperature, Sea level pressure –0.485∗∗∗ 0.018

Wind speed, Solar energy 0.371∗∗∗ 0.025

Temperature, Wind speed 0.367∗∗∗ 0.045

Sea level pressure, Solar energy –0.337∗∗∗ 0.001

Sea level pressure, Cloud cover 0.333∗∗∗ 0.025

Wind speed, Cloud cover 0.247∗∗∗ 0.038

Wind speed, Humidity –0.232∗∗∗ 0.017

Wind speed, Sea level pressure –0.170∗∗∗ 0.625∗∗∗

Sea level pressure, Humidity 0.110∗∗∗ 0.005

∗∗∗Significance level at 1%.

TABLE 8 Comparative evaluation of HAC and R-Vine Copula models using

goodness-of-fit tests and computational time under parametric and

non-parametric marginal estimation.

Parametric approach Non-parametric
approach

HAC Vine HAC Vine

KS_Statistic 0.4274 0.9947 0.4777 0.9984

CvM_Statistic 0.0040 0.2687 0.0049 0.2710

RMSE 0.0631 0.5184 0.0698 0.5205

Wasserstein 0.0369 2.6486 0.0417 2.6661

Run time
(milliseconds)

20,075.46 320.80 28,221.75 501.96

Neval 10 10 10 10

AIC (–2,193) (–3,930) (–2,102) (–3,531)

BIC (–2,167) (–3,851) (–2,076) (–3,452)

LogLik 1,101.54 1,980.12 1,056.07 1,780.50

No of
parameters

5 15 5 15

speed exhibited very weak correlations with other climatic variables

such as cloud cover, humidity, and sea level pressure (r =
−0.232,−0.170, and r = 0.247) respectively, indicating that wind

dynamics are driven by complex atmospheric processes that cannot

be fully captured using simple linear correlation measures [9].

Therefore, it is essential to employ copula-based models instead of

traditional linear correlation techniques, as copulas provide flexible

dependency structures that capture both linear and non-linear

relationships between variables [66, 67].

An analysis of six key climatic variables revealed that

temperature, humidity, solar energy, cloud cover, and wind speed

were best modeled using distributions belonging to the gamma

family, notably the Weibull and gamma distributions. These

distributions are known to be closely nested, with the exponential

and Weibull distributions being special or limiting cases of the

gamma distribution [68]. This nesting supports the suitability

of gamma-based models in capturing the stochastic behavior of

environmental variables.

Specifically, the two-parameter Weibull distribution provided

the best fit for temperature, humidity, solar energy, and cloud cover.

The Weibull distribution is widely applied in climate modeling

due to its capacity to represent skewed data and capture extreme

values—features that are characteristic of many climatic variables.

Its robustness in modeling temperature, cloud cover, and wind

speed makes it a valuable tool for climate impact assessments,

forecasting, and adaptive planning [35, 69].

The logistic model was found to be the appropriate model for

sea-level pressure. Given that sigmoidal trends and abrupt changes

in atmospheric pressure are essential for weather prediction and

storm modeling, the logistic model proves to be highly valuable

in climate applications [70]. Wind speed was modeled using the

gamma distribution which is widely used in meteorological studies

due to its ability to capture positively skewed data, a characteristic

feature of wind speed observations. The gamma distribution is an

important tool in studies on renewable energy and storm damage

assessments, since it is effective in describing the likelihood of

extreme wind events [71, 72].

Among the five fitted HAC models, the HAC-Gumbel model

emerged as the best-fit model, as determined by its superior AIC,

BIC & loglik value [57, 60, 67, 70, 71]. The Gumbel copula

is convenient for this application because of its flexibility in

accommodating upper tail dependencies. This distinguishes it from

Clayton copulas, which primarily capture lower tail dependencies

[19, 60, 70]. In contrast, the correlation matrix confirmed the

presence of positive and negative correlations among the six

climatic variables, justifying the HAC-Frank model.

The HAC Frank model offers a valuable tool for understanding

how these climatic variables interact over time. We compared

actual and simulated data as demonstrated in Figure 6, of the

scatterplots. The findings show a replica of the real-world patterns

which its applications can be expanded in the following ways: In

agricultural planning, recognizing the strong connection between

temperature and solar energy can significantly aid in forecasting

periods of intense heat likely to cause drought stress. In drought-

prone regions of Kenya, such as Marsabit and Lodwar, these

findings could play a key role in developing early warning systems

[73]. Government agencies like the Kenya Agricultural Research

Institute (KARI) can leverage this information to advise farmers

on adopting drought-tolerant crops like sorghum and millet

during seasons when extended dry spells are predicted [74]. In

addition, crop diversification strategies should be proposed to

farmers and knowledge on planting schedules should be extended

to them to ensure there is awareness of alignment with good

climatic conditions. In disaster management, understanding the
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FIGURE 8

Contour plots of the R-vine Copula fit for temperature (1), humidity (2), solar energy (3), cloud cover (4), sea-level pressure (5), and wind speed (6).

The plots illustrate the hierarchical structure of dependencies, where lower-level pairwise dependencies form the building blocks for higher-level

groupings. For example, strong dependencies between temperature and solar energy (1,3) and between temperature and humidity (1,2) are

combined at the second level into a new dependency structure (2,3;1). At subsequent levels, groupings such as (2,3;1) and (2,4;1) are further

combined to form higher-level dependencies (4,3;2,1), eventually culminating in the final structure (5,3;6,4,2,1) that captures the overall multivariate

dependence among all six climatic variables. The density and shape of the contours reflect the strength and asymmetry of the relationships: elliptical

and skewed contours indicate strong or directional dependencies, while near-circular contours imply weaker interactions.

dependency between humidity and precipitation can provide

early warnings for potential flooding events. Government agencies

like the National Disaster Management Agency (NADIMA)

could use these insights to prepare flood response measures in

advance, especially for vulnerable regions [75, 76]. Simulating

the dependence between temperature, humidity, and sea-level

pressure can inform infrastructure planning and maintenance.

For example, projections of extreme precipitation combined with

high humidity could allow policymakers to strengthen drainage

systems, reinforce vulnerable road networks, and allocate resources

for maintenance ahead of seasonal peaks, particularly in urban

centers such as Nairobi and Mombasa that are susceptible to

climate-induced infrastructural damage [77]. In renewable energy,

the relationship between solar energy and temperature is important

for optimizing solar power generation. The government of Kenya

through solar home developers could use model projections to

schedule installations or maintenance to coincide with periods

of peak solar energy availability in regions experiencing high

temperatures, especially in rural homes [78].

Further assessment of the fit of the model revealed that

HAC-Frank closely matched the empirical pairwise correlations,

indicating its strong ability to capture underlying dependency

structures in climate variables. Four key GOF metrics – KS, CVM,

RMSE, and WD confirmed its superior performance highlighting

a critical distinction: while HAC-Gumbel provides the best fit,

HAC-Frank offers superior predictive performance, particularly in

capturing complex multivariate relationships in climate variables.

These findings are similar to a growing body of research that

underscores the effectiveness of copula based approaches in

modeling joint probability distributions of environmental variables

[26, 36, 66]. However, studies that produced different results, such

as Cong and Brady [16], could be attributed to variations in climatic

regions, dataset characteristics, and methodological differences,

reinforcing the importance of context-specific model selection.

Vine copulas outperformed the HAC model based on

model selection criteria (AIC, BIC, and LogLik) [31, 35]. The

strong performance of vine copulas comes from their ability to

capture complex and asymmetric dependence patterns while

also allowing different pairwise copulas at each hierarchical

level [30, 51]. In contrast to the vine copula models, the

HAC-Frank model demonstrated a better accurate fit to

the dataset, according to GOF tests [35]. In addition, HAC

models are effective for analyzing high-dimensional climate

data, as they require fewer estimated parameters than vine

copulas, thereby reducing computation complexity [35, 39].

Consequently, HAC-Frank emerges as attractive alternative for

applications where computational efficiency and parsimony are

key considerations.
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4.1 Limitation

While this study demonstrates the usefulness of HAC models

in capturing complex dependencies among climatic variables, a few

limitations should be noted. First, the analysis was based on data

from a single meteorological station (NairobiWilson Airport), with

occasional supplementation from a nearby station (Jomo Kenyatta

International Airport) to address missing observations. Although

this approach ensured a complete dataset for analysis, it introduces

some potential biases, particularly in representing localized weather

extremes. Moreover, the findings from Nairobi may not fully

generalize to other regions of Kenya, which experience very

different climatic patterns.

Second, the proposed model adopts a homogeneous HAC

structure, where all pairwise dependencies are modeled using

copulas from the same Archimedean family. While this approach

ensures compliance with sufficient nesting conditions, it may

not capture accurately real-world climatic associations. In

reality, different variable pairs may exhibit unique dependence

features such as varying tail behavior or asymmetry which are

better modeled using heterogeneous copula families. Hence, the

homogeneous assumption may restrict the model’s flexibility

and reduce its ability to optimally represent the true dependence

structure across all levels of the hierarchy.

5 Conclusion

This paper proposes a joint distribution framework for

constructing a six-dimensional model using HACs. In this

study, we demonstrated the applicability of HAC models in

capturing multivariate dependencies, which are essential for

climate risk assessment, agricultural sustainability, and renewable

energy planning.

We illustrated a systematic approach for selecting best fitting

univariate probability distributions for weather variables using

multiple GOF tests and graphical assessment. By utilizing these

fitted distributions, the variables were transformed to uniform

margins, forming the foundation for copula -based modeling.

Weibull distribution was found to be the best fit for temperature,

humidity, solar energy, and cloud cover while the logistic

distribution was most suitable for sea-level pressure, and the

gamma distribution for wind speed.

Using RML, we estimated the structure and parameters of

a HAC. Model selection and thorough GOF testing were used

to identify the best HAC model for the six climatic variables.

The findings confirmed that HAC models effectively capture

dependencies and offer a computationally efficient alternative

compared to vine copulas, making them suitable for high-

dimensional climatemodeling. Notably, HAC Frank emerged as the

most appropriate model for the six variables.

Future research should explore the use of heterogeneous

HAC models in climatic modeling, integrating spatial

modeling techniques within HAC frameworks, and use of

HAC models and artificial intelligence for high dimensional

dependence modeling.
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