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Internet tra�c data recovery via a
low-rank spatio-temporal
regularized optimization
approach without d-th order
T-SVD
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China, 2Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China

Accurate recovery of Internet tra�c data can mitigate the adverse impact of

incomplete data on network task processes. In this study, we propose a low-rank

recovery model for incomplete Internet tra�c data with a fourth-order tensor

structure, incorporating spatio-temporal regularization while avoiding the use

of d-th order T-SVD. Based on d-th order tensor product, we first establish

the equivalence between d-th order tensor nuclear norm and the minimum

sum of the squared Frobenius norms of two factor tensors under the unitary

transformation domain. This equivalence allows us to leave aside the d-th

order T-SVD, significantly reducing the computational complexity of solving

the problem. In addition, we integrate the alternating direction method of

multipliers (ADMM) to design an e�cient and stable algorithm for precise model

solving. Finally, we validate the proposed approach by simulating scenarios

with random and structured missing data on two real-world Internet tra�c

datasets. Experimental results demonstrate that our method exhibits significant

advantages in data recovery performance compared to existing methods.

KEYWORDS

Internet tra�c data recovery, d-th order TNN, spatio-temporal regularization, ADMM

algorithm, tensor completion

1 Introduction

Internet traffic data, characterized by distinct spatio-temporal attributes, are crucial
for documenting information transmission volumes over specified time periods. It plays a
vital role in network design and management [1–3]. However, in practice, uncontrollable
factors often result in incomplete or corrupted traffic data, hindering its effective
use. Therefore, accurately recovering original data from incomplete traffic data is of
significant importance.

Since Zhang et al. [4] introduced the sparse regularized matrix factorization (SRMF)
model for data recovery, while incorporating the unique characteristics of Internet traffic
data, research in the field of Internet traffic data recovery has continued to advance.
As higher-order generalizations of matrices, tensors are more effective at capturing the
structural characteristics within the data. Consequently, many researchers have proposed
various effective methods for Internet traffic data recovery based on different tensor
decomposition techniques, such as the CANDECOMP/PARAFAC (CP) decomposition
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[5, 6], the tensor-train (TT) decomposition [7], and the third-
order T-product factorization [8]. Given that low-rankness is a
typical characteristic of incomplete data in scenarios with high
levels of missing samples, low-rank modeling serves as another
effective strategy beyond tensor decomposition. Candès et al. [9]
were the pioneers in establishing a low-rank matrix data recovery
model. To address its inherent non-convexity and NP hardness,
they employed the nuclear norm of a matrix to convexly relax
the model, enabling an effective solution. Unlike the definition of
matrix rank, which is well-defined, the definition of tensor rank
relies on specific decomposition method.

In 2014, based on the tensor singular value decomposition (T-
SVD), Zhang et al. [10] proposed third-order tensor nuclear norm
(TNN) and employed it to convexly relax the tubal rank of tensors,
and they established a model for image restoration. On this basis, Li
et al. [11] developed the SRTNNmodel for the recovery of Internet
traffic data by incorporating spatial-temporal regularization with
the nuclear norm of third-order tensors, which demonstrates
significant advantages in terms of data recovery effectiveness.
Meanwhile, to mitigate the computational burden associated with
SVD, He et al. [12] proposed the equivalence between the so-called
transformed tubal nuclear norm for a third-order tensor and the
minimum of the sum of two factor tensors’ squared Frobenius
norms under a general invertible linear transform.

Currently, the recovery of Internet traffic data primarily relies
on model construction based on third-order tensors. While these
studies have achieved certain advancements, the effectiveness
in restoring data with structural missingness remains limited.
Addressing this challenge requires data recovery models to more
thoroughly account for the intrinsic structural characteristics of the
data. In the case of Internet traffic data, considering its complexity
and multidimensionality, it can be organized in the form of a
fourth-order tensor (X ∈ RD×T×N×N , where N signifies network
nodes, T is the daily recording times, and D indicates the recording
days) to capture the internal structural features of the data more
comprehensively. Therefore, exploring a low-rank fourth-order
tensor model for Internet traffic data recovery is essential.

Notably, Martin et al. [13] have extended the third order T-
product to d-th order T-product, which is explained in a recursive
way but for computational speed is implemented directly using
the fast Fourier transform. Inspired by this, Qin et al. [14] have
generalized the multiplication in the discrete Fourier transform
(DFT) domain to tensor product in the domain of general invertible
transforms and introduced the d-th order tensor nuclear norm.
They employed the d-th order TNN to perform convex relaxation
on the fourth order tensor low-rank model, establishing the
HTNN method for recovering visual data. However, for solving
optimization problems involving nuclear norms, the thresholding
operator is often employed, which involves performing SVD
on a large number of matrices during the process, significantly
increasing the computational time [11, 14]. Hence, a natural
question arises about how to build a low-rank recovery model for a
d-th order tensor without the need for SVD computation.

In this study, by arranging the observed Internet traffic data
as a tensor M ∈ RD×T×N×N , we enable unitary transformations
on mode-3 and mode-4 to fully integrate the internal data of these
modes.Meanwhile, a spatio-temporal regularization term is applied

to modes-1 and-2, aiming to preserve the periodicity and similarity
of the recovered data as much as possible, thereby enhancing the
accuracy of data recovery. We develop a new low-rank model for
the recovery of fourth-order Internet traffic data as follows:

min
X

∥

∥X
∥

∥

⋆,L +
α1

2

∥

∥H ·Mat1(X)
∥

∥

2
F
+

α2

2

∥

∥K ·Mat2(X)
∥

∥

2
F
+ γ

∥

∥X
∥

∥

2
F

s.t. P�(X) = P�(M),

where
∥

∥ ·
∥

∥

⋆,L means the tensor nuclear norm under the unitary
transform L, and Mat1(X) and Mat2(X) are consisted by flow data
of consecutive days and time points, respectively. Through the
equivalence relationship between the d-th order tensor nuclear
norm and the minimum sum of two factor tensors’ squared
Frobenius norms within the unitary transformation domain and
under the d-th order T-product which is first established by us, we
reformulate this model into the following version without relying
on d-th order T-SVD:

min
X,U,V

1

2
(
∥

∥U
∥

∥

2
F
+

∥

∥V
∥

∥

2
F
)+

λ

2

∥

∥X− U ∗L V
∥

∥

2
F
+ γ

∥

∥X
∥

∥

2
F

+
α1

2

∥

∥H ·Mat1(X)
∥

∥

2
F
+

α2

2

∥

∥K ·Mat2(X)
∥

∥

2
F

s.t. P�(X) = P�(M).

We will give a detail explanation about these two models
in Section 3.

The rest of this study is organized as follows. Some notions and
preliminaries are listed in Section 2. In Section 3, we establish a
low-rank Internet traffic data recovery model without d-th order
tensor SVD and solve it using the alternating direction method
of multipliers (ADMM), proposing a computational framework
for solving the model. In Section 4, we conduct a convergence
analysis of Algorithm 1, ensuring that it converges to a stationary
point. Numerical experiments are presented in Section 5, where
we apply the proposed method to two real-world Internet traffic
datasets and simulate potential structural missingness scenarios in
practice. The experimental results demonstrate that our method
exhibits significant advantages, both in terms of recovery accuracy
and computational efficiency. Finally, we give the conclusion of this
study in Section 6.

2 Preliminary

In this study, the real number field and the complex number
field are denoted by R and C, respectively. We use lowercase
letters a, b, · · · to denote scalars, bold lowercase letters a, b, · · · to
represent vectors, capital letters A,B, · · · to signify matrices, and
calligraphic letters A,B, · · · to denote tensors. For any positive
integer n, we define the set [n] : = {1, 2, ..., n}. For A ∈
Cm×n, AH denotes the conjugate transpose of A (when A is
in the real number field, its transpose is A⊤), and its nuclear

norm is denoted as ‖A‖⋆ =
min{m,n}

∑

i=1
σi(A), where σi is the

i-th singular value of A. For a d-th order real tensor A =
(ai1i2···id ) ∈ Rn1×n2×···×nd , its corresponding Frobenius norm is

‖A‖F =
(

n1
∑

i1=1
· · ·

nd
∑

id=1
|ai1···id |2

)1/2
. The inner product between
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A ∈ Rn1×n2×···×nd and B ∈ Rn1×n2×···×nd is denoted as 〈A,B〉 =
n1
∑

i1=1
· · ·

nd
∑

id=1
ai1···idbi1···id . Denote A(i1, · · · , il−1, :, il+1, · · · , id) ∈

Rnl as a column vector formed by fixing all modes except
for mode-l, and A(i1, · · · , ip−1, :, ip+1, · · · , iq−1, :, iq+1, · · · , id) ∈
Rnp×nq (p < q) as the matrix slice along mode-p and mode-q.
In particular, the matrix slice encompassing the first two modes
is designated as Aj = A(:, :, i3, · · · , id) ∈ Rn1×n2 , where j =
(id − 1)n3 · · · nd−1 + · · · + (i4 − 1)n3 + i3, id ∈ [nd]. Denote

bdiag(A) =













A1

A2

. . .

AJ













∈ R(n1n3n4···nd)×(n2n3n4···nd),

where J = n3 · · · nd. Herein, elucidate the face-wise product for
d-th order tensors.

Definition 1 (Face-wise product [14]). The face-wise product
A△B of two d-th order tensors A ∈ Cn1×l×n3×···×nd and
B ∈ Cl×n2×n3×···×nd is the element of Cn1×n2×n3×···×nd defined
according to

C = A△B ⇐⇒ bdiag(C) = bdiag(A) · bdiag(B). (1)

For a given set of invertible transformation matrices denoted as
{

Li ∈ Cni×ni
}d

i=3, the linear transformation of a d-th order tensor
A under L is defined asAL , L(A) = A×3 L3×4 · · ·×d Ld, where
the symbol ×k represents the k-mode product of a tensor with a
matrix defined in [15], and the inverse transformation of A under
L is denoted as L−1(A) = A ×3 L

−1
3 ×4 · · · ×d L−1

d
. Thus, when

the corresponding matrices
{

Li
}d

i=3 of invertible linear transforms
L are unitary matrices, we can obtain

‖A‖F = ‖AL‖F . (2)

Next, the clear definitions for the multiplication operation and
related concepts of a d-th order tensor A within the domain of
general invertible transformations.

Definition 2 (d-th order T-product [14]). Let A ∈ Rn1×n2×···×nd

and B ∈ Rn2×l×n3×···×nd . Then, the invertible linear transforms L
based T-product is defined as

C = A ∗L B = L−1(AL △ BL).

Definition 3 (d-th order tensor conjugate transpose [14]). The
invertible linear transforms L based conjugate transpose of a tensor
A ∈ Cn1×n2×n3×···×nd is the tensor B ∈ Cn2×n1×n3×···×nd ,
whose matrix slice encompassing the first two modes
B(:, :, i3, · · · , id) =

(

AL(:, :, i3, · · · , id)
)H

. We denote by AH

the conjugate transpose of a tensorA.

Definition 4 (d-th order TNN [14]). Let A ∈ Rn1×···×nd , the
tensor nuclear norm ofA is defined as

∥

∥A
∥

∥

⋆,L
: =

1

ρ

∥

∥bdiag(AL)
∥

∥

⋆
=

1

ρ

n3
∑

i3=1

· · ·
nd
∑

id=1

∥

∥AL(:, :, i3, · · · , id)
∥

∥

⋆
,

where ρ > 0 is a positive constant determined by the invertible
linear transforms L.

Remark 1. The constant ρ in the key definition and theorem

arises when the corresponding matrices
{

Li
}d

i=3 of invertible linear
transforms L fulfill the given equation:

(Ld ⊗ Ld−1 ⊗ · · · ⊗ L3) · (LHd ⊗ LHd−1 ⊗ · · · ⊗ LH3 )

= (LHd ⊗ LHd−1 ⊗ · · · ⊗ LH3 ) · (Ld ⊗ Ld−1 ⊗ · · · ⊗ L3)

= ρIn3n4···nd ,

where ⊗ is the Kronecker product, I is the identity matrix, and
n3n4 · · · nd is its dimensions.

Based on Definition 4, we can draw the conclusion of the
equivalence between d-th order tensor nuclear norm and
the minimum of the sum of two factor tensors’ squared
Frobenius norms:

Theorem 1. If the corresponding matrices
{

Li
}d

i=3 of invertible
linear transforms L are unitary matrices, for A ∈ Rn1×n2×···×nd ,
we have

∥

∥A
∥

∥

⋆,L = min
X,Y

{1

2

(
∥

∥X
∥

∥

2
F
+

∥

∥Y
∥

∥

2
F

)

:A = X ∗L YH
}

.

Proof: By Definition 4, we have

∥

∥A
∥

∥

⋆,L =
1

ρ

n3
∑

i3=1

· · ·
nd
∑

id=1

∥

∥AL(:, :, i3, i4, · · · , id)
∥

∥

⋆

= min
XL ,YL

{

1

2ρ

n3
∑

i3=1

· · ·
nd
∑

id=1

(

∥

∥XL(:, :, i3, i4, · · · , id)
∥

∥

2
F

+
∥

∥YL(:, :, i3, · · · , id)
∥

∥

2
F

)

:

XL(:, :, i3, i4, · · · , id) ·
(

YL(:, :, i3, · · · , id)
)H

= AL(:, :, i3, · · · , id)
}

= min
X,Y

{

1

2

(
∥

∥X
∥

∥

2
F
+

∥

∥Y
∥

∥

2
F

)

:A = X ∗L YH

}

,

where the proof for the second equality can be deduced from the
proofs of Lemma 5.1 and Proposition 2.1 of [16], and the reason for

the third equality holding is that
{

Li
}d

i=3 are unitary matrices.

3 Model and algorithm

As mentioned in the introduction, Internet traffic data consist
of network traffic records measured T times daily from N origin
nodes to N destination nodes. Consequently, data collected over
D consecutive days can be organized as a fourth-order tensor in
RD×T×N×N (i.e., n1 = D, n2 = T, n3 = n4 = N), comprehensively
capturing the spatio-temporal dynamics of the network traffic.

3.1 Design of model and transformation

Based on low-rank property of observed incomplete tensor
M ∈ Rn1×n2×n3×n4 , we construct a data recovery model for

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2025.1587681
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Duan et al. 10.3389/fams.2025.1587681

missing traffic data within the domain of unitary transformation
(i.e., the corresponding matrices {Li}4i=3 in L are unitary):

min
X

∥

∥X
∥

∥

⋆,L +
α1

2

∥

∥H ·Mat1(X)
∥

∥

2
F
+

α2

2

∥

∥K ·Mat2(X)
∥

∥

2
F
+ γ

∥

∥X
∥

∥

2
F

s.t. P�(X) = P�(M),

(3)

where α1,α2, and γ are positive parameters, X ∈ Rn1×n2×n3×n4

is the Internet traffic tensor needed to be estimated, � is
the index set corresponding to the observed entries of M,
and P�(·) is the linear operator that keeps known elements
in � while setting the others to be zeros. Here, Mat1(X) =
[X(:, 1, 1, 1), . . .X(:, n2, 1, 1), . . . ,X(:, n2, n3, 1), . . . ,X(:, n2, n3, n4)]
∈ Rn1×(n2n3n4), where adjacent rows represent flow data
measurements from consecutive days. And Mat2(X) = [X
(1, :, 1, 1), . . . ,X(n1, :, 1, 1), . . . ,X(n1, :, n3, 1), . . . ,X(n1, :, n3, n4)]∈
Rn2×(n1n3n4), where adjacent rows represent flow data
measurements from consecutive time points. The regularization
term γ

∥

∥X
∥

∥

2
F

is employed to ensure the boundedness of the
sequence generated by the proposed algorithm. To better capture
the periodicity of the data measured on each observation day and
the similarity of the data obtained between adjacent observation
time points within each day, we choose the temporal constraint
matrix H = Toeplitz(0, 1,−1) of the size (n1 − 1) × n1 and
K = Toeplitz(0, 1,−1) of size (n2 − 1)× n2, respectively, i.e.,

H =

















1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1

















(n1−1)×n1

,

K =

















1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1

















(n2−1)×n2

.

It is well-known that the Equation (Model) 3 requires the so-called
SVD to compute the ‖ · ‖⋆,L minimization subproblem, which
often takesmuch computing time for large-scale tensors. Therefore,
with the employment of Theorem 1, we gainfully reformulate
Equation (Model) 3 as the following tensor factorization version:

min
X,U,V

1

2
(
∥

∥U
∥

∥

2
F
+

∥

∥V
∥

∥

2
F
)+

λ

2

∥

∥X− U ∗L V
∥

∥

2
F
+ γ

∥

∥X
∥

∥

2
F

+
α1

2

∥

∥H ·Mat1(X)
∥

∥

2
F

+
α2

2

∥

∥K ·Mat2(X)
∥

∥

2
F

s.t. P�(X) = P�(M),

(4)

where U ∈ Rn1×s×n3×n4 ,V ∈ Rs×n2×n3×n4 . Clearly, such
an optimization model no longer requires SVD to find its
solution. Therefore, we call Equation (Model) 4 a SVD-free model.
Moreover, to facilitate the solution of Equation (Model) 4, we

introduce auxiliary variables Y,Z ∈ Rn1×n2×n3×n4 . Thus, the
Equation (Model) 4 is equivalently written as

min
X,U,V,Y,Z

f (X,U,V,Y,Z) =
1

2
(
∥

∥U
∥

∥

2
F
+

∥

∥V
∥

∥

2
F
)+

λ

2

∥

∥X− U ∗L V
∥

∥

2
F

+
γ

2

∥

∥Y
∥

∥

2
F
+

γ

2

∥

∥Z
∥

∥

2
F
+

α1

2

∥

∥H ·Mat1(Y)
∥

∥

2
F

+
α2

2

∥

∥K ·Mat2(Z)
∥

∥

2
F

s.t. P�(X) = P�(M),Y = X,Z = X.

(5)

3.2 Description of algorithm

We apply the alternating direction method of multipliers
(ADMM) algorithm to solve Equation (Model) 5. The augmented
Lagrangian function of Equation (Model) 5 is written as follows:

L(X,U,V,Y,Z,W1,W2) = f (X,U,V,Y,Z)

+ 〈W1,X− Y〉 +
β1

2

∥

∥X− Y
∥

∥

2
F
+ 〈W2,X− Z〉 +

β2

2

∥

∥X− Z
∥

∥

2
F
,

(6)

whereW1 andW2 ∈ Rn1×n2×n3×n4 are the Lagrangian multipliers,
and β1 and β2 are positive penalty parameters. Below, given the q-
th iterate 2q

: = (Xq,Uq,Vq,Yq,Zq,W
q
1,W

q
2), we provide specific

solutions for the updates of each variable.

◮ The X-subproblem
We update X by solving the following subproblem

min
X

λ

2

∥

∥X− Uq ∗L Vq
∥

∥

2
F
+ 〈Wq

1,X− Yq〉 +
β1

2

∥

∥X− Yq
∥

∥

2
F

+ 〈Wq
2,X− Zq〉 +

β2

2

∥

∥X− Zq
∥

∥

2
F

s.t. P�(X) = P�(M).

(7)

The solution of Equation (Model) 7 is given by

X
q+1
ijkl

=















1

λ + β1 + β2

(

λUq ∗L Vq + β1Y
q

+β2Z
q −W

q
1 −W

q
2

)

ijkl
, (i, j, k, l) 6∈ �,

Mijkl otherwise.
(8)

◮ The U-subproblem
We update U by

Uq+1 = argmin
U

{

1

2

∥

∥U
∥

∥

2
F
+

λ

2

∥

∥Xq+1 − U ∗L Vq
∥

∥

2
F

}

. (9)

Because the corresponding matrices {Li}4i=3 in L are unitary, it
holds that for j ∈ [n3n4],

1

2

∥

∥U
∥

∥

2
F
+

λ

2

∥

∥Xq+1 − U ∗L Vq
∥

∥

2
F

=
1

2

∥

∥UL

∥

∥

2
F
+

λ

2

∥

∥X
q+1
L − UL△V

q
L

∥

∥

2
F

=
1

2

n3n4
∑

j=1

(

∥

∥U
j
L

∥

∥

2
F
+ λ

∥

∥

(

X
j
L

)q+1 − U
j
L

(

V
j
L

)q∥
∥

2
F

)

.

(10)
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Due to the separable structure of Equation 10 with respect
to decision variables U

j
L for j ∈ [n3n4], solving the Equation 9

is equivalent to solving

min
U
j
L

1

2

∥

∥U
j
L

∥

∥

2
F
+

λ

2

∥

∥

(

X
j
L

)q+1 −U
j
L

(

V
j
L

)q∥
∥

2
F
, j ∈ [n3n4], (11)

whose solution is given by

(

U
j
L

)q+1 =
(

λ
(

X
j
L

)q+1
(

(

V
j
L

)q+1
)⊤

)

(

λ
(

V
j
L

)q+1
(

(

V
j
L

)q+1
)⊤

+ I

)−1

.

With the help of the obtained (U
j
L)

q+1 for j ∈ [n3n4], we can get
Uq+1 by

Uq+1 = L−1(U
q+1
L

)

. (12)

◮ The V-subproblem
We update V by

Vq+1 = argmin
V

{

1

2

∥

∥V
∥

∥

2
F
+

λ

2

∥

∥Xq+1 − Uq+1 ∗L V
∥

∥

2
F

}

. (13)

Similarly to U-subproblem, solving Equation 13 is equivalent to
solving the following problem:

min
V
j
L

1

2

∥

∥V
j
L

∥

∥

2
F
+

λ

2

∥

∥

(

X
j
L

)q+1 −
(

U
j
L

)q+1 · V j
L

∥

∥

2
F
, (14)

for every j ∈ [n3n4]. Clearly, the solution of
Equation (Model) 14 is given by

(

V
j
L

)q+1 =
(

λ
(

(

U
j
L

)q+1
)⊤

(

U
j
L

)q+1 + I

)−1

(

λ
(

(

U
j
L

)q+1
)⊤

(

X
j
L

)q+1
)

,

for every j ∈ [n3n4]. Thus, V
q+1 can be obtained via

Vq+1 = L−1(V
q+1
L

)

. (15)

◮ The Y-subproblem
We update Y by

Yq+1 = argmin
Y

{

α1

2

∥

∥H ·Mat1(Y)
∥

∥

2
F
+ 〈Wq

1,X
q+1 − Y〉

+
β1

2

∥

∥Xq+1 − Y
∥

∥

2
F
+

γ

2

∥

∥Y
∥

∥

2
F

}

, (16)

which is equivalent to solving

min
Mat1(Y)

α1

2

∥

∥H ·Mat1(Y)
∥

∥

2
F
+

β1

2

∥

∥Mat1(Y)−
(

Mat1(X
q+1)

+
1

β1
Mat1(W

q
1)

)∥

∥

2
F
+

γ

2

∥

∥Mat1(Y)
∥

∥

2
F
. (17)

By the optimality condition of Equation (Model) 17, we have

α1H
⊤HMat1(Y

q+1)+ β1
(

Mat1(Y
q+1)−

(

Mat1(X
q+1)

+
1

β1
Mat1(W

q
1)

))

+ γMat1(Y
q+1) = 0, (18)

1: Select parameters λ, α1, α2, β1 ,β2 ,γ, ε > 0 and

starting point 20 = (X0,U0,V0,Y0,Z0,W0
1,W

0
2).

2: for q = 0,1,2, . . . do

3: Update Xq+1 via (Equation 8).

4: Update Uq+1 via (Equation 12).

5: Update Vq+1 via (Equation 15).

6: Update Yq+1 via (Equation 20).

7: Update Zq+1 via (Equation 22).

8: Update W
q+1
1 and W

q+1
2 via (Equation 23).

9: If
∥

∥Xq+1 −Xq‖2
F
/‖Xq‖2

F
< ε, then stop.

10: end for

Algorithm 1. Tensor completion algorithmwith d-th order tensor product

decomposition and spatio-temporal regularization (SRdTPD).

which implies that the optimal solution of Equation (Model) 17
is

Mat1(Y
q+1) =

(

α1H
⊤H + (β1 + γ )I

)−1

(

β1Mat1(X
q+1)+Mat1(W

q
1)

)

. (19)

As a result, the optimal solution of Equation 16 is

Yq+1 = IMat1

(

(

α1H
⊤H + (β1 + γ )I

)−1

(

β1Mat1(X
q+1)+Mat1(W

q
1)

)

)

, (20)

where IMat1(·) is the inverse of Mat1(·).
◮ The Z-subproblem

We update Z by

Z = argmin
Z

{

α2

2

∥

∥K ·Mat2(Z)
∥

∥

2
F
+ 〈Wq

2,X
q+1 − Z〉

+
β2

2

∥

∥Xq+1 − Z
∥

∥

2
F
+

γ

2

∥

∥Z
∥

∥

2
F

}

. (21)

Similarly to Y-subproblem, the optimal solution of
Equation 21 is

Zq+1 = IMat2

(

(

α2K
⊤K + (β2 + γ )I

)−1

(

β2Mat2(X
q+1)+Mat2(W

q
2)

)

)

, (22)

where IMat2(·) is the inverse of Mat2(·).
◮ TheW1 andW2-subproblems

We updateW1 andW2 by

W
q+1
1 = W

q
1 + β1(X

q+1 − Yq+1),

W
q+1
2 = W

q
2 + β2(X

q+1 − Zq+1).
(23)

Following the above analysis, the algorithmic framework for
solving Equation (Model) 5 is presented at Algorithm 1.

Remark 2. In the U and V-subproblems, the inverses of two related
matrices are computed directly. In the Y and Z-subproblems, we
first utilize the special structure of H and K to perform Cholesky
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decomposition on the two matrices H⊤H + (β1 + γ )I and K⊤K +
(β2 + γ )I, decomposing them into the product of two triangular
matrices respectively, and then obtain their inverse matrices.
This will significantly reduce the computational cost. In addition,
considering that the inverses of the two related matrices remain
constant in each round of solving the Y and Z-subproblems, we
only need to compute the inverses once, and in the subsequent
solving of the Y andZ-subproblems, we can simply call the inverse
matrices directly.

4 Convergence analysis

In this section, we investigate the convergence properties of
Algorithm 1. Although the convergence of ADMM algorithm for
solving the general multi-block optimization cannot be guaranteed
[17], we can still use the special structure of the Equation (Model) 5
to obtain the convergence of Algorithm 1, whose proofs are similar
to the proofs in Section 3.2 of [18]. We first present the Karush-
Kuhn-Tucker (KKT) conditions for Equation (Model) 5:

∇X�c
f (X,U,V,Y,Z)+W1�c +W2�c = O�c , (24)

∇Uf (X,U,V,Y,Z) = O, (25)

∇Vf (X,U,V,Y,Z) = O, (26)

∇Yf (X,U,V,Y,Z)−W1 = O, (27)

∇Zf (X,U,V,Y,Z)−W2 = O, (28)

P�(X) = P�(M), (29)

Y = X, (30)

Z = X, (31)

where �c represents the complement of the set �. Moreover,
we call (X◦,U◦,V◦,Y◦,Z◦,W◦

1 ,W
◦
2) satisfying (Equations 24–31)

a stationary point of Equation (Model) 5, where W◦
1 and W◦

2 are
Lagrange multipliers associated with the constraints Y◦ = X◦ and
Z◦ = X◦, respectively. For any integer q ≥ 0, denote 2q =
(Xq,Uq,Vq,Yq,Zq,W

q
1,W

q
2).

Proposition 1. Let
{

2q = (Xq,Uq,Vq,Yq,Zq,W
q
1,W

q
2)

}∞
q=0 be the

sequence generated by Algorithm 1. Then, we have

L(Xq+1,Uq,Vq,Yq,Zq,W
q
1,W

q
2)+

λ + β1 + β2

2

∥

∥Xq+1 − Xq
∥

∥

2
F

≤ L(Xq,Uq,Vq,Yq,Zq,W
q
1,W

q
2).

(32)

Proof:We consider three cases: (a) � = ∅, (b) ∅ & � & [n1]×
[n2]× [n3]× [n4], and (c)� = [n1]× [n2]× [n3]× [n4]. In case (a),
the X-subproblem Equation (Model) 7 becomes an unconstrained
optimization problem, which is equivalent to minXf1(X), where

f1(X) =
λ

2

∥

∥X− Cq
∥

∥

2
F
+

β1

2

∥

∥X−Dq
∥

∥

2
F
+

β2

2

∥

∥X− Eq
∥

∥

2
F

(33)

with Cq = Uq∗LVq,Dq = Yq−(1/β1)W
q
1 and E

q = Zq−(1/β2)W
q
2.

It is obvious that f1 is strongly convex withmodulus at least λ+β1+
β2. Consequently, by Theorem 5.24 in [19], it holds that

f1(X
′) ≥ f1(X)+〈∇f1(X),X

′−X〉+
λ + β1 + β2

2

∥

∥X′−X
∥

∥

2
F
(34)

for any X,X′ ∈ Rn1×n2×n3×n4 . Since Xq+1 is the optimal
solution of minXf1(X), which means ∇f1(X

q+1) = O, from
Equation (Inequality) 34, it holds that

f1(X
q) ≥ f1(X

q+1)+
λ + β1 + β2

2

∥

∥Xq − Xq+1
∥

∥

2
F
, (35)

which implies, together with the definition of L,
that Equation (Inequality) 32 holds.

In the case ∅ & � & [n1] × [n2] × [n3] × [n4], the simple
equality constraints in Equation (Model) 7 can be eliminated by
substituting them into its objective function, and the corresponding
X-subproblem is converted into an unconstrained optimization
problem, whose objective function is similar to the structure of
f1, but X, Cq, Dq, and Eq are replaced by X�c , C

q
�c , D

q
�c , and

E
q
�c , respectively. Noticing X

q+1
� = M�, similar to the proof

for the case (a), we know that Equation (Inequality) 32 still holds.
In the case (c), since Xq+1 = Xq = M, the inequality
[Equation (Inequality) 32] is obvious. We complete the proof.

Proposition 2. Let
{

2q
}∞
q=0 be the sequence generated by

Algorithm 1. Then we have

L(Xq+1,Uq+1,Vq,Yq,Zq,W
q
1,W

q
2)+

1

2

∥

∥Uq+1 − Uq
∥

∥

2
F

≤ L(Xq+1,Uq,Vq,Yq,Zq,W
q
1,W

q
2)

(36)

and

L(Xq+1,Uq+1,Vq+1,Yq,Zq,W
q
1,W

q
2)+

1

2

∥

∥Vq+1 − Vq
∥

∥

2
F

≤ L(Xq+1,Uq+1,Vq,Yq,Zq,W
q
1,W

q
2).

(37)

Proof: For every j ∈ [n3n4] and integer q ≥ 0, we define the
function fjq :Cn1×s → R by

fjq(U
j
L) =

1

2

∥

∥U
j
L

∥

∥

2
F
+

λ

2

∥

∥

(

X
j
L

)q+1 − U
j
L

(

V
j
L

)q∥
∥

2
F
.

It is obvious that fjq is strongly convex with modulus at least 1.
Similar to the proof for (a) of Proposition 1, we have

fjq((U
j
L)

q+1)+
1

2

∥

∥(U
j
L)

q+1 − (U
j
L)

q
∥

∥

2
F
≤ fjq((U

j
L)

q),

which implies, together with the fact (Equation 2), that

1

2

∥

∥Uq+1
∥

∥

2
F
+

λ

2

∥

∥Xq+1 − Uq+1 ∗L Vq
∥

∥

2
F
+

1

2

∥

∥Uq+1 − Uq
∥

∥

2
F

≤
1

2

∥

∥Uq
∥

∥

2
F
+

λ

2

∥

∥Xq+1 − Uq ∗L Vq
∥

∥

2
F
.

Moreover, by the definition of L, we know that the first
inequality in Equation (Inequality) 36 holds. The inequality
[Equation (Inequality) 37] can be proved similarly.

Employing a proof analogous to that of Proposition 1, we can
derive the following proposition.

Proposition 3. Let
{

2q
}∞
q=0 be the sequence generated by

Algorithm 1. Then, we have

L(Xq+1,Uq+1,Vq+1,Yq+1,Zq,W
q
1,W

q
2)+

β1 + γ

2

∥

∥Yq+1 − Yq
∥

∥

2
F

≤ L(Xq+1,Uq+1,Vq+1,Yq,Zq,W
q
1,W

q
2),

(38)
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FIGURE 1

Numerical comparison on NMAE and computing time (seconds) with respect to di�erent random sample ratios.

and

L(Xq+1,Uq+1,Vq+1,Yq+1,Zq+1,W
q
1,W

q
2)

+
β2 + γ

2

∥

∥Zq+1 − Zq
∥

∥

2
F

≤ L(Xq+1,Uq+1,Vq+1,Yq+1,Zq,W
q
1,W

q
2).

(39)

Denote

ξ1 = β1(β1 + γ )− 2(α1σ1(H
⊤H)+ γ )2 and

ξ2 = β2(β2 + γ )− 2(α2σ1(K
⊤K)+ γ )2).

From Propositions 1, 2, and 3, we have the following
theorem, which characterizes the sufficient decrease property and
boundedness of the sequence

{

2q
}∞
q=0.

Theorem 2. Let
{

2q
}∞
q=0 be the sequence generated by

Algorithm 1. If ξ1 > 0 and ξ2 > 0, then the sequence
{

2q
}∞
q=0

satisfies

L(2q+1)+ µ
∥

∥3q+1 − 3q
∥

∥

2
F
≤ L(2q), (40)

where 3q = (Xq,Uq,Vq,Yq,Zq) and µ = (1/2)min
{

1, λ + β1 +
β2, ξ1/β1, ξ2/β2

}

. Furthermore, if η1 : = β1γ − (α1σ1(H⊤H) +
γ )2 > 0 and η2 : = β2γ − (α2σ1(K⊤K) + γ )2 > 0, then the
sequence {2q}∞q=0 is bounded.

Proof: From Equations 6, 23, we have

L(2q+1) =L(Xq+1,Uq+1,Vq+1,Yq+1,Zq+1,W
q
1,W

q
2)

+
1

β1

∥

∥W
q+1
1 −W

q
1

∥

∥

2
F
+

1

β2

∥

∥W
q+1
2 −W

q
2

∥

∥

2
F
.

(41)

Moreover, from Equations (Inequalities) 32, 36, 38, we have

L(Xq+1,Uq+1,Vq+1,Yq+1,Zq+1,W
q
1,W

q
2)

+
λ + β1 + β2

2

∥

∥Xq+1 − Xq
∥

∥

2
F

+
1

2

∥

∥Uq+1 − Uq
∥

∥

2
F
+

1

2

∥

∥Vq+1 − Vq
∥

∥

2
F
+

β1 + γ

2

∥

∥Yq+1 − Yq
∥

∥

2
F

+
β2 + γ

2

∥

∥Zq+1 − Zq
∥

∥

2
F

≤ L(2q).

(42)

Consequently, by Equation 41 and Equation (Inequality) 42, it
holds that

L(2q+1)+
λ + β1 + β2

2

∥

∥Xq+1 − Xq
∥

∥

2
F
+

1

2
‖Uq+1 − Uq‖2F

+
1

2

∥

∥Vq+1 − Vq
∥

∥

2
F
+

β1 + γ

2

∥

∥Yq+1 − Yq
∥

∥

2
F

+
β2 + γ

2

∥

∥Zq+1 − Zq
∥

∥

2
F

≤ L(2q)+
1

β1

∥

∥W
q+1
1 −W

q
1

∥

∥

2
F
+

1

β2

∥

∥W
q+1
2 −W

q
2

∥

∥

2
F
.

(43)

On the other hand, it holds that

Mat1(W
q+1
1 ) = (α1H

⊤H + γ I)Mat1(Y
q+1) (44)
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FIGURE 2

Numerical comparison on NMAE and computing time (seconds) with respect to di�erent cases of xxTimeRandLoss.

for every q ≥ 0. Consequently, by Equation 44, we have

∥

∥W
q+1
1 −W

q
1

∥

∥

2
F
=

∥

∥Mat1(W
q+1
1 )−Mat1(W

q
1)

∥

∥

2
F

≤ (α1σ1(H
⊤H)+ γ )2

∥

∥Mat1(Y
q+1)

−Mat1(Y
q)

∥

∥

2
F

= (α1σ1(H
⊤H)+ γ )2

∥

∥Yq+1 − Yq
∥

∥

2
F
.

(45)

Similarly, we have

Mat1(W
q+1
2 ) = (α2K

⊤K + γ I)Mat2(Z
q+1) (46)

for every q ≥ 0, which implies

∥

∥W
q+1
2 −W

q
2

∥

∥

2
F
≤ (α2σ1(K

⊤K)+ γ )2
∥

∥Zq+1 − Zq
∥

∥

2
F
. (47)

Combining Equations (Inequalities) 43 with 45 and 47, we obtain

L(2q+1)+
λ + β1 + β2

2

∥

∥Xq+1 − Xq
∥

∥

2
F
+

1

2

∥

∥Uq+1 − Uq
∥

∥

2
F

+
1

2

∥

∥Vq+1 − Vq
∥

∥

2
F
+

ξ1

2β1

∥

∥Yq+1 − Yq
∥

∥

2
F
+

ξ2

2β2

∥

∥Zq+1 − Zq
∥

∥

2
F

≤ L(2q).

(48)

Finally, by the definition of µ, we know that
Equation (Inequality) 40 holds.

Now, we prove the boundedness of
{

2q
}∞
q=0. Because

∥

∥W
q
1

∥

∥

2
F
≤ (α1σ1(H⊤H)+γ )2

∥

∥Yq
∥

∥

2
F
and

∥

∥W
q
2

∥

∥

2
F
≤ (α2σ1(K⊤K)+

γ )2
∥

∥Zq
∥

∥

2
F
for any q ≥ 0, by Equation 6, we can obtain

L(2q) ≥ f (Xq,Uq,Vq,Yq,Zq)+
β1

2

∥

∥Xq − Yq +
1

β1
W

q
1

∥

∥

2
F

−
(α1σ1(H⊤H)+ γ )2

2β1

∥

∥Yq
∥

∥

2
F

+
β2

2

∥

∥Xq − Zq +
1

β2
W

q
2

∥

∥

2
F
−

(α2σ1(K⊤K)+ γ )2

2β2

∥

∥Zq
∥

∥

2
F

(49)

for every q ≥ 0. According to Equation (Inequality) 40, for any
q ≥ 0, it is clear that

L(2q)+ µ

q−1
∑

s=0

∥

∥3s+1 − 3s
∥

∥

2
F
≤ L(20), (50)
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FIGURE 3

Numerical comparison on NMAE and computing time (seconds) with respect to di�erent cases of xxElemRandLoss.

Therefore, by the definition of f , as well as Equation 6 and
Equation (Inequalities) 49, 50, it holds that for any q ≥ 0,

∥

∥Uq
∥

∥

2
F
≤ 2L(20),

∥

∥Vq
∥

∥

2
F
≤ 2L(20), η1

∥

∥Yq
∥

∥

2
F
≤ 2β1L(20) and

η2
∥

∥Zq
∥

∥

2
F
≤ 2β2L(20). (51)

Since η1 > 0, η2 > 0, we know that
{

(Uq,Vq,Yq,Zq)
}∞
q=0 is

bounded, which implies the boundedness of
{

(W
q
1,W

q
2)

}∞
q=0 from

Equations 44, 46. In addition, since β1
∥

∥Xq − Yq + (1/β1)W
q
1

∥

∥

2
F
≤

2L(20) for any q ≥ 0, which from Equation (Inequality) 49,
it follows that

{

Xq
}∞
q=0 is also bounded. Based on the

comprehensive analysis presented above, we have completed
the proof.

Remark 3. Given the predefined dimensions of matrices H and
K, the singular values of H⊤H and K⊤K can be computed.
Consequently, we only need to select appropriate parameters that
satisfy the hypotheses stated in Theorem 2.

Theorem 3. For the sequence
{

2q
}∞
q=0 generated by Algorithm 1.

If the parameters satisfy the conditions in Theorem 2, then

any cluster point 2∞ of
{

2q
}∞
q=0 is a stationary point

of Equation (Model) 5.

Proof: According to Theorem 2, the sequence {2q}∞q=0 is
bounded. Let {2qi}∞i=0 be a convergent subsequence such that
limi→∞ 2qi = 2∞

: = (X∞,U∞,V∞,Y∞,Z∞,W∞
1 ,W∞

2 ). First,
from Equation (Inequality) 50, we have

µ

qi
∑

q=0

∥

∥3q+1 − 3q
∥

∥

2
F
≤ L(20)− L(2qi ). (52)

Taking the limit of both sides of the Equation 52 as i approaches∞,
it holds that

µ

∞
∑

q=0

∥

∥3q+1 − 3q
∥

∥

2
F
≤ L(20)− L(2∞) ≤ ∞,

(53)

which means lim
q→∞

∥

∥3q+1 − 3q
∥

∥

F
= 0. Moreover, from the

optimality conditions of X-subproblem to Z-subproblem, as well
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TABLE 1 Results on NMAE and computing time (seconds) with respect to diverse cases of xxElemSyncLoss.

Dataset xx q SRMF CPWOPT T2C SRTNN BGCP SRdTPD

NMAE Time NMAE Time NMAE Time NMAE Time NMAE Time NMAE Time

G
É
A
N
T

25

30 0.232 21.56 0.355 69.25 0.162 93.25 0.126 10.64 0.152 66.99 0.097 2.64

50 0.210 19.70 0.348 64.98 0.178 85.53 0.152 9.31 0.187 63.25 0.121 2.84

70 0.238 19.02 0.347 62.27 0.173 85.26 0.163 8.84 0.177 62.59 0.124 5.35

90 0.480 18.77 0.373 62.31 0.186 82.87 0.202 8.81 0.198 61.21 0.173 16.70

50

30 0.223 22.72 0.329 70.23 0.155 94.54 0.126 11.41 0.156 69.24 0.100 2.82

50 0.224 22.78 0.329 72.33 0.158 93.57 0.139 12.28 0.171 70.73 0.110 4.23

70 0.448 23.20 0.345 72.25 0.148 91.18 0.150 12.10 0.172 70.06 0.112 7.89

90 0.688 18.67 0.469 59.63 0.198 80.37 0.218 9.89 0.249 61.64 0.177 16.74

75

30 0.364 20.37 0.359 68.11 0.146 84.66 0.121 10.53 0.148 62.71 0.092 2.94

50 0.503 20.12 0.421 68.11 0.159 84.66 0.136 10.53 0.178 62.71 0.105 2.94

70 0.688 20.29 0.462 65.46 0.155 80.70 0.147 10.53 0.226 62.34 0.116 8.56

90 0.807 15.82 0.683 58.78 0.199 74.38 0.204 9.06 0.288 58.59 0.177 14.24

A
bi
le
n
e

25

30 0.219 11.22 0.306 59.76 0.225 53.93 0.231 5.99 0.234 47.10 0.132 3.35

50 0.199 12.57 0.302 61.45 0.205 54.05 0.267 5.89 0.217 48.17 0.119 3.26

70 0.241 13.32 0.325 62.76 0.228 55.02 0.291 5.94 0.237 48.76 0.136 3.60

90 0.416 8.82 0.347 52.04 0.233 44.54 0.428 5.43 0.261 41.99 0.168 2.71

50

30 0.236 11.52 0.340 56.86 0.211 49.41 0.262 5.51 0.211 44.93 0.115 3.80

50 0.228 12.42 0.330 57.76 0.215 52.12 0.282 5.69 0.215 47.15 0.117 3.56

70 0.426 11.61 0.379 55.83 0.245 50.32 0.326 5.44 0.271 56.14 0.150 3.87

90 0.559 11.20 0.419 56.35 00.278 50.60 0.502 5.37 0.327 46.06 0.190 3.25

75

30 0.344 11.51 0.349 65.25 0.211 56.38 0.277 6.00 0.210 49.40 0.115 4.56

50 0.384 10.81 0.349 54.24 0.207 46.30 0.304 5.29 0.221 43.12 0.115 3.56

70 0.635 10.24 0.398 54.70 0.243 45.12 0.353 5.34 0.277 53.18 0.147 3.39

90 0.794 11.01 0.423 59.14 0.272 53.40 0.544 5.29 0.390 46.50 0.175 3.56

Bold values are the optimal values.

as the update ofW1 andW2, it is easy to see that































































∇X�c
f (Xqi+1,Uqi ,Vqi ,Yqi ,Zqi )+ (W

qi
1 )�c + β1(X

qi+1 − Yqi )�c

+(W
qi
2 )�c + β1(X

qi+1 − Zqi )�c = O�c ,
(Xqi+1)� = (M)�,
∇Uf (X

qi+1,Uqi+1,Vqi ,Yqi ,Zqi ) = O,
∇Vf (X

qi+1,Uqi+1,Vqi+1,Yqi ,Zqi ) = O,
∇Yf (X

qi+1,Uqi+1,Vqi+1,Yqi+1,Zqi )−W
qi
1 = O,

∇Zf (Xqi+1,Uqi+1,Vqi+1,Yqi+1,Zqi+1)−W
qi
2 = O,

W
qi+1
1 = W

qi
1 + β1(X

qi+1 − Yqi+1),

W
qi+1
2 = W

qi
2 + β1(X

qi+1 − Zqi+1).
(54)

Since lim
i→∞

∥

∥3qi+1 − 3qi
∥

∥

F
= 0 and limi→∞ 2qi = 2∞, it holds

that lim
i→∞

∥

∥W
qi+1
1 − W

qi
1

∥

∥

F
= 0 from Equation (Inequality) 45.

Similarly, we have lim
i→∞

∥

∥W
qi+1
2 − W

qi
2

∥

∥

F
= 0 from

Equation (Inequality) 47. Consequently, by letting i → ∞
in Equation 54, we know that 2∞ is a stationary point of
Equation (Model) 5. We complete the proof.

5 Numerical experiments

In this section, we apply our approach (SRdTPD) to two
authentic Internet traffic datasets: the GÉANT dataset [20], which
logs Internet traffic data from 23 original nodes to 23 destination
nodes every 15 min, and the Abilene1 dataset, which records
Internet traffic data from 11 original nodes to 11 destination nodes
every 5 min. For both datasets, we select data spanning a period
of 7 days. The sizes of these two datasets, arranged in fourth-order
tensor format, are 7×96×23×23 and 7×288×11×11, respectively.
For each experiment situation, we reconstruct the Internet traffic
data 5 times, and all experimental results presented are the average
of five repetitions. As demonstrated by the recovery test results
for synthetic experiments and many real-world applications [14],
algorithms with the discrete Fourier transform not only exhibit
similar recovery accuracy but also incur lower computational costs,
compared to methods utilizing the discrete cosine transform or
random orthogonal transform. It is well-known that the most basic

1 http://abilene.internet2.edu/observatory/data-collections.html
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FIGURE 4

Numerical comparison on NMAE and computing time (seconds) with respect to diverse missing ratio of RowRandLoss.

Fast Fourier Transform (FFT) has a computational complexity of
O(NlogN) [21]. Using this result, it is not difficult to see that

the computational complexity of SRdTPD using FFT is O
(

(n1 +

n2)
(

n1n2 + slog(n3n4)
)

n3n4

)

, which is significantly lower than

that of methods using other transforms. Considering the potential
computational cost advantage of SRdTPD equipped with FFTwhen
processing large-scale data, we choose normalized discrete Fourier
transform as L3 and L4 in L, i.e.,

L3 = L4 =
1

√
N

















1 1 1 · · · 1
1 w w2 · · · wN−1

1 w2 w4 · · · w2(N−1)

...
...

...
. . .

...

1 wN−1 w2(N−1) · · · w(N−1)2

















with the w = e−i 2πN . All the experiments are performed on a
notebook computer (13th Gen Intel(R) Core(TM) i9-13900HX
CPU @2.20 GHz with 24G memory) running a 64-bit Windows
Operating System. The code of SRdTPD is released at https://
github.com/Duan-Yuxuan/Traffic-data-recovery/tree/master.

To verify the performance of SRdTPD, we compare it with five
existing approaches designed for data recovery, the first of which
is a matrix completion method, and the remaining four are tensor
completion methods:

• SRMF, which is a low-rank matrix completion with a spatio-
temporal regularization [4];

• CPWOPT, which is a tensor CP factorization completion
approach [22];

• T2C, which is a tensor filling approach that decomposes third-
order tensors into three third-order low-rank tensors in a
balanced manner [23];

• SRTNN, which is a tensor-based approach with spatio-
temporal regularization terms [11];

• BGCP, which is a Bayesian Gaussian CP tensor decomposition
approach [24].

We use the Normalized Mean Absolute Error (NMAE) to measure
the quality of the recovered data by models and algorithms, where
the NMAE is defined as follows

NMAE =

∑

(i,j,k,l)/∈�

|(Xtrue)ijkl − (Xrec)ijkl|
∑

(i,j,k,l)/∈�

|(Xtrue)ijkl|
,

where Xtrue and Xrec are original data and recovered data,
respectively. Clearly, lower NMAE value means better quality of
the recovered data. We first consider the recovery effectiveness
of various approaches for missing data with data sample rates
ranging from 10% to 90%. Under random missingness in the
GÉANT dataset, we set α1 = 0.1,α2 = 200,β1 = 0.01,α2 =
10, λ = 0.001, γ = 0.01, while for the Abilene dataset, we choose
α1 = β2 = 0.01,α2 = 10,β1 = λ = γ = 0.001. Figure 1
presents the NMAE values for missing data recovery using various
methods at different sampling rates. It can be visually observed
that SRdTPD outperforms other methods in terms of data recovery
effectiveness, particularly as the missing data rate increases, where
the superiority of our method’s recovery performance becomes
increasingly apparent.

In addition to the recovery of data missing at random, we
next consider the following four types of structural missingness
scenarios, which are given in [4], thereby demonstrating that our
method fully exploits the structural information within the data.

• xxTimeRandLoss This scenario simulates the phenomenon
of structured data absence at specific time points influenced
by certain factors, such as the utilization of unreliable data
transmission equipment. Specifically, these data are missing at
these specific time points in a certain random proportion. In
our simulation, we randomly select xx% of the matrix slices
along the last two modes of the Internet traffic tensor X of
size n1×n2×n3×n4, and subsequently, we further randomly
delete q% of its elements in each selected matrix.

• xxElemRandLoss This scenario simulates the structured
absence of data for specific OD (Origination-Destination)
nodes under the influence of certain factors, such as the use
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of unreliable data transmission equipment. In this context,
OD node data are missing in a certain random proportion.
To simulate this phenomenon, we randomly select xx% of the
matrix slices along the first two modes of the Internet traffic
tensorX of size n1×n2×n3×n4 and further randomly delete
q% of the elements in each selected matrix.

• xxElemSyncLoss This scenario simulates the structured
data missingness for specific OD nodes due to a uniform
underlying cause, resulting in temporally synchronized
missingness among these OD nodes. To emulate this
condition, we randomly select xx% of the slices from the
Internet traffic tensor X of size n1 × n2 × n3 × n4, which
are matrix representations expanded along its first two modes.
Subsequently, for each selected matrix, we randomly choose a
common set of time indices (q%) and delete the corresponding
elements at these indices.

• RowRandLoss With flow level measurements, data are
collected by a router. If a router is unable to collect data
for a period of time, all data collected during those specific
time points will be missing. To simulate this scenario,
we randomly select p% of the time points within a day
and delete all data recorded at those time points across
a 7-day period.

Under these scenarios of structural missingness, with β1 = γ =
0.01, the parameters for the first two structural missingness cases
are identical within the same dataset (GÉANT: α1 = 0.1,α2 =
200,β2 = 10, λ = 0.001; Abilene: α1 = 0.1,α2 = 2,β2 =
1, λ = 0.001), while the parameters for the last two structural
missingness cases are consistent within the same dataset (GÉANT:
α1 = 0.01,α2 = 2,β2 = 1, λ = 0.01; Abilene: α1 = 0.01,α2 =
1,β2 = 0.1, λ = 0.01). Among these four types of structured
missingness scenarios, we simulate the first three by considering
the following 12 specific missingness cases: Missing Id 1-4: Set
xx = 25 and, correspondingly, set q = 30, 50, 70, and 90,
respectively; Missing Id 5-8: Set xx = 50 and, correspondingly, set
q = 30, 50, 70, and 90, respectively; Missing Id 9-12: Set xx = 75
and, correspondingly, set q = 30, 50, 70, and 90, respectively. For
the fourth type of structured missingness, we specifically select
p = 15, 30, 45, 50, and 75.

The recovery performance and computational time of different
methods under distinct structural missingness scenarios are
comprehensively presented in Figures 2–4, Table 1. Experimental
results demonstrate that the proposed SRdTPD approach achieves
substantial improvements in handling structurally missing data.
Regarding recovery accuracy, SRdTPD demonstrates superior
performance compared to listed methods, attaining competitive
results across all test cases. In terms of computational efficiency,
SRdTPD maintains favorable time — while a moderate increase
in computational time is observed under extreme missingness
conditions (attributable to iterative process requirements), the
runtime remains within practical thresholds for real-world
applications. These findings collectively suggest that SRdTPD
effectively balances recovery accuracy and computational
demands, providing a robust solution for structural missing data
recovery tasks.

6 Conclusion

This study establishes an equivalence relationship between
the d-th order tensor nuclear norm (TNN) in the unitary
transformation domain and the squared sum of the Frobenius
norms of its two factorization factors. Based on this relationship,
we constructed a novel low-rank recovery method for Internet
traffic data that effectively incorporates the spatio-temporal
characteristics of traffic data while significantly reducing
computational time. Auxiliary variables are introduced into
the model solution process, which is then solved using the ADMM.
Numerical experiments demonstrate that the proposed method
exhibits significant advantages in the recovery of Internet traffic
data, particularly in cases of structural missingness.
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