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Improving stock price
forecasting with M-A-BiLSTM: a
novel approach

Zihan Liu*

Haide College, Ocean University of China, Qingdao, China

Stock price prediction plays a crucial role in investment, corporate strategic

planning, and government policy formulation. However, stock price prediction

remains a challenging issue. To tackle this issue, we propose a novel

hybrid model, termed M-A-BiLSTM, which integrates Attention mechanisms,

Multi-Layer Perceptron (MLP), and Bidirectional Long Short-Term Memory

(Bi-LSTM). This model is designed to enhance feature selection capabilities and

capture nonlinear patterns in financial time series. Evaluated on stock datasets

from Apple, ExxonMobil, Tesla, and Snapchat, our model outperforms existing

deep learning methods, achieving a 15.91% reduction in Mean Squared Error

(MSE) for Tesla and a 5.95% increase in R-squared (R2) for Apple. Meanwhile,

the MSE on the ExxonMobil dataset decreased to 1.8954, showing a significant

reduction, while the R2 increased to 0.9887. These results demonstrate the

model’s superior predictive power, o�ering a robust and interpretable approach

for financial forecasting.
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1 Introduction

In recent years, stock market prediction has become one of the most challenging

and important research tasks in the field of finance. The stock market is the primary

venue for institutions to allocate stocks and raise funds [1]. It also functions as an

intermediary that facilitates the flow of funds from savers to investors, providing a system

and mechanism to mobilize domestic savings and effectively channel them into productive

investments. Reducing capital costs for investors accelerates a country’s economic growth.

Consequently, predicting stock market trends is considered an important task because

accurate stock price predictions can lead to enticing profits through correct decision-

making [2].

The stock market is a challenging field, characterized by complex multivariate and

time-evolving nature, and is correlated with various external factors [3]. The problem of

stock price prediction has long been a subject of research for researchers. In the 1990s,

Lawrence [4] discussed the application of neural networks in the field of financial markets

for stock price prediction and found that it provided more accurate predictive capabilities.

Subsequently, Kim and Han [5] proposed the application of genetic algorithms to artificial

neural networks for determining the relevant key values of the stock price prediction index,

which reduces the dimension of the feature space and demonstrates a superior prediction

effect. Traditional statistical methods such as simple moving averages, weighted moving

averages, exponential smoothing, and naive methods have been commonly used in stock

price prediction [6]. However, these traditional methods fail to many additional factors,

such as semantic factors, which reduce the accuracy of the models.
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Numerous studies have shown that deep learning techniques

play a significant role in advancing financial analysis and stock

price prediction. For example, Lu et al. used CNN to capture

local features to predict time series [7]. Ali et al. [8] used logistic

regression models to calculate index variables affecting company

stocks or stock returns, enhancing investors’ ability to predict

stock prices at any given moment. Gao et al. used GRU to

capture dynamic patterns in time series and effectively predict stock

prices [9]. Wang et al. [10] demonstrated that using Long Short-

Term Memory (LSTM) to predict stock returns, unidirectional

LSTM can effectively capture long-term dependencies in time

series data. However, its primary limitation lies in its reliance

solely on past information for prediction, i.e., it can only

utilize the forward temporal information from historical data.

In some cases, the current stock market trend is influenced not

only by past information but may also be guided by future

trends or potential market changes. Siami-Namini et al. [11]

indicates that Bidirectional LSTM (Bi-LSTM) can overcome this

limitation by processing the input sequence twice, enabling it

to capture contextual information more effectively and resulting

in improved prediction performance. Furthermore, Alizadegan

et al. [12] has demonstrated that LSTM and Bi-LSTM consistently

outperform traditional forecasting models, such as ARIMA and

SARIMA, in terms of predictive accuracy. Notably, their findings

highlight that Bi-LSTM exhibits superior capability in capturing

complex nonlinear patterns and effectively modeling long-range

dependencies within the data.

However, due to the unpredictability and complexity of

stock market behavior, existing methods have achieved limited

success. Although Bi-LSTM can address the issues of unidirectional

LSTM in time series, it may face challenges such as information

decay or poor transmission when dealing with long time series

analysis, leading to imbalanced attention on crucial parts of the

prediction task. The Attention mechanism, a key technique in

processing sequential data, allows a model to automatically assess

the importance of different parts of the input sequence [13]. By

dynamically focusing the model on the most relevant segments,

the Attention mechanism improves the model’s ability to capture

critical information, which is essential when handling complex

and noisy time series data, such as stock price. Incorporating

the Attention mechanism into Bi-LSTM brings several advantages

[14], especially in situations where important features may not be

immediately apparent or are distributed across different time points

in the sequence. By combining these two mechanisms, the model

can dynamically adjust its focus on important parts, improving

the learning of relevant patterns and long-range dependencies,

thus enhancing predictive accuracy [15]. Inspired by the oil

and gas industry, the Attention mechanism in deep learning

addresses information overload by prioritizing key segments,

thereby improving both performance and interpretability [16]. And

Li and Xu [17] also mentioned that the attention mechanism can

selectively focus on the important features and patterns within the

data, which is beneficial for identifying the key market indicators

that influence stock prices.

In addition, Multilayer Perceptrons (MLP) are widely used

as basic classifiers for time series trend prediction due to their

strong ability to model nonlinear relationships [18, 19]. In previous

studies, combining LSTM with MLP has effectively enhanced the

model’s ability to capture complex patterns, improving overall

predictive performance [20]. Specifically, MLP, with its multi-

layer structure, can capture the complex nonlinear relationships in

input data, thereby improving the model’s adaptability to complex

systems such as financial markets. At the same time, Mohammadi

et al. [21] pointed out that integrating MLP with LSTM can better

capture the temporal dependencies and nonlinear features in the

data, thus improving the model’s predictive accuracy. Additionally,

Liu et al. [22] proposed combining Bi-LSTM with MLP, leveraging

Bi-LSTM’s powerful ability to model bidirectional dependencies

and MLP’s capacity to extract complex features, using MLP as the

output layer of Bi-LSTM. This combination further improves the

model’s prediction accuracy and generalization ability when dealing

with long time series data.

Based on the above understanding, this paper proposes an

integrated model combining Bi-LSTM, the Attention mechanism,

and Multilayer Perceptrons (MLP), referred to as the M-A-

BiLSTM model. In this model, Bi-LSTM captures both forward

and backward dependencies in the sequence by combining two

LSTM networks, overcoming the information capture limitations

of unidirectional LSTM in certain scenarios. The Attention

mechanism is incorporated to identify and focus on the most

important features in the input sequence, improving feature

selection. MLP, with its multi-layer structure, enhances the model’s

ability to express complex patterns through nonlinear mapping.

The model is evaluated using stock market data from Tesla,

Apple, ExxonMobil, and Snapchat, with Mean Squared Error

(MSE) as the loss function to assess prediction performance. MSE

quantifies the difference between predicted and actual values, with

lower values indicating better accuracy. The experimental results

show that the M-A-BiLSTMmodel outperforms traditional models

like LSTM, Bi-LSTM, and MLP in stock price prediction, achieving

a significantly lowerMSE, demonstrating stronger predictive ability

and higher accuracy when applied to stock market data.

Through model comparison and performance evaluation, the

contributions of this study to the stock price prediction process are

as follows:

1. Instead of adopting a single deep learning model, we combine

Bi-LSTM, MLP, and Attention for stock price training and

prediction, naming this integrated model M-A-BiLSTM. By

leveraging the complementary strengths of these different

models, it effectively enhances the feature extraction and

representation capabilities for financial time series data.

2. Extensive experiments on multiple real-world stock price

datasets show that our proposed integrated model achieves

significant improvements in predictive performance compared

to traditional deep learning approaches. Specifically, it

demonstrates superior results in terms of Mean Squared Error

(MSE), Mean Absolute Error (MAE), and the R-squared (R2)

coefficient, highlighting its feasibility and effectiveness in

real-world forecasting tasks.

3. Building on parameter tuning and comparative experiments,

this study further conduct an ablation study by progressively

removing or replacing different components of the model to

evaluate their impact on overall predictive performance. This
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investigation confirms the advantages of the integrated model

in terms of both accuracy and robustness.

2 Related work

The potential value of stock market trend prediction is

immeasurable, which has motivated extensive research in recent

years. Traditional stock price prediction methods, such as

simple moving averages, weighted moving averages, exponential

smoothing, and naive approaches, have been widely used

but exhibit increasing limitations, especially when unable to

incorporate key factors. For instance, traditional methods fail to

account for external factors like market sentiment, news semantics,

and policy changes, all of which significantly impact stock market

fluctuations. As a result, the prediction accuracy of these models

is limited, often failing to capture the complex dynamics of

market trends.

2.1 Traditional models

In recent years, the rapid advancement of deep learning has

led to notable progress in the development of stock market

prediction models within the financial sector. For example, Ye

et al. [23] employed a CNN-based model to capture local features

and enhance an algorithmic trading framework, demonstrating its

potential for handling noisy input data. In 2019, Zhang et al. [24]

introduced a Generative Adversarial Network (GAN) architecture

for predicting stock closing prices, where a Multilayer Perceptron

(MLP) functioned as the discriminator and a Long Short-Term

Memory (LSTM) network served as the generator. Meanwhile,

Sathish and Kiran [25] compared eight machine learning models

and four LSTM-based deep learning regression models, revealed

that the latter outperformed other approaches. Despite the growing

popularity of deep learning techniques, however, the inherently

unpredictable and complex nature of the stock market continues

to limit the extent of progress achieved thus far.

2.2 The applications of LSTM models

Stock market data, with its temporal continuity and strong

contextual dependence, makes LSTM networks highly effective for

capturing long-term dependencies. As a variant of Recurrent

Neural Networks (RNNs), LSTM addresses the gradient

vanishing or explosion issues in traditional RNNs by using

gating mechanisms (e.g., input, forget, and output gates), making it

particularly suitable for stock price prediction. LSTM models excel

at identifying long-term trends and underlying market patterns,

which has led to their widespread use in finance. However, LSTM

still faces challenges in selectively processing relevant information,

especially when dealing with large amounts of irrelevant data.

Efficiently focusing on important features is essential for improving

prediction accuracy and model robustness. Bi-LSTM networks,

which integrate deep and temporal learning, address the instability

of unidirectional models and their sensitivity to data fluctuations,

enhancing accuracy, robustness, and generalization ability [26, 27].

Bi-LSTMhas shown superior performance in stock price prediction

compared to traditional LSTMmodels. For instance, while theMSE

for a standard LSTM model during training is 0.0003, Bi-LSTM

reduces it to 0.0002. Additionally, fine-tuning hyperparameters

(e.g., epochs and hidden layers) has significantly enhanced stock

price prediction. For example, using 100 epochs resulted in the

lowest RMSE in experiments conducted by Sunny et al. [28].

Furthermore, a hybrid model combining MLP with Bi-LSTM,

as proposed in Chen et al. [29], improves feature extraction and

accelerates gradient descent, boosting prediction accuracy. This

model achieved an MSE of 0.00123, outperforming both the

MLP-only model (MSE of 0.00288) and the LSTM model (MSE of

0.00221).

2.3 The applications of Attention
mechanism

LSTM models may suffer from information decay or poor

propagation over long time spans, prompting recent research to

focus on the widely used Attention mechanism. By weighting

different parts of the input sequence and emphasizing the most

critical features for prediction, the Attention mechanism addresses

LSTMs limitations in feature selection. For example, the self-

attention mechanism introduced by Vaswani [30] calculates

correlations between elements in the input sequence and assigns

weights, focusing more on the most important information.

Additionally, models employing spatiotemporal attention

integrated with deep learning have been introduced in various

domains, aiming to optimize spatiotemporal dependencies. These

models merge spatial and temporal attention to more accurately

identify and exploit key information for prediction, ultimately

boosting adaptability in dynamic markets [31]. The core principle

underlying these mechanisms is weight assignment, wherein

higher weights are allocated to more important information, thus

refining external focus on the data and amplifying the intended

features [32].

2.4 The applications of MLP models

Multilayer Perceptron (MLP), as a classical feedforward

neural network model, is widely used in various prediction and

classification tasks. Its basic structure consists of an input layer,

multiple hidden layers, and an output layer, with information

transmitted between layers through fully connected connections.

Due to its strong capability for nonlinear fitting, MLP has

been widely applied in fields such as image recognition, speech

processing, and financial forecasting. In the field of financial

forecasting, MLP has been used for tasks such as stock price

prediction and market trend analysis. For example, many studies

have shown that MLP can predict short-term fluctuations in stock

prices by capturing complex patterns in historical data [20]. By

optimizing the number of layers and neurons in the network, MLP

can improve the model’s generalization ability, therebymaintaining

better prediction performance under different market conditions.
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FIGURE 1

The overall architecture of our approach M-A-BiLSTM.

2.5 The advantages of the hybrid model

The integration of MLP, Attention, and BiLSTM leverages

the unique strengths of each model to enhance the accuracy,

robustness, and adaptability of financial time series forecasting.

MLP, as a powerful nonlinear model, efficiently extracts complex

features from high-dimensional data, capturing underlying

trends in financial data. However, MLP alone struggles with

sequential dependencies, limiting its effectiveness in capturing

temporal relationships crucial for stock price prediction. The

Attention mechanism dynamically adjusts the focus on crucial

information, improving the models ability to capture long-term

dependencies and handle complex market fluctuations. This

addresses a fundamental limitation of traditional deep learning

models, such as LSTM, which often suffer from vanishing

gradient issues when processing long sequences. For example,

Hossein et al. proposed a hybrid LSTM model with multi-head

attention, which outperformed traditional Exponential Smoothing

Models(ETS) and ARIMA methods in terms of Symmetric Mean

Absolute Percentage Error (SMAPE), achieving the highest average

ranking and improved predictive capabilities [33]. Bi-LSTM,

on the other hand, captures dependencies in both forward

and backward directions in the time series, overcoming the

limitations of traditional LSTM in handling sequential data and

enhancing the model’s understanding of both past and future

information. Andri et al. also conducted comparative experiments,

demonstrating that hybrid models offer significant advantages for

time series forecasting [34]. Therefore, the integration of these

three models leverages their strengths, enhancing the model’s

predictive capability and stability when dealing with complex

market data.

Accordingly, this paper integrates the Attention mechanism

into a Bi-LSTM framework to dynamically adjust the

focus on different parts of the sequence, ensuring that

pivotal information is captured rather than overlooked. By

incorporating an MLP model, we propose the M-A-BiLSTM

system to improve information extraction and enhance

overall performance in stock market forecasting. Through

weighted learning of critical features, the Attention mechanism

enables the model to more effectively manage the complex

data and nonlinear relationships characteristic of financial

markets. The objective of this study is to apply the M-A-

BiLSTM model to stock price prediction, further refine the

models structure and boost both predictive accuracy and

robustness, thereby enhancing its practical value in real-world

financial settings.

3 Methodology

For stock price prediction, we integrate Bi-LSTM, MLP, and

Attention mechanisms into a unified framework, termed M-A-

BiLSTM (M-A-B). By leveraging the complementary strengths of

these models, the proposed approach enhances feature extraction

and representation, thereby improving the predictive performance

and robustness in financial time series forecasting. The overall

architecture of the proposed system is illustrated in Figure 1.

First, the model employs Bi-LSTM to process the time-series data,

capturing the long-term dependencies inherent in stock price

fluctuations. Next, the embedded Attention mechanism in Bi-

LSTM identifies and emphasizes the most influential historical time

steps, allowing the model to focus on the segments most critical

to accurate price prediction. Finally, the MLP further refines the

features extracted by both Bi-LSTM and Attention and produces

the final stock price prediction.

3.1 LSTM

Long Short-Term Memory (LSTM) networks,

a special type of RNN, tackle the vanishing and

exploding gradients that occur in traditional RNNs

when capturing long-term dependencies. Vanishing

gradients make it difficult to update parameters far from

the current time step, while exploding gradients cause

training instability.

LSTM introduces three gating mechanisms (forget, input,

and output) to manage information storage, updating,

and forgetting, enabling the effective capture of long-term

dependencies. The state transitions and outputs are described by

the following equations:
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1. Forget gate, Input gate, and Candidate memory cell

calculations:

ft = σ (Wf · [ht−1, xt]+ bf ). (1)

it = σ (Wi · [ht−1, xt]+ bi) (2)

C̃t = tanh(WC · [ht−1, xt]+ bC) (3)

Here, σ is the sigmoid activation, and tanh is the hyperbolic

tangent function. Wf ,Wi,WC and bf , bi, bC correspond to the

weights and biases associated with each respective gate. ht−1

denotes the previous hidden state, and xt is the current input.

2.Memory cell state update:

Ct = ft · Ct−1 + it · C̃t (4)

Ct = ft · Ct−1 + it · C̃t (5)

3.Output gate and Hidden state calculations:

ot = σ (Wo · [ht−1, xt]+ bo) (6)

ht = ot · tanh(Ct) (7)

Through these gating mechanisms, LSTM can flexibly control

the flow of information, thereby effectively capturing long-

term dependencies and overcoming the vanishing and exploding

gradient problems present in traditional RNNs.

On the other hand, the Bi-LSTM network extends the standard

LSTMby processing input sequences in both forward and backward

directions, thus capturing future context that unidirectional LSTMs

cannot. Bi-LSTM consists of two LSTM networks: one processes

the sequence from start to end, and the other from end to start.

Their hidden states are then combined for subsequent processing,

enabling a more comprehensive understanding of each time step’s

context.

The computational process of Bi-LSTM is as follows:

1. Forward LSTM: Similar to the standard LSTM, the forward

LSTM processes the sequence starting from the first time step

to the last, generating hidden states h
forward
t .

2. Backward LSTM: In contrast to the forward LSTM, the

backward LSTM processes the sequence starting from the last

time step to the first, generating hidden states hbackwardt .

3. Merge outputs: Finally, Bi-LSTM combines the hidden states

from the forward and backward LSTMs to generate the final

output. A common approach is to concatenate the hidden states

from both directions:

ht = [h
forward
t , hbackwardt ].

By using a bidirectional structure, the model captures both past

and future information, enhancing its ability to interpret temporal

data. This is especially useful for tasks like stock price prediction,

which depend on both long-term and short-term patterns.

Bi-LSTM overcomes the limitation of standard LSTM, which

only captures forward information, improving accuracy and

robustness.

3.2 Attention

The Attention mechanism is crucial for processing time series

data by computing compatibility scores between queries (q) and

key-value (k − v) pairs to determine the relative importance

of each value in the output. We integrate this mechanism into

the Bi-LSTM model to enhance the model’s ability to identify

and prioritize critical time-step information, thereby improving

prediction accuracy.

First, the LSTM generates hidden states for each time step in

the input series, which are then fed into the attention mechanism.

These states are subsequently fed into the attention module. The

compatibility score between the query and key vectors is calculated

via a dot product:

s(q, k) = qT · k (8)

Here, q represents the query vector and k denotes the key vector.

Hidden states with higher scores gainmore weight, while those with

lower scores receive less attention.

Next, the scores are normalized using the Softmax function to

yield the weight for each key:

αi =
exp(s(q, ki))

∑

j exp(s(q, kj))
(9)

Here, αi denotes the weight assigned to the i-th key under the

current query. After normalization, all weights sum to 1, allowing

each value to contribute to the final output based on its importance.

Using the Softmax normalized weights, we compute a weighted

sum of the value vectors corresponding to each key, resulting in the

encoder’s final feature vector:

c =
∑

k

αkvk (10)

Here, vk is the value vector corresponding to each key, and c

is the final context vector, capturing the most useful features for

future predictions at the current time step. By focusing on the

time steps that matter most, the Attention mechanism enhances

predictive performance.

3.3 MLP model

In stock price prediction, the MLP effectively captures

nonlinear patterns through hierarchical processing. As a feed-

forward network, the MLP processes outputs from the Bi-LSTM

and attention layers via fully connected layers to generate final

predictions. Each layer applies weight matrices, biases, and non-

linear activations to model complex relationships:

y = f (WL · f (WL−1 · f (. . . f (W1 · x+ b1) . . . )+ bL−1)+ bL) (11)

Here, x is the input feature vector (from Bi-LSTM and

Attention), Wi and bi are the weight matrix and bias for the ith

layer (i = 1, 2, · · · , L), f (·) is the activation function (e.g., ReLU or

Sigmoid), and y is the predicted stock price.
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TABLE 1 Datasets information.

Datasets Time period Instances Features Output feature Sector

Apple 30 Oct 2000–17 Oct 2021 5,283 Opening, Volume, High, LowPrice Close Price Software& Hardware

Tesla 29 Jun 2010–27 Oct 2021 2,855 Opening, Volume, High, LowPrice Close Price Automobile

Snapchat 3 Feb 2017–11 Nov 2021 1,186 Opening, Volume, High, LowPrice Close price Social media

Exxonmobil 3 Jan 2000–7 Dec 2021 5,520 Opening, Volume, High, LowPrice Close price Oil (Energy)

In MLP models, activation functions are crucial. ReLU in

hidden layers mitigates the vanishing gradient problem and

improves efficiency, while a linear output layer supports continuous

predictions in regression tasks. This multi-layer architecture

enables robust nonlinear mappings, resulting in accurate stock

price forecasts.

3.4 Evaluation metrics

Relying on a single metric often fails to capture a stock

price forecasting model’s performance fully. Therefore, this

study employs multiple statistical indicators Mean Squared Error

(MSE), Root Mean Squared Error (RMSE), and the coefficient

of determination (R2)—to evaluate predictive accuracy. MSE

measures the average squared error, and RMSE is its square root

for a more intuitive scale. R2 indicates how much variance in the

data is explained by the model, with higher values signifying better

fit. By combining these metrics, we gain a more comprehensive

assessment of each models stability and accuracy.

1.Mean Squared Error (MSE)

MSE = 1

n

n
∑

i=1

(

ŷi − yi
)2

(12)

Where n is the number of samples, yi is the true value of

the i-th sample, and ŷi is the predicted value. MSE measures the

average squared deviation between predictions and true values,

with a smaller value indicating higher accuracy.

2. Root Mean Squared Error (RMSE)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

ŷi − yi
)2 =

√
MSE (13)

Since RMSE is the square root of MSE, it shares the same units

as the original target variable, which makes it more interpretable

in practical scenarios. A smaller RMSE value indicates that the

model’s predictions deviate less from the true values.

3. Coefficient of determination (R2)

R2 = 1−
∑n

i=1

(

yi − ŷi
)2

∑n
i=1

(

yi − y
)2

(14)

where y is the mean of the actual values. The closer R2 is to 1, the

stronger the model’s capacity to explain the variation in the dataset,

leading to higher predictive accuracy.

4 Experiments

4.1 Dataset

We evaluate our model using decade-long stock data [35]

from Apple, Tesla, Snapchat, and ExxonMobil (XOM). Details

are summarized in Table 1. Apple, Inc. is a global technology

company engaged in the design, manufacturing, and marketing

of a wide range of electronic products, including smartphones,

personal computers, tablets, wearables, and accessories. The dataset

used in this study contains historical stock price data for Apple,

Inc. spanning from October 30, 2000, to October 17, 2021. Tesla,

Inc. is an American company specializing in electric vehicles and

sustainable energy solutions, headquartered in Palo Alto, CA, USA,

and engaged in the production of solar panels, solar roof tiles, and

other energy-related products and services. The dataset comprises

historical stock price data for Tesla, Inc. from June 29, 2010, to

October 27, 2021. Snapchat, a social media platform, represents a

relatively new company compared to the others, with its dataset

including 3 years and 9 months of stock price data from February

3, 2017, to November 11, 2021. ExxonMobil, a major oil company

formed from themerger of Exxon andMobil, has a dataset covering

historical stock price data from January 3, 2000, to December 7,

2021. To ensure a rigorous evaluation, we partition each dataset

into training, validation, and test sets, allocating 70% of the data

for training, 15% for validation, and 15% for testing. The test set

remains entirely unseen by the model during training, ensuring an

unbiased assessment of predictive performance.

4.2 Baseline methods

We compare our M-A-BiLSTM with the following baselines:

(1)MLP [36]: A predictivemodel composed of stacked perceptrons,

capable of learning complex nonlinear relationships in financial

time series data; (2) LSTM [37]: A specialized recurrent

neural network (RNN) model designed for long-term memory

retention, widely applied in stock market prediction and portfolio

management by leveraging historical time-series data; (3) GRU

[38]: A gated recurrent unit (GRU) model, which is a more

computationally efficient variant of LSTM, specifically developed to

capture both short-term and long-term dependencies in sequential

data; (4) CNN [39]: A convolutional neural network model

that applies convolutional and pooling operations to extract

spatial patterns from financial time series, enabling analysis across

multiple market datasets; (5) Bi-LSTM [40]: A bidirectional

LSTM model that enhances the capture of complex temporal

dependencies by processing sequential data in both forward
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TABLE 2 Training results of our model with di�erent numbers of hidden

layers.

Datasets Metric 1,024 512 256 128

Apple

MSE 4.2915 4.5875 5.1716 5.5728

RMSE 2.0578 2.1432 2.2731 2.3618

R2 0.9853 0.9789 0.9756 0.9667

Tesla

MSE 2.3379 2.7528 2.7383 3.0329

RMSE 1.5290 1.6591 1.6547 1.7395

R2 0.9887 0.9833 0.9784 0.9738

Snapchat

MSE 1.2208 1.3493 1.4034 1.6270

RMSE 1.1049 1.1612 1.1855 1.2755

R2 0.9967 0.9938 0.9923 0.9838

Exxonmobil

MSE 1.2096 1.3168 1.4725 1.6024

RMSE 1.0098 1.1473 1.2135 1.2650

R2 0.9967 0.9936 0.9838 0.9838

TABLE 3 Ablation study results on the training set.

Datasets Metric BiLSTM MLP-
BiLSTM

Attention-
BiLSTM

M-
A-B

Apple

MSE 5.1078 4.6784 4.7745 4.2915

RMSE 2.2596 2.1630 2.1851 2.0578

R2 0.9766 0.9803 0.9895 0.9853

Tesla

MSE 2.7428 2.5571 2.6761 2.3379

RMSE 1.6561 1.5991 1.6359 1.5290

R2 0.9799 0.9816 0.9801 0.9887

Snapchat

MSE 2.0106 1.6941 1.6815 1.2208

RMSE 1.4180 1.3016 1.2967 1.1049

R2 0.9861 0.9897 0.9916 0.9967

Exxonmobil

MSE 2.0035 1.6824 1.6925 1.2096

RMSE 1.4154 1.2971 1.3009 1.0098

R2 0.9868 0.9915 0.9903 0.9967

M-A-B denotes our innovation model M-A-BiLSTM. M-B denotes the model MLP-BiLSTM.

A-B denotes the model Attention-BiLSTM.

and backward directions; (6) CNN-LSTM [35]: A hybrid model

integrating CNN and LSTM architectures, leveraging CNN’s

feature extraction capabilities with LSTM’s sequential modeling for

improved financial time-series forecasting; (7) MLP-BiLSTM [20]:

A hybrid predictive model combiningMLP and Bi-LSTM networks

to enhance feature extraction and sequential learning in stock price

prediction; (8) Attention-BiLSTM [14]: A hybrid model integrating

the Attention mechanism with Bi-LSTM, enabling the model to

focus on critical temporal patterns while mitigating noise, thereby

improving predictive accuracy in financial time series.

4.3 Experiment settings

We partition the dataset into training, validation, and test sets

in a 7 : 1.5 : 1.5 ratio. All experiments are conducted on a Windows

TABLE 4 Ablation study results on the test set.

Datasets Metric BiLSTM MLP-
BiLSTM

Attention-
BiLSTM

M-
A-B

Apple

MSE 6.0758 5.7585 5.8584 5.3735

RMSE 2.4649 2.4001 2.4204 2.3181

R2 0.9698 0.9711 0.9703 0.9752

Tesla

MSE 3.1548 2.6685 2.8127 2.6528

RMSE 1.7762 1.6336 1.6771 1.6287

R2 0.9746 0.9804 0.9789 0.9833

Snapchat

MSE 3.9272 2.2345 2.3253 2.3243

RMSE 1.9817 1.4610 1.5249 1.5246

R2 0.9796 0.9827 0.9823 0.9841

Exxonmobil

MSE 5.3257 2.2772 2.0174 1.8954

RMSE 2.3077 1.5090 1.4203 1.3767

R2 0.9746 0.9805 0.9811 0.9887

server [CPU: 12th Gen Intel(R) Core(TM) i5-1240P @ 1.70 GHz,

GPU: Intel(R) Iris(R) Xe Graphics]. The model is implemented

using PyTorch. Through our experiments, we set the following

hyperparameters: K = 3. The sizes of the M-GTU convolution

kernels along the time dimension {S1, S2, S3} are {3, 5, 8}, and the

window size W for the pooling layer is 3. The number of attention

heads in the temporal attention module is 3, and d = 64 in

the spatiotemporal attention module. Weight initialization follows

Xavier initialization. We use the Adam optimizer to train our

model, with the number of epochs set to 64, the learning rate to

1× 10−5, and the batch size to 64. For different datasets, we set the

same hidden layer size of 1024, and we use MSE, RMSE, and R2

to measure the model’s performance. Additionally, for the ablation

study, all models are trained under the same experimental setup,

maintaining consistent parameters.

4.4 Experiment results and analysis

The detailed experimental results, shown in Tables 2–5

and Figures 2, 3, indicate that our M-A-BiLSTM (M-A-B)

model outperforms several other models across all evaluation

metrics. Notably, on the Snapchat, Xom, Tesla, and Apple

datasets, the M-A-B model not only achieves MSE and

RMSE but also yields higher coefficients of determination

R2. These results suggest that, compared with other models,

the M-A-B model provides more accurate stock price

trend predictions.

Specifically, on the Apple dataset, our model reduces

MSE by up to 6.69% compared to other models, by

8.28% compared to the Attention-Bi-LSTM model, and

by 11.56% compared to the BiLSTM model. On the

Xom dataset, our model’s R2 measure improves by at

least 0.77% over other models, with the M-A-B model in

particular outperforming Bi-LSTM by 1.45% and CNN-LSTM

by 1.35%.
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TABLE 5 The testing results are based on MLP-Attention-BiLSTM.

Datasets Metric MLP LSTM GRU CNN BiLSTM CNN-LSTM M-B A-B M-A-B

Snapchat

MSE 4.7781 4.1782 4.1572 4.6752 3.9272 3.8757 2.2345 2.3253 2.3243

RMSE 2.1859 2.0441 2.0390 2.1622 1.9817 1.9687 1.4610 1.5249 1.5246

R2 0.9717 0.9775 0.9766 0.9728 0.9796 0.9798 0.9827 0.9823 0.9841

Xom

MSE 6.5923 5.4745 5.7124 6.1310 5.3257 5.2742 2.2772 2.0174 1.8954

RMSE 2.5675 2.3402 2.3897 2.4761 2.3077 2.2966 1.5090 1.4203 1.3767

R2 0.9655 0.9736 0.9704 0.9698 0.9746 0.9755 0.9805 0.9811 0.9887

FIGURE 2

Figures of the M-A-BiLSTM model’s prediction performance on four datasets.

FIGURE 3

A comparative visualization of the M-A-BiLSTM model’s performance: R2 and MSE metrics on training and test sets for four diverse datasets.

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2025.1588202
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Liu 10.3389/fams.2025.1588202

TABLE 6 The testing results are based on MLP-Attention-BiLSTM.

Datasets Metric MLP LSTM GRU CNN BiLSTM CNN-LSTM M-B A-B M-A-B

Tesla

MSE 3.4926 2.7128 2.7653 2.8512 3.1548 3.0584 2.6685 2.8127 2.6528

RMSE 1.8688 1.6471 1.6630 1.6886 1.7762 1.7488 1.6336 1.6771 1.6287

R2 0.9687 0.9717 0.9713 0.9703 0.9746 0.9767 0.9804 0.9789 0.9833

Apple

MSE 7.2837 5.9245 6.1951 6.9782 6.0758 5.9152 5.7585 5.8584 5.3735

RMSE 2.7122 2.4340 2.4890 2.6416 2.4649 2.4321 2.4001 2.4204 2.3181

R2 0.9625 0.9699 0.9691 0.9652 0.9698 0.9700 0.9711 0.9703 0.9752

4.4.1 Hyperparameter tuning experiment
Throughout our experiments, we observed that the

hidden layer size significantly influences model performance.

Consequently, we evaluated our novel M-A-BiLSTM model

on four different datasets, testing various hidden layer sizes

(1,024, 512, 256, 128) using the training set to identify the

optimal configuration. The detailed experimental outcomes are

summarized in Table 2.

From the experimental results in Table 2, we observe that as the

hidden layer size increases, the MSE and RMSE values decrease,

whereas the R2 value rises. This trend indicates that larger hidden

layer sizes lead to improved model performance. Consequently, we

set the Bi-LSTM module’s hidden layer size in the M-A-BiLSTM

model to 1,024 for all subsequent experiments.

4.4.2 Ablation experiment
To systematically evaluate the contribution of each module to

the overall performance of our proposed model, we conducted

an ablation study using four different datasets. Specifically, to

assess the impact of the Attention module within the M-A-BiLSTM

architecture, we removed it from our model, resulting in the MLP-

BiLSTM variant. Similarly, to examine the role of the MLP module,

we removed it and denoted the resulting model as Attention-

BiLSTM. Furthermore, to analyze the combined effect of both the

MLP and Attention modules, we eliminated both components,

leaving only the BiLSTM module as the baseline configuration.

The results of these experiments, presented in Tables 3, 4, provide

insight into the contribution of each module to the overall model

performance.

As shown in Tables 3, 4, the M-A-BiLSTM model consistently

achieves the best performance on both the training and test sets.

We also observe that the MLP and Attention modules play pivotal

roles in the model’s overall effectiveness. Notably, removing the

Attention module-resulting in the MLP-BiLSTM (M-B) variant—

significantly degrades performance across all metrics, underscoring

the importance of the Attention mechanism in capturing long-

range dependencies and salient features. Likewise, omitting the

MLP module from the Attention-BiLSTM (producing the A-B

variant) also reduces performance, albeit to a lesser extent. In

sum, both the MLP and Attention modules are vital for enhancing

predictive accuracy and robustness. These findings validate the

efficacy of our proposed deep learning framework—combining

a Multilayer Perceptron (MLP) and Attention mechanism—for

financial time series forecasting tasks.

4.4.3 Comparative experiments
To validate the efficacy of our newly proposed M-A-BiLSTM

(M-A-B) model, we conducted comparative experiments on four

different datasets, benchmarking it against several state-of-the-

art algorithms. The results of these experiments are presented in

Tables 5, 6.

From Table 5, it is evident that our M-A-BiLSTM (M-A-B)

model outperforms the other models on both the Snapchat and

Xom datasets. Notably, for the Xom dataset, the Mean Squared

Error (MSE) decreases from 5.7124 (GRU) and 5.2742 (CNN-

LSTM) to 1.8954—a substantial reduction—while the coefficient

of determination (R2) increases from 0.9704 and 0.9755 to 0.9887,

representing an improvement of over 2.2%. Among all the

evaluated models, our M-A-B approach demonstrates the strongest

performance.

From Table 6, it is evident that our M-A-B model surpasses

other advanced algorithms on both the Tesla and Apple datasets.

In the Tesla dataset, the MSE decreases from 3.1548 to 2.6528—

a 15.91% reduction compared with the Bi-LSTM model. For the

Apple dataset, theR2 shifts from 2.4649 to 2.3181, reflecting a 5.95%

improvement over Bi-LSTM. Overall, these results demonstrate

that our model achieves notably better performance relative to

multiple other models on both datasets.

From the experimental results presented in Tables 5, 6, it is

clear that our M-A-B model outperforms other methods across

all four datasets. For every evaluation metric (MSE, RMSE, and

R2), the M-A-B model exhibits a marked improvement. Notably,

it attains the highest R2 values on all datasets, underscoring its

advantages in predictive accuracy and robustness. Furthermore,

we conducted Wilcoxon Signed-Rank tests on MSE and RMSE

across all models, with results indicating that p < 0.05 in all

cases. These findings suggest that our proposed model captures the

underlying patterns in the data more effectively. Furthermore, the

incorporation of the Attention mechanism strengthens the model’s

ability to handle time series data, particularly by addressing long-

term dependencies and highlighting critical features, thereby fully

leveraging its capabilities.

5 Discussion

Figure 2 presents a visualization of the M-A-BiLSTM model’s

sequential predictions across four datasets, demonstrating its

superior performance compared to the baseline models. Notably,

on the Tesla and ExxonMobil datasets, the predicted stock

price trends closely align with the actual market movements,
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with a prediction horizon extending beyond one year. Tesla’s

dataset, in particular, poses a significant challenge due to its high

volatility in market capitalization and stock prices. Nevertheless, as

shown in Figure 2, the model exhibits strong long-term predictive

capabilities. However, its performance on the Apple and Snapchat

datasets reveals areas for potential improvement. Enhancing the

model’s predictive accuracy on these datasets will be a key focus of

our future work.

Additionally, to investigate the impact of different hidden layer

sizes on the overall model performance, we visualize the model’s

training and testing performance across various datasets under

different numbers of hidden layers (see Figure 3). The results

indicate that as the number of hidden layers increases, predictive

performance improves—evidenced by higher R2 values and lower

MSE values. This trend suggests that a deeper network enhances the

model’s capacity for feature extraction and representation. Across

all datasets, the proposed model exhibits consistent results on both

training and testing sets, underscoring its stability and robustness.

However, for the Apple dataset, the difference in MSE metrics

between training and testing grows with additional hidden layers,

indicating that further improvement in model robustness may be

required for this dataset.

Despite the strong performance demonstrated in the

above experiments, certain datasets—most notably Apple

and Snapchat—still reveal areas for improvement, particularly

regarding the handling of local anomalies and the generalization of

long-term trends.

6 Conclusion

In this study, we introduced a novel MLP-Attention-

BiLSTM model for stock price prediction. Through a series of

rigorous experiments on four distinct datasets, we evaluated

the performance of the model and compared it with several

baseline models. The experimental results indicate that the

M-A-B model outperforms the baseline models in terms of

MSE, RMSE, and R2. The ablation experiment underscores the

essential roles of both the MLP and Attention modules in the

model’s performance, highlighting the significance of integrating

local feature extraction, long—term dependency capture, and

attention—based information selection. The hyperparameter

tuning experiment demonstrates that the hidden layer size

significantly affects the model’s performance. By setting the hidden

layer size to 1,024, we achieved optimal performance across all

datasets. In conclusion, the MLP-Attention-BiLSTM model offers

a promising approach for stock price prediction. Its ability to

capture both local and global features in financial time - series data

makes it a powerful tool for financial forecasting. Future research

could focus on further optimizing the model’s hyperparameters,

exploring more sophisticated network architectures, and applying

the model to a broader range of financial time—series data.
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