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A sparse tensor generator with
efficient feature extraction

Tugba Torun, Ameer Taweel and Didem Unat*

ParCorelLab, Department of Computer Science and Engineering, Kog University, Istanbul, Turkiye

Sparse tensor operations are increasingly important in diverse applications such
as social networks, deep learning, diagnosis, crime, and review analysis. However,
a major obstacle in sparse tensor research is the lack of large-scale sparse tensor
datasets. Another challenge lies in analyzing sparse tensor features, which are
essential not only for understanding the nonzero pattern but also for selecting
the most suitable storage format, decomposition algorithm, and reordering
methods. However, due to the large size of real-world tensors, even extracting
these features can be computationally expensive without careful optimization.
To address these limitations, we have developed a smart sparse tensor generator
that replicates key characteristics of real sparse tensors. Additionally, we propose
efficient methods for extracting a comprehensive set of sparse tensor features.
The effectiveness of our generator is validated through the quality of extracted
features and the performance of decomposition on the generated tensors. Both
the sparse tensor feature extractor and the tensor generator are open source with
all the artifacts available at https://github.com/sparcityeu/Fealensor and https://
github.com/sparcityeu/GenTensor, respectively.
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1 Introduction

Several applications such as social networks, deep learning, diagnosis, crime, and
review analysis require the data to be processed in the form of multi-dimensional arrays,
namely tensors [1-6]. Tensors are extensions of matrices that can have three or more
dimensions, or so-called modes. Tensor decomposition techniques such as Canonical
Polyadic decomposition (CPD) and Tucker are widely used to analyze and reveal the latent
features of such real-world data in the form of sparse tensors [7, 8]. For making the tensor
decomposition methods faster or more memory-efficient, numerous storage formats and
partitioning or reordering schemes are introduced in the literature [9-14]. However, the
performance of these schemes highly depends on the sparsity pattern of the tensor.

Efficiently extracting the sparsity pattern of a given tensor is essential for optimizing
various aspects of tensor analysis and manipulation. The structural features can inform
format selection, aiding in determining the most suitable storage format. It can influence
the algorithm selection, with different tensor operations exhibiting varying performance
based on the sparsity characteristics. Understanding the sparsity pattern also provides
insights into the performance of decomposition techniques. In a recent work [15], some
tensor features are used to automatically predict the best storage format for a sparse tensor
via machine learning techniques. However, the work considers the features for only a single
mode, which may cause lack of some critical intuition from other dimensions.
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Sparse tensors in real-world scenarios often exhibit extreme
sparsity, with densities as low as 10~!°, Unlike the sparse matrices
often containing at least one nonzero in their rows and columns,
sparse tensors contain numerous empty fibers and slices, which are
one- and two-dimensional fragments of tensors. A naive approach
for extracting sparse tensor features involves traversing the tensor
nonzeros in coordinate (COO) format and updating the nonzeros
of respective slices and fibers. However, this approach becomes
impractical for large tensors with increasing dimensions. Another
approach [15] is to assume that the tensor is already sorted to
extract the features, yet it reveals the features from only a single
mode order. Since the sizes of a sparse tensor diverge a lot along
different modes, focusing the features solely on one perspective
might lead to the loss of crucial structural information inherent in
the tensor.

To tackle these challenges, we develop a sparse tensor feature
extraction framework, FEATENSOR, which extracts a detailed
and exclusive set of sparse tensor features, encapsulating the
features along all modes. It extends the feature set by including
important size-independent features such as coefficient of variation
and imbalance to gain a deeper insight into the nonzero
distribution. Additionally, FEATENSOR offers four alternative
feature extraction methods for efficiency, providing flexibility
to select the most suitable method based on machine and
tensor characteristics.

By utilizing the generated features, machine learning tools can
be used to reveal the most suitable storage format, partitioning,
or reordering method that fits best with that tensor. Nevertheless,
the primary challenge facing this research stems from the necessity
of having thousands of samples to train machine learning models.
Conversely, the majority of multi-dimensional real-world data
require manual cleaning to become readily usable in research.
Meanwhile, efforts to gather publicly available real-world data
as sparse tensor collections yield only a few instances [16, 17].
Moreover, tensor sizes can be large, making it inconvenient to
download, read, and use them in computation. A tensor generator
for performance analysis purposes can be handy, enabling the study
of algorithms by generating tensors on the fly and discarding them
if necessary.

To address these gaps in the literature, we propose a smart
sparse tensor generator, GENTENSOR, which accounts for key
tensor features during generation. This generator produces sparse
tensors with characteristics closely resembling those of real-world
tensors, enabling the creation of large-scale sparse tensor datasets.
A key advantage of GENTENSOR is its use of size-independent
features, such as the coefficient of variation, imbalance, and
density, allowing flexible generation of tensors at different
scales. This flexibility enables researchers to efficiently prototype
and benchmark tensor algorithms on smaller, representative
tensors before scaling to real-world datasets. The effectiveness
of GENTENSOR is validated by comparing the extracted features
and CPD performance of the generated tensors against both
naive random tensors and real-world tensors. These features are
obtained using our dedicated feature extraction tool, FEATENSOR,
which ensures accurate characterization and comparison of
tensor properties.

The main contributions of this work are:
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e A sparse tensor feature extraction framework, FEATENSOR,
is developed. It includes four different feature extraction
methods, which can be used alternatively depending on the
computation needs and the characteristics of input tensors. All
methods in FEATENSOR are parallelized using OpenMP.

e We develop a smart sparse tensor generator, GENTENSOR,
which considers significant tensor features. It can be used to
generate an artificial tensor dataset in which the properties and
characteristics of the generated tensors are similar to the real-
world tensors. GENTENSOR is parallelized with OpenMP for
faster generation.

e Experiments on several sparse tensors validate that all feature
extraction methods in FEATENSOR give the exact results
as feature sets. We present the runtime comparison of the
methods in FEATENSOR to guide users to employ the one that
is most appropriate to their needs.

e We demonstrate the effectiveness of the proposed tensor
generator GENTENSOR in terms of feature quality, tensor
decomposition performance, and sensitivity to seed selection.

e Both tools are open source,’? accompanied by comprehensive
documentation and illustrative examples tailored for the
community’s usage.

This manuscript is organized as follows. Section 2.1 provides
the background information on sparse tensors and tensor
decomposition. The proposed feature extraction tool is introduced
in Section 2.2. In Section 2.3, we present our sparse tensor
generator, GENTENSOR. Experimental results are reported in
Section 3. We discuss the related works and limitations in Section 4
and conclude in Section 5.

2 Materials and methods

2.1 Background

A tensor with M dimensions is called an M-mode or Mth order
tensor, where the mode count, M, is referred to as the order of
tensor. Mode m of a tensor refers to its mth dimension. Fibers
are defined as the one-dimensional sections of a tensor obtained
by fixing all but one index. Slices are two-dimensional sections of
a tensor obtained by fixing every index but two. Figure 1 depicts
sample slice and fibers of a 3-mode tensor. The numbers in the
naming of slices and fibers derive from the mode indices that are
not fixed while forming them. For instance, X'(3, ;, :) is a mode-(2,3)
slice, and X'(7,j, :) is a mode-3 fiber of a 3-mode tensor X', where
a tensor element with indices i, j, k is denoted by X (i,j, k). A fiber
(slice) is said to be a nonzero fiber (slice) if it contains at least one
nonzero element; and an empty fiber (slice), otherwise.

To reveal the relationship of data across different modes, tensor
decomposition techniques are widely used. Canonical Polyadic
Decomposition (CPD) and Tucker decomposition are the two most
popular ones among them. In Tucker decomposition, a tensor is
decomposed into a much smaller core tensor and a set of matrices;

1 https://github.com/sparcityeu/FeaTensor
2 https://github.com/sparcityeu/GenTensor
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FIGURE 1

Sample slice and fibers of a 3-mode tensor.

whereas in CPD, a tensor is factorized as a set of rank-1 tensors,
which can be considered as a generalization of matrix singular value
decomposition (SVD) method for tensors.

There are various implementations for CPD and each has
different storage schemes and reordering algorithms proposed
specifically for that scheme. SPLATT [18] and ParTI [19] are
two commonly-used libraries for CPD. ParTI is a parallel tensor
infrastructure that supports essential sparse tensor operations and
tensor decompositions on multicore CPU and GPU architectures.
SPLATT provides a shared-memory implementation for CPD while
adopting a medium-grain partitioning for sparse tensors for parallel
execution of CPD.

2.2 Sparse tensor feature extraction

The features of a sparse tensor have the capacity to reveal the
most suitable storage format, partitioning or reordering method
that fits best with that tensor if well-examined. The main challenge
in extracting the sparse tensor features is to determine which and
how many fibers and slices are nonzero. This is because the real-
world sparse tensors are highly sparse and contain many empty
fibers and slices. One naive approach for sparse tensor feature
extraction is to traverse the tensor nonzeros in coordinate (COQ)
format and update the number of nonzeros of the respective slices
and fibers. However, this approach is not practical for large tensors
since the real-world tensors often have huge numbers of fibers and
slices. For instance, some real tensors have more than 10'° fibers,
and even storing a boolean array of such a large size requires a space
of 10 million Terabytes, which is impractical in modern machines.
To overcome these challenges, we propose and implement four
alternative methods for sparse tensor feature extraction.

2.2.1 Feature set

We consider three kinds of statistics for sparse tensors: (i)
nonzeros per nonzero slices, (ii) nonzeros per nonzero fibers, (iii)
nonzero fibers per nonzero slices. Table 1 depicts the global features
of the tensor that are independent of these kinds. Table 2 shows the
mode- and kind-dependent features that we have extracted for all of
these three kinds and for all modes. Here, by referring to all modes,
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TABLE 1 Extracted global features of tensors.

Feature Description Formula
size_m Size of tensor in mode m I,

nnz Number of nonzeros nz(Xx)

d,, Density of nonzeros nz(X)/[1In
nfiby Number of all fibers > | Fml
nslcyy Number of all slices > ISkel
nfib,, Number of nz fibers > Inz(Fm)l
nslcy, Number of nz slices >INz (Ske)l
dgp Density of nz fibers nfiby, /nfiby
dge Density of nz slices nslcy, /nsley

we mean all possible angles that a slice or fiber can have through
fixing different modes. For example, mode-(1,2), mode-(2,3), and
mode-(3,1) slices represent all modes for slices of a 3-mode tensor.
For ease of expression, we refer to the set of slices (fibers) along
different modes as slice-modes (fiber-modes).

A tensor X of size I; X I x - -+ X Ijr is assumed to be given as
an input in Coordinate format, i.e. the extension of matrix-market
format for tensors. In the formulas, NZz(-) is used as a function
returning the number of nonzeros. 7, refers to the set of fibers
in mode-m, whereas S, refers to the set of slices obtained by
fixing indices in modes k and £. In the feature names, e, refers
to considering only nonzero kind-entries in the computation, i.e.
nonzero fibers or slices, by ignoring the empty fibers or slices. o,
refers to considering all kind-entries in the computation, including
the empty ones. For instance, for the nonzeros-per-fiber kind in
mode 1, 1,y gives the number of all mode-1 fibers including empty,
whereas 71, gives the number of only nonzero fibers along mode-1.

In addition to the tensor features utilized in the related work
[15], we also include the features of load imbalance, standard
deviation, and coefficient of variation. In Nisa et al. [20], it is shown
that a high standard deviation of fiber length causes inter-warp load
imbalance and low occupancy; whereas high standard deviation
of the slice volume is related to significant inter-thread-block load
imbalance. The coefficient of variation is another commonly-used
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TABLE 2 Mode- and kind-dependent features that are extracted for each
mode and for each kind: (i) nonzeros per slice, (ii) nonzeros per fiber, and
(iiii) fibers per slice.

Feature Description Formula

Nay All count including empty *

Ny, Nonzero count *

nz_density Nonzero sparsity Npy /N1

max Maximum value *

min Minimum value *

dev Deviation max — min

sum Summation of values *

avg,, Average value sum /ngy

imbal,y Imbalance (max — avg,;)/max
stDevyy Standard deviation *

CVall Coefficient of variation stDevqy/avg,,

avg,, Average by excluding empty sum/ny,

imbaly, Imbalance by excluding empty (max — avg,,)/max
stDevy, stDev by excluding empty *

CVng cv by excluding empty stDev,, /avg,,

*Omitted because the formula is too complex or trivial.

metric for analysis which allows to compare between data sets with
widely different means. For example, it is used to evaluate the
dispersion of the number of nonzero elements per row for sparse
matrix computations [21].

2.2.2 Extraction workflow

The feature extraction process consists of two main stages,
namely array construction and the final reduction phases. In the
array construction phase, we construct three arrays for all modes:
(i) n:’i (number of nonzeros per slice), (ii) nﬁi (number of nonzeros

per fiber), (iii) n’:llz (number of fibers per slice). Here and hereafter,
only the nonzero slices and nonzero fibers are considered when
referring to slices and fibers, if not stated otherwise. Then in the
final reduction phase, we extract all the sparse tensor features by
traversing or applying a reduction on these smaller arrays. Both the
array construction and the final reduction phases of FEATENSOR
are parallelized using OpenMP.

nz
sle

so that there will be (%)) of them. The array n/¥ is constructed

The arrays of n? and n}jﬁ are constructed for each slice-mode,
for each fiber-mode, hence yielding M different ngi arrays. For
instance, for a 3-mode tensor, there are three different types of
statistics for n:‘li and rrflﬁ which correspond to mode-(1,2), (2,3),
and (3,1) slices; whereas for nﬁi, there are three different types of
statistics corresponding to mode-1, 2, and 3 fibers. Since there are
11 global features and 15 mode- and kind-dependent features, the
total number of features extracted for a 3-mode tensor is 15 x
3 x 34 11 = 146 in total. For a 4-mode tensor, slices are along
(4) = 6 different mode pairs, and fibers are along four different

2
modes, so in total 15 X 6 x 2 4+ 15 x 4 4+ 11 = 251 features are
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considered. For 5-mode tensors, slices are along (g) = 10 different
mode pairs, and fibers are along five different modes, yielding a total
of 15 x 10 x 2+ 15 x 5+ 11 = 386 features.

One approach in FEATENSOR is to consider the slice and fiber
modes in relation to mode execution orders. By saying mode-order
(i, j, k), we can think that the COO-based index arrays of tensor X’
are virtually rearranged to (X}, &, Xy) instead of the original order
(X1, X5, X3). In this context, we consider the slices are obtained
by fixing all indices except the last two indices, and the fibers are
obtained by fixing all indices except the last one. For instance, in
mode order (1,2,3), we consider mode-(2,3) slices and mode-3
fibers. The advantage of this approach is to combine slices and fibers
so that their corresponding computations may overlap.

Note that especially when computing ”Z}Z arrays, two different
fiber modes can be associated with each slice mode. To be more
specific, to extract the number of fibers per mode-(i,j) slices, it
is possible to consider either mode-i or mode-;j fibers. For this
reason, to cover all slice and fiber modes, one can use both
the mode-order set (1,2,3),(2,3,1),(3,1,2) or the mode-order
set (1,3,2),(2,1,3),(3,2,1). Figure 2 depicts the workflow of the
feature extraction process for a 3-mode sparse tensor for the first
case. In the final reduction phase, nine different sets of mode- and
kind-dependent features are extracted in parallel, corresponding to
three different versions of n:’li, ;IZ), and n’fll: arrays from distinct
mode-orders.

The mode-order approach is especially practical for 3-mode
tensors. It is because the number of slice-modes and fiber-modes
are both equal to three, making a one-to-one mapping possible
between slice- and fiber-modes, hence execution on three distinct
mode-orders is sufficient to cover all cases. However, for higher
dimensions, it can cause some calculations for n"z to be repeated
since the number of slice-modes becomes larger than the number
of fiber-modes. Therefore, we obey different approaches in different
methods of FEATENSOR.

2.2.3 Extraction methods

In order to overcome the memory and speed limitations in
trivial feature extraction approaches, we propose four different
feature extraction methods that can be used alternatively depending
on the computation needs and the characteristics of input tensors.
These methods are heap-based, sorting-based, grouping-based,
which is first proposed in this work, and a hybrid method, which
is a combination of sorting- and grouping-based methods.

2.2.3.1 Hash-based method

We implement a hash-table-based method to solve the memory
issue of the COO-based naive method for large sparse tensors.
Instead of long arrays that mostly contain zero values, we use a
hash table that has keys as slice or fiber indices and values as
the number of nonzeros in the corresponding slice or fiber. Our
hashing method excludes ignored dimensions per mode and applies
bitwise mixing to ensure a well-distributed hash. The hash table
is initialized with 100 buckets, though it dynamically resizes as
needed. One main difference of the hash-based method from other
methods in FEATENSOR is that it does not follow the mode-order
approach in Figure 2, i.e. it does not pair and handle some slice
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FIGURE 2
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The workflow of feature extraction for a 3-mode tensor using the mode-order approach.

and fibers together, but rather extracts the slice features and fiber
features independently.

2.2.3.2 Sorting-based method

Another approach for feature extraction is based on sorting the
tensor. It is the conventional approach for extracting the features
or constructing compressed storage formats for tensors in the
literature [12, 15, 22]. It naturally follows the mode-order approach
by sorting the tensor indices according to a given mode-order.
After sorting, the array construction phase becomes easier since
the nonzeros belonging to the same fiber or slice are positioned
consecutively. The related work [15] assumes the tensor to be given
as sorted and computes the features only for a single mode-order.
However, this assumption is not valid when it comes to executing
in the upcoming mode-orders. In other words, a tensor X sorted
in (1,2, 3) order has to be re-sorted for (2,3, 1) and (3, 1,2) orders
to execute the features for other modes. Instead, we find the tensor
features along all modes by sorting the related indices of tensor.

2.2.3.3 Grouping-based method

Instead of sorting the tensor nonzeros fully, we group the slices
and fibers according to their indices and keep the last indices of
the COO format in their original order. We first find the number
of nonzero fibers and slices by traversing the tensor entries. We
store the indices of these nonzero slices and fibers in a compressed
manner and track their nonzero counts in the respective arrays.
This algorithm takes inspiration from the construction process of
Compressed Sparse Fiber (CSF) format, which is a generalization
of Compressed Sparse Row and Compressed Sparse Column (CSR
and CSC) formats for higher dimensions.

Algorithm 1 shows the pseudo-code of the grouping-based
feature extraction method for the mode-order (1, 2, 3) of a 3-mode
tensor. In this case, the algorithm considers mode-(2,3) slices and

Frontiersin Applied Mathematics and Statistics

mode-3 fibers. ¢cntl is a temporary array that keeps the nonzero
count information for all slices (Lines 1-4). It is used to obtain

the number of nonzero slices (nslc), the array of nonzero counts

nz
sle

(indg.), and the array of starting locations for nonzero slices (xn:’li )

for each nonzero slice (n”?), the array of indices for nonzero slices
that is similar to the row_ptr array in CSR format for matrices
(Lines 5-8). loc and order are temporary arrays that are constructed
(Lines 10-16) to obtain the cnt2 array, which keeps the nonzero
count information for all fibers in each nonzero slice (Lines 18-21).
Finally, cnt2 is used to obtain the number of nonzero fibers (n’fli)
and the array of nonzero counts per nonzero fiber (nf”;Z) in each
nonzero slice (Lines 22-23).

The memory requirement of this algorithm is I} + I, + NNZ
for executing the (iy, iz, :) fibers of an I} x I x I3 tensor with NNZ
nonzeros. The worst case serial runtime is O(Iy + I, S;) where S
is the number of nonzero slices in mode 1. For the general case,
size(m) x size(m + 1) is a loose upper bound for mode m.

2.2.3.4 Hybrid method

We propose a hybrid method by combining the sorting- and
grouping-based methods. The idea is to utilize different methods
for extracting features in different modes within the same tensor.
This is because the performance of different methods varies
depending on the size of the respective mode. Since we observe
that sorting- and grouping-based methods are the best-performing
ones at the mode level, we use them interchangeably according to
the respective mode size. For mode m, we apply the grouping-based
method if size(m) x size(m+1) < A holds, and we apply the sorting-
based method otherwise; where 1 is a predetermined threshold. The
reasoning behind this choice is to limit the expected worst-case
runtime for the respective modes when employing the grouping-
based method. We set the threshold A as 10'! based on empirical
evaluations, whose details will be discussed in Section 3.2.
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Input: 3-mode tensor with COO-arrays X, A, A3
Output: n"?, n}t nﬁ b arrays for mode-order (1, 2, 3)

O

. Create the array loc of size indsjc(I7)+1

10: for i <0 to nslc do

11 loc(indlf (1)) < xnl5. (1)

12: end for

13: Create the array order of size NNZ
14: for i <0 to NNZ do

15: order(loc(Xy(k)) ++) <k

16: end for

17: for 1 <0 to nslc do

Algorithm 1. Grouping-based extraction method in FEATENSOR.

2.2.4 Extension to higher orders

In FEATENSOR, we include two different options for feature
extraction of higher-order tensors, namely all-modes and only-3-
mode options. The all-modes option extracts all features along all
modes. In the only-3-mode option, we extract the features along
only the modes with the three largest sizes. That is, tensor modes are
sorted according to their sizes, the three largest ones are selected,
and the features corresponding solely to those modes are extracted.

As expected, the all-modes option is significantly more time-
and resource-intensive. As the tensor order increases, the total
number of features across all modes grows dramatically. The
large number of features required for extracting higher-order
tensors complicates the evaluation process. Instead, the only-3-
mode option is sufficient in most cases. For instance, in our tensor
generator, GENTENSOR, features for slices and fibers are required
only along specific modes. Therefore, the only-3-mode option is
adequate for generating tensors with GENTENSOR.

Recall that the mode-order approach used by the sorting-based,
grouping-based, and hybrid methods is particularly effective for
extracting features along three modes, as the gap between the
number of slice modes and fiber modes increases with higher tensor
orders. Therefore, we include the all-modes option for higher-order
tensors only in the hash-based method, as it does not follow the
mode-order approach.

For the only-3-mode option, we extract features along three
modes of an M-mode tensor by treating the indices of these three
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> Temporary array for nonzeros per slices

> Number of nonzero slices
> Number of nonzeros per nonzero slice

sle> "fib> Vsle
1: Create the array cntl of size I; and initialize to zero
2: for i <0 to NNZ do
3: ent1(Xq(1))) ++
4: end for
5: nslc < # nz values in cnt1
6: nlj, < nz values in cntl (size Iy)
7: indgje < indices of nz values in cnt1 (size I7)
8: xnj, < PrefixSum(nij,)

18: Create the array cnt2 of size I, and initialize to zero > Temporary array for nonzeros per fiber
19: for j < xn5. (i) to xn2{,(i+1) do

20: cnt2 (X, (order(j))) ++

21: end for

22: ngg(i) <~ # nz in cnt2 > Number of nonzero fibers per nonzero slice
23: n%%, (1) < nz values in cnt2 (size ngg(i)) > Number of nonzeros per nonzero fiber
24: end for

modes as a 3-mode tensor. Therefore, this approach aligns with
the mode-order approach. As a result, the only-3-mode option is
available for all methods in FEATENSOR.

2.3 Sparse tensor generator

Despite the increased need for research in sparse tensors,
publicly available sparse tensor datasets remain limited, comprising
only a few instances [16, 17]. To address this scarcity and facilitate
the study of machine learning models with a larger variety of sparse
tensors, as well as to expand the size of open datasets, we introduce
a smart sparse tensor generator, called GENTENSOR. This generator
also enables rapid evaluation of proposed methods and algorithms
without the necessity of storing the tensor.

2.3.1 Overview

Our generator considers the significant features of tensors.
Consequently, the artificial tensors produced by GENTENSOR
closely emulate real tensors with their respective features and
characteristics. A notable advantage of this developed generator is
its utilization of size-independent features, such as coefficient of
variation, imbalance, and density. This allows for easy generation
of instances with varying sizes, enhancing its versatility and
applicability in diverse contexts.
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Input: L, L, I, d*c, dfit | gnz, cvﬁ ,cv b’ zmbalﬁ ,zmbal"z
Output: Tensor X stored in COO format

Algorithm 2. GENTENSOR: sparse tensor generator.

The main idea of the proposed tensor generator is to first
determine fiber counts per slice, and the number of nonzeros
per fiber according to the given coeflicient of variation values.
The generator has the flexibility to employ any distribution to
determine these counts, yet we are currently utilizing normal or log-
normal distributions to determine the nonzero layout. The nonzero
numerical values are drawn from a uniform (0,1) distribution, while
The positions of the nonzeros and nonzero slice or fiber indices are
selected uniformly from the corresponding index ranges.

In GENTENSOR, we provide the option to get the seed for
pseudo-randomness from the user. Through this, one can obtain
the exact same tensor when providing the same seed in different
tests. Moreover, the user can create tensors with almost the same
properties by simply changing the seed. The effect of seed selection
will be discussed in Section 3.3.3. All levels of GENTENSOR are
parallelized using OpenMP for faster execution.

The generator is general and can generate any M-mode tensor.
Since generating random sparse tensors while simultaneously
adhering to features along all modes is nearly impossible, we opt to
consider the features of mode-(M — 1, M) slices and mode-(M — 1)
fibers as inputs. For ease of expression, we describe the algorithm
for a 3-mode tensor.

2.3.2 The proposed algorithm

The pseudocode of the proposed sparse tensor generator
(GENTENSOR) is shown in Algorithm 2. The generator utilizes a
set of given metrics to create a tensor having these features: (i) sizes
of the tensor Iy, I, I3, (ii) densities of slices, fibers, and nonzeros
asle, dfiv gnz, (iii) coefficient of variations for fibers per slice and

nonzeros per fiber cvﬁ h, cvﬁ, and (iv) imbalance for fibers per slice

and nonzeros per fiber 1mbalﬁ o 1mbal”g.
The algorithm first calculates the requested nonzero slice count
(nslc), and the average, standard deviation, and maximum values
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1: Calculate nslc, avgfi®, stDeviil, max[ib using the inputs

2: indg;e < RandInds(nslc, I7) > Array of nonzero slice indices
3: (nfib, inds;p) < Distribute(nslc, avgfit, stbeviil, max[ib, I,) > Number and indices of fibers per slice
4: xnfib « prefixsum(nfib)

5: nfib < xnf3b(nslc) > Number of nonzero fibers
6: Calculate avgl,, stDevii , max}z,

7: (n fgb, indp;) < Distribute(nfib, avg%b, stDevrgb, maxﬁb, I3) > Number and indices of nonzeros per fiber
8: xnf, < PrefixSum(n’,)

9: for 1 <0 to nslc do

10: for j <0 to nfi(1) do

11: 3 exngﬁg(i) +7 > Global nonzero fiber index
12: for k<@ to nf3, (j') do

13: k' < xn%z, (J') +k > Global nonzero index
14: X (k") < (inds1c (1), indfip (1) (), indnz(J") (k)) > Fill nonzeros of tensor X
15: end for

16: end for

17: end for

for fibers per slice (avgflcb, stDevf IZ, max/jli) from the given inputs. In
line 2, the nonzero slice indices are determined by the RandInds
function, which returns nslc many different indices uniformly
distributed in the interval [1,I;]. In line 3, the number of fibers
per slice (nfli) array is constructed and the indices of these nonzero

fibers (indgy) are determined respecting the avgsﬁlf, stDevﬁ , and

sle
maxﬁ

i Values, using the function Distribute. The details of the
Distribute method will be discussed later. A simple prefix sum
is applied on rtﬁ and we obtain xnﬁ to be mainly used in future
calculations; yet the number of nonzero fibers (nfib) is derived by
using xnfllz (Lines 4-5).

We calculate the average, standard deviation, and maximum
values for nonzeros per fiber (avgg, stDevﬁb, max b) according
to the determined nfib value. In line 7, the number of nonzeros
per fiber (;Z) array is constructed and the indices of these
nonzeros (indy;) are determined respecting the avggy, stDev;Z,
maxﬁb values, again using the Distribute method. Similarly,
the array xni? is obtained by applying prefix sum on nﬁb
(Line 8). In the last stage of the algorithm (Lines 9-17), the
indices of tensor X' are filled using the arrays indg, indgsp,
and ind,,.

The pseudocode of the Distribute method is given in
Algorithm 3. This method takes five values as inputs, then returns
a count array cnt and an index array inds. We utilize the Box-
Muller method [23] which generates random numbers with normal
distribution obeying a given standard deviation and mean. Since
this method obeys a continuous distribution, the values are real
and sometimes might be negative. However, our aim here is
to construct a count array, e.g. keeping track of the nonzero
count in nonzero fibers, so the target values should be positive
integers. Thus we round the generated values to the nearest
positive integers. To avoid negative values, we switch to the
log-normal distribution when needed, which guarantees positive
real values.
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Input: Values n, avg, std, max, limit
Output: Arrays cnt and inds

1: for 1 <0 to n do

2 if avg>3xstd then

3 cnt(i) < BoxMuller(avg, std)

4 else

5: avQiognorm < 1og(avg?/(avg? +std?)1/?)

6 Stdiognorm < (1og(1 + std?/avg?))'/?

7 cnt (1) < exp(BoxMuller(avgiognorm, Stdiognorm))
8 end if

9: end for

10: avgresyrr < sum(ent)/n
11: ratio =avg/avgresult
12: if ratio <©0.95 or ratio> 1.05 then

13: for i <0 to n do

14: cent(i) < cnt(i) x ratio

15: end for

16: end if

17: for 1 <0 to n do

18: cnt(i) < min(cent(1i), max)

19: cent(i) < max(ent(i), 1)

20: ind(i) < RandInds(cnt (i), 1imit)
21: end for

Algorithm 3. Distribute.

10.3389/fams.2025.1589033

> Apply normal distribution

> Apply log-normal distribution

> Apply scaling if needed

> Array of size cnt(i), with elements in range [1, 1imit]

TABLE 3 Properties of the real sparse tensors from the FROSTT and HaTeN2 collections.

Slice count Fiber count
All Nonzero All Nonzero NNZ
LBNL-network 5 1,605 4,198 1,631 4,209 | 868,131 | 4.1E+13 1.0E+07 6.9E+16 6.8E+06 1,698,825
NIPS 4 2,482 2,862 14,036 17 - 8.2E+07 3.8E+06 1.0E+11 7.3E+06 3,101,609
uber 4 183 24 1,140 1,717 - 2.6E+06 2.6E+05 4.2E+08 2.8E+06 3,309,490
chicago-crime»comm 4 6,186 24 77 32 - 8.3E+05 7.1E+05 3.1E+07 7.8E+06 5,330,673
chicago-crime-geo 5 6,185 24 380 395 32 1.2E+09 3.0E+07 5.6E+10 2.8E+07 6,327,013
vast-2015-mc1-3d 3 165,427 11,374 2 - - 1.8E+05 1.8E+05 1.9E+09 2.6E+07 26,021,854
vast-2015-mc1-5d 5 165,427 11,374 2 100 89 3.6E+11 1.2E+08 1.7E+13 1.0E+08 26,021,945
DARPA1998 3 22,476 22,476 23,776,223 - - 2.4E+07 2.4E+07 1.1E+12 5.5E+07 28,436,033
enron 4 6,066 5,699 244,268 1,176 - 3.2E+09 2.2E+07 1.2E+13 9.0E+07 54,202,099
NELL-2 3 12,092 9,184 28,818 - - 5.0E+04 5.0E+04 7.2E+08 3.8E+07 76,879,419
freebase_music 3 23,343,790 | 23,344,784 166 - - 4.7E+07 4.6E+07 5.4E+14 2.2E+08 99,546,551
flickr-3d 3 319,686 28,153,045 1,607,191 - - 3.0E+07 3.0E+07 5.5E+13 1.5E+08 112,890,310
flickr-4d 4 319,686 28,153,045 1,607,191 731 - 5.5E+13 1.9E+08 1.5E+19 2.8E+08 112,890,310
freebase_sampled 3 38,954,435 | 38,955,429 532 - - 7.8E+07 7.4E+07 1.5E+15 3.2E+08 139,920,771
delicious-3d 3 532,924 17,262,471 2,480,308 - - 2.0E+07 2.0E+07 5.3E+13 1.6E+08 140,126,181
NELL-1 3 2,902,330 2,143,368 25,495,389 - - 3.1E+07 3.1E+07 1.3E+14 2.5E+08 143,599,552

The algorithm applies normal distribution if most values are
expected to be positive (avg — 3 x std > 0), or log-normal
distribution, otherwise (Lines 1-8). This choice stems from the
fact that ~99.7% of values sampled from a normal distribution fall
within three standard deviations of the mean. Then the algorithm
scales the values of cnt if the ratio of the resulting over the
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expected average is outside of a predetermined range, which is
determined as (0.95, 1.05) in our case (Lines 10-16). Finally in
Lines 17-21, the values of cnt are adjusted to obey the minimum
and maximum values, and the indices are selected uniformly using
the RandInds method, which returns cnf(i) many indices in the
interval [1, limit].
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2.3.3 Extension to higher orders

The algorithm of GENTENSOR for higher orders is similar
to the one for the 3rd-order case with the main lines. For an
M-mode tensor, we consider the features of mode-(M — 1, M)
slices and mode-(M — 1) fibers as inputs. The primary additional
challenge in a higher-order setting is determining the indices of
nonzero slices. It is because for an M-mode tensor, the nonzero slice
indices themselves form a (M — 2)-mode smaller boolean tensor,
while they were simply scalars for a 3-mode tensor. Therefore, we
propose a different scheme to determine the indices of nonzero
slices efficiently.

We consider four distinct cases regarding the given slice
density, d' which is the ratio of nonzero slice count (nslc,;) over
the total slice count (nslcyy). If &€ > 0.97, we round it to 1.0 and
assign the slice indices in sorted order. If a5 € (0.5,0.97], we create
an array of size nslc,y to keep track of empty slice indices with the
assumption that it can fit into memory, since nslc,y can be at most 2
times larger than nslc,,. If d € [0.1,0.5], instead of creating such
an array, we traverse all possible nslc,y indices and select a fraction
of d* of these indices uniformly. Finally if al < 0.1, we simply
generate nslc,; many random indices for each of the respective
(M — 2) modes.

3 Results

3.1 Experimental setup

The experiments are conducted on an AMD EPYC 7352
CPU of 3200MHz with 512 GB of memory. It has Zen 2
microarchitecture, which includes two sockets, and each socket
has 24 cores with two-way simultaneous multi-threading. Both
GENTENSOR and FEATENSOR are implemented in C/C++ utilizing
OpenMP for shared memory parallelism and compiled with GCC
using optimization level O2.

The dataset is taken from two real-world sparse tensor
collections, namely FROSTT [17] and HaTen2 [16]. We have
excluded the tensors whose nonzero count is more than 1 billion.
We have also excluded the delicious-4d tensor since its fiber count
exceeds the maximum value (1.8 x 10') for an unsigned long
int in the C language. As a result, the dataset consists of 16
real-world sparse tensors whose properties are given in Table 3.
Throughout the section, the runtime results are presented as
average of three runs.

3.2 Performance of feature extraction
methods

The performance of four different feature extraction methods
in FEATENSOR is compared. For this experiment, we use the
maximum number of available hardware threads in the machine,
which is 96. Since our dataset includes both 3rd-order and higher-
order tensors, for a fair comparison, we run all four methods
in FEATENSOR with the only-3-mode option, i.e. we extract the
features corresponding to modes with the largest three sizes. The
time measurement covers extracting all features along all modes,
including the preprocessing time for each method, e.g. sorting time
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for the sort-based method and time for preparing the hash table for
the hash-based method. The experiments validate that all feature
extraction methods in FEATENSOR give the same and exact results
as feature sets, therefore we do not present an accuracy comparison
across different methods.

Table 4 presents a detailed runtime comparison between the
sort-based and group-based methods at the mode level. The best
runtime value for each mode is shown in bold. We also report the
value of the decision metric [size(m) x size(m + 1)] in the hybrid
approach for each mode m. The tensors are shown in increasing
order of nonzero counts. It is seen that the superiority of a method
varies between different modes within the execution of each tensor.
Although the grouping-based method tends to be costly in total
time due to some modes with larger sizes, it is still the winner for
some modes of even large tensors. This is the main reason why
integrating the grouping-based method for specific modes within
the hybrid approach yields improved performance. We observe
that the grouping method yields the best performance when the
corresponding decision metric for that mode is less than 10!! for all
cases except LBNL-network, which is the tensor with the smallest
nonzero count in our dataset. Therefore, we empirically set the
threshold value as . = 10'! in the hybrid method. This strategy
prevents excessive cost in high-dimensional modes and enables
faster execution by combining the strengths of both methods.

Figure 3 shows the total feature extraction time for each method
and each tensor. Excluding the hybrid method, the grouping-based
method is superior for smaller tensors, whereas the sort-based
method is better for larger tensors. Overall, the hybrid method is the
best-performing one for most of the tensors, and it still ranks as the
second-best method for the remaining tensors. The results confirm
that the hybrid method balances sorting and grouping methods
by selecting the appropriate strategy at a mode level according to
mode-wise characteristics.

3.3 Performance of tensor generator

We evaluate the effectiveness of the proposed tensor generator
in terms of feature quality, tensor decomposition performance,
and sensitivity to seed selection. Except for the sensitivity analysis
part, we use the generated tensors in which the seed for pseudo-
randomness is set to 0. The generated tensors are created by
GENTENSOR using the features of real tensors, which are obtained
via our feature extractor FEATENSOR. Note that GENTENSOR needs
the fiber and slice features from only a single mode, irrespective of
the order of the tensor. Since all the methods in FEATENSOR give
the same features exactly but only their runtime differ, any of the
methods in FEATENSOR can be used to obtain real tensor features
as inputs for GENTENSOR.

3.3.1 Feature quality

Table 5 shows the comparison of the generated tensors with
their original versions, i.e. real tensors, in terms of some important
features. We present the features of the original and the respective
generated tensors, as well as the ratio of the resulting value of the
generated tensor over that of the original tensor. The ratio values
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TABLE 4 Comparison of sort- and group-based methods in terms of mode-level runtime in seconds, where best results for each mode are shown in
bold; along with decision metric (size(m) x size(m + 1)) values of hybrid method for each mode m, where values <A = 10! are shown in bold.

Sort-based

Tensor Mode-1 Mode-2 Mode-3

Mode-1

Group-based

Decision metric in hybrid method

Mode-2 Mode-3 Mode-1 Mode-2 Mode-3

LBNL-network 0.60 0.37 0.35 0.32 0.60 0.61 1.8E+07 3.6E+09 3.7E+09
NIPS 1.03 0.69 0.65 0.11 0.14 0.15 7.1E+06 3.5E+07 4.0E+07
uber 1.07 0.68 0.67 0.09 0.10 0.12 2.1E+05 3.1E+05 2.0E+06
chicago-crime-comm 1.75 1.20 1.16 0.11 0.13 0.14 2.5E+03 2.0E+05 4.8E+05
chicago-crime-geo 2.09 1.34 1.30 0.17 0.18 0.19 1.5E+05 2.4E+06 2.4E+06
vast-2015-mc1-3d 8.26 5.71 5.18 0.60 0.82 0.85 2.3E+04 3.3E+05 1.9E+09
vast-2015-mc1-5d 8.00 5.39 5.39 0.78 0.85 1.01 1.1E+06 1.7E+07 1.9E+09
DARPA1998 891 6.16 6.73 1.30 103.10 137.98 5.1E+08 5.3E+11 53E+11
enron 16.70 14.58 12.37 0.68 0.79 1.19 3.5E+07 1.4E+09 1.5E+09
NELL-2 26.04 20.83 19.07 0.84 0.85 1.51 1.1E+08 2.6E+08 3.5E+08
freebase_music 34.42 28.64 21.99 3.44 16.72 36,000.00 3.9E+09 3.9E+09 54E+14
flickr-3d 38.23 29.81 24.63 318.65 4,846.71 13,158.43 5.1E+11 9.0E+12 4.5E+13
flickr-4d 38.87 39.14 24.39 326.67 4,798.01 13,109.18 5.1E+11 9.0E+12 4.5E+13
freebase_sampled 50.63 42.63 32.03 8.31 28.43 36,000.00 2.1E+10 2.1E+10 1.5E+15
delicious-3d 51.05 39.65 31.43 1,209.29 4,840.33 13,517.24 1.3E+12 9.2E+12 43E+13
NELL-1 47.36 38.25 33.05 4,346.74 21,478.60 25,525.99 6.2E+12 5.5E+13 7.4E+13
— 100,000.0
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FIGURE 3
Runtime comparison for different feature extraction methods.

are colored green if the value is between 0.9 and 1.1; red if it is less
than 0.5 or more than 2; and orange, otherwise. For zero or too
small (less than 0.1) coefficient of variation values, the generator
often yields values with zero coefficient of variation. For those cases,
the ratio values are omitted from the table since the ratio will appear
as either zero or undefined (0/0).

As can be seen in the table, the resulting densities, i.e. the
nonzero count of the generated tensors, are at least 0.96 times
smaller or at most 1.05 times larger than the ones of the respective
original tensors. The success of the generator in terms of obeying
the given density is seen in both levels of nonzero slice, nonzero
fiber, and nonzero density.

In methods that generate values to obey a given density and
variation, there is a trade-off between strictly obeying the density
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or the variation. In other words, if one prioritizes achieving the
exact coeflicient of variation, the density might get far from the
desired value. However, since the number of nonzeros is the most
significant feature that a generator must obey for performance
concerns, we opted to prioritize adhering to density. For this, in
GENTENSOR we apply some scalings during calculations to catch
the given density. It is the reason why the resulting ratios in
coefficient of variation seem relatively low compared to the ratios
in densities.

We also present the tensor generation times in the last column
of Table 5. These are the runtimes of GENTENSOR in seconds
when working with the maximum available thread count, which
is 96 in our case. We observe that GENTENSOR takes only a few
seconds when generating medium-size tensors. To be precise, it
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TABLE 5 Feature comparison of the generated tensors with their original versions, along with the time required to generate each tensor.

Coefficient of variation Density
Fiber per slice Nonzero per fiber Nonzero slice Nonzero fiber Nonzero
Org

LBNL-network 8.0 45 0.56 262 12.1 0.46 2.1E-06 2.1E-06 1.00 84E-10 | 9.5E-10 1.13 42E-14 | 44E-14 1.05 1.0
NIPS 0.2 0.2 0.98 0.0 0.0 - 8.3E-04 8.3E-04 1.00 3.1E-05 | 3.0E-05 0.98 1.8E-06 | 1.8E-06 0.98 0.3
uber 0.2 0.2 0.94 1.0 1.0 0.94 1.0E+00 1.0E+00 1.00 1.4E-01 1.3E-01 0.93 3.8E-04 | 3.8E-04 0.99 0.1
chicago-crime-comm 04 0.3 0.82 0.5 04 0.82 9.5E-01 9.5E-01 1.00 32E-01 | 27E-01 0.83 1.5E-02 1.4E-02 0.96 0.3
chicago-crime-geo 03 03 0.94 0.1 0.0 - 1.0E-01 1.0E-01 1.00 2.8E-04 | 2.9E-04 1.01 89E-06 | 8.9E-06 1.01 1.6
vast-2015-mcl-3d 0.5 0.5 1.00 0.0 0.0 - 1.0E+00 1.0E+00 1.00 1.4E-02 1.4E-02 0.99 6.9E-03 | 6.9E-03 0.99 22
vast-2015-mc1-5d 0.0 0.0 - 0.0 0.0 - 6.9E-03 6.9E-03 1.00 6.9E-05 | 6.9E-05 1.00 7.8E-07 | 7.8E-07 1.00 48
DARPA1998 13.1 8.2 0.63 23.1 14.0 0.61 8.0E-01 8.1E-01 1.02 1.5B-04 | 1.6E-04 1.03 24E-09 | 2.4E-09 1.00 147.8
enron 4.1 3.6 0.87 1.8 1.4 0.76 4.4E-03 4.4E-03 1.00 37E-06 | 3.7E-06 0.99 55E-09 | 5.7E-09 1.05 3.1
NELL-2 33 3.1 0.94 0.9 1.1 1.25 1.0E+00 1.0E+00 1.00 3.0E-03 | 3.1E-03 1.01 24E-05 | 2.4E-05 0.99 0.6
freebase_music 24.4 20.2 0.83 0.1 0.0 - 9.7E-01 1.0E+00 1.03 1.8E-07 1.9E-07 1.04 1.1E-09 1.1E-09 1.03 4,370.6
flickr-3d 33 32 0.97 1.0 1.0 0.99 1.0E+00 1.0E+00 1.00 3.1E-06 | 3.1E-06 1.00 7.8E-12 | 7.9E-12 1.01 2,080.4
flickr-4d 1.0 1.0 0.99 0.0 0.0 - 3.1E-06 3.1E-06 1.00 78E-12 | 7.9E-12 1.01 11E-14 | L1E-14 1.01 1,180.8
freebase_sampled 24.0 194 0.81 0.1 0.0 - 9.1E-01 9.1E-01 1.00 9.2E-08 | 9.6E-08 1.05 1.7E-10 1.8E-10 1.04 10,608.6
delicious-3d 2.8 2.7 0.99 1.4 1.0 0.71 1.0E+00 1.0E+00 1.00 51E-06 | 5.1E-06 1.00 6.1E-12 | 6.1E-12 1.00 6,332.0
NELL-1 13.6 10.8 0.80 7.5 4.5 0.60 1.0E+00 1.0E+00 1.00 2.8E-06 | 2.8E-06 1.01 9.1E-13 | 9.2E-13 1.01 23,384.5

The ratio values are colored green if they are between 0.9 and 1.1, red if they are less than 0.5 or greater than 2, and orange otherwise. The ratio is omitted for cases where the generated coefficient of variation is zero.
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SPLATT performance comparison for 48 threads.
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takes less than 5 seconds for nine out of 16 tensors. Only for
some large tensors (four cases in our dataset), the runtime of
GENTENSOR can go up to a few hours. Note that the execution of
GENTENSOR depends on the requested nonzero count as well as
the slice and fiber counts; thus the sizes of the tensor also affect the
execution time.

Frontiers in Applied Mathematics and Statistics

3.3.2 CPD performance

We evaluate the effectiveness of the generated tensors in
mimicking the behavior of real tensors, particularly in terms of
tensor decomposition performance. For this, the performance of
the generated tensors is compared with the performance of the
naive random tensors, which have the same sizes and nonzero
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counts as the original tensors but the nonzero locations are
uniformly random. The SPLATT [18] and ParTI [19] tools are used
for applying the CPD decomposition. Both tools are constrained to
take the same (50) number of iterations for a fair comparison and
the time of the first five iterations are ignored for cache warm-up.
For each case, we take five independent runs and choose the
minimum runtime to represent the peak performance of the system
and to be less susceptible to noise than the average.

Figure 4 illustrates the comparison between the generated and
naive random tensors in their ability to resemble real tensors
regarding the CPD performance. The runtime results for both
the naive random and the generated tensors are normalized with
respect to the runtime obtained for the respective original tensor.
Therefore, the normalized values closer to 1.0 are interpreted
as more successful in terms of resembling the original tensor
performance.

Figure 4A depicts the CPD performance comparison by using
the ParTI tool with a single thread. It is evident that the generated
tensors emerge as the clear winner in most cases, and in the
remaining scenarios, they are comparable to the naive random
tensors but never inferior. The superiority of the generated tensors
over the naive random ones is especially higher for larger tensors.
The ParTI tool gave an error for the chicago-crime-geo tensor,
so this tensor is not presented in Figure 4A and the rest of the
experiments are conducted by using only the SPLATT tool.

In Figure 4B, we present the CPD performance comparison by
using the SPLATT tool with a single thread. As seen in the figure,
the generated tensors show significantly better performance than
the naive random ones for 11 out of 16 cases; and yield similar
performance with naive random tensors for three tensors in the
serial setting. For instance, for the NIPS tensor, while the naive
random tensor is 3.3 times slower than the original tensor, the
tensor generated with GENTENSOR yields a CPD time of only 1.1
times more than the runtime of the original real tensor.

Figure 4C shows the CPD performance comparison by using
SPLATT with 48 threads. We observe that the generated tensors are
superior to the naive random ones for eight cases; and inferior for
only one tensor (chicago-crime-geo). The generated tensors show
almost the same performance as the naive random ones for three
cases but for those, their performance is either already the same
as the respective real tensor (chicago-crime-comm), or only 1.3
(vast-2015-mc1-5d) and 1.5 (vast-2015-mc1-3d) times far from the
performance of the original tensors.

Although these results demonstrate that GENTENSOR performs
well in most cases, there are a few instances where the generated
tensors differ from real tensors in performance. This discrepancy
can be attributed to differences in tensor values. Since CPD
performance is influenced not only by the sparsity pattern but also
by the rank of the tensors, which is an aspect beyond the scope
of this work, these value-related differences explain the observed
variations. For example, in the case of the chicago-crime-geo
tensor, the original nonzeros represent count data and follow
a highly skewed distribution. On the other hand, GENTENSOR
assigns nonzeros from a uniform (0,1) distribution. Although
structurally consistent, this difference in value distribution may
result in different numerical scaling and optimization behavior,
which explains the deviation in CPD performance observed with
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SPLATT. This illustrates how even structurally similar tensors may
diverge in runtime depending on their value statistics.

3.3.3 Sensitivity analysis

To evaluate the sensitivity of our generator, we produce three
different versions for each generated tensor by taking the seed
for pseudo-randomness as 0, 1, and 2. Table 6 shows the nonzero
counts and the CPD (SPLATT) runtime for 1 and 48 threads (in
seconds). We present the coefficient of variation (CV) for each
case. As can be seen in the table, the CV for nonzero count
is at most 5 x 1073, whereas the CV for CPD performance
is at most 0.1. These results demonstrate that the generator is
stable across different random seeds and produces consistent
sparsity patterns and decomposition performance. This stability
makes GENTENSOR reliable for repeatable experimentation and
benchmarking scenarios.

3.3.4 Robustness and feature quality in higher
orders

To validate the generality of GENTENSOR, we performed a
series of experiments on higher-order tensors with the aim of
examining how well the generator preserves target structural
properties as tensor dimensionality increases. For this purpose,
we generated synthetic tensors with orders M = 6, 7, and 8
where all mode sizes are fixed to 1,000. Moreover, to demonstrate
the robustness of the generator, we add perturbations in the
input structural features (CV and densities) to show they do not
drastically change the output structure. Table 7 summarizes the
results under six settings, where each row corresponds to a different
input configuration.

In our Reference Setting, the target CV parameters are set to
cvfip = cVpz = 1.0; and the target densities are chosen so that the
target setting yields ~1 million nonzero slices, 10 million nonzero
fibers, and 100 million nonzeros for all cases with M = 6, 7, and
8. For instance for M = 6, it corresponds to assign cVfip= cvpz=1.0,
dg=107°, dg=10""%, and d,,,=10"'? as input parameters. In each
“Perturbed Setting,” a single input feature of “Reference Setting”
is increased by 10%, with other features held fixed: Specifically,
Perturbed Settings 1, 2, 3, 4, and 5 respectively increase the target
values of cvsp, iz, dye, dfp, and dn, by 10%. For instance for
M = 6, Perturbed Setting 1 changes cvg, to 1.1; Perturbed Setting 2
changes cv,, to 1.1; Perturbed Setting 3 updates dg. as 1.1 x 107
Perturbed Setting 4 updates dg, as 1.1x 10~%; and Perturbed Setting
5 only updates d,; as 1.1 x 1071%; while keeping other parameters
the same as in the Reference Setting. For each setting, we compare
the generated structural features against their target values.

For each setting, we compute the ratio between the resulting
value over the target input value; to which we refer as the
feature ratio. Results indicate that the generated tensors show
close agreement with the specified input features across all orders.
For example for the Reference Setting, the resulting CV and
density values in the generated tensors deviate by less than 2%
and 1% from their targets, respectively. Similarly in perturbed
settings, GENTENSOR maintains highly accurate outputs. For all
settings and tensor orders, the feature ratios remain between
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TABLE 6 Comparison of the generated tensors with different seeds in terms of nonzero count and CPD time in seconds.

CPD time (1 thread) CPD time (48 threads)
Seed =0 Seed =1 Seed = 2 CVvV Seed =0 Seed =1 Seed = 2 CVv

Nonzero count

Seed =0 Seed =1 Seed = 2 CcVv

‘le 19 unio|

$o13S1IRIS pUe soljewayiely panddy ul siapuod

14

B40"uISIa13UOL)

LBNL-network 1,699,088 1,699,162 1,699,444 9.0E-05 21.3 21.3 22.1 1.8E-02 3.9 5.0 4.9 1.1E-01
NIPS 3,041,941 3,042,054 3,041,816 3.2E-05 6.1 6.1 6.7 3.9E-02 0.5 0.5 0.6 4.2E-02
uber 3,283,106 3,282,919 3,283,336 5.2E-05 6.4 6.3 6.3 6.1E-03 0.3 0.3 0.3 0.0E+00
chicago-crime-comm 5,131,130 5,131,402 5,131,234 2.2E-05 8.0 7.7 7.9 1.5E-02 0.4 0.4 0.4 7.0E-03
chicago-crime-geo 6,364,282 6,364,306 6,365,068 5.7E-05 75.3 100.8 90.9 1.2E-01 7.9 9.8 8.8 8.9E-02
vast-2015-mc1-3d 25,800,284 25,802,581 25,801,506 3.6E-05 64.1 67.1 70.4 3.8E-02 29.1 31.3 29.7 3.1E-02
vast-2015-mc1-5d 26,021,841 26,021,841 26,021,841 0.0E+00 268.9 269.6 268.9 1.2E-03 218.4 214.2 212.2 1.2E-02
DARPA1998 28,732,452 28,406,813 28,405,526 5.4E-03 250.7 251.5 269.8 3.4E-02 84.6 94.6 93.0 4.8E-02
enron 56,967,347 57,055,466 57,032,145 6.5E-04 588.9 670.4 651.7 5.5E-02 29.8 32.7 32.7 4.3E-02
NELL-2 76,203,551 76,202,209 76,203,884 9.5E-06 89.8 89.5 90.1 2.6E-03 7.7 7.9 7.8 1.4E-02
freebase_music 102,877,680 102,916,007 102,874,661 1.8E-04 1,459.2 1,495.5 1,480.7 1.0E-02 243.3 316.4 312.1 1.2E-01
flickr-3d 113,727,282 113,736,842 113,674,701 2.4E-04 1,471.7 1,458.7 1,544.7 2.5E-02 261.1 292.3 308.5 6.8E-02
flickr-4d 113,641,027 113,641,445 113,640,707 2.7E-06 4,714.5 4,786.8 4,700.2 8.0E-03 596.7 579.3 627.7 3.3E-02
freebase_sampled 145,748,228 145,801,470 145,741,097 1.8E-04 2,409.9 2,424.5 2,493.8 1.5E-02 380.6 465.8 482.4 1.0E-01
delicious-3d 139,996,876 139,993,400 139,999,596 1.8E-05 1,845.9 1,835.4 1,833.6 3.0E-03 290.3 350.6 328.5 7.7E-02
NELL-1 145,175,629 145,155,883 145,155,081 6.5E-05 1,513.9 1,599.3 1,609.8 2.7E-02 256.0 300.6 292.8 6.9E-02
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TABLE 7 Feature matching and structural robustness results, and average generation times for 6th-8th order tensors generated by GENTENSOR under six input settings.

Target input features Resulting generated features Feature ratio (resulting/target)
Input scenario CVnz dg, dgp dnz CVhp  CVnz dg, dfip dnz Vi Cvnz  dge dnz;  Robust. ratio  Time (s)
Reference setting 6 1.0 1.0 1.OE-06 | 1.0E-08 | 1.0E-10 | 098 098 | 1.0E-06 & 9.9E-09 | 9.9E-11 | 098 098 | 1.00 | 099 | 0.99 - 143
7 1.0 1.0 LOE-09 | LOE-11 | 1OE-13 | 098 098 | 1.0E-09 & 99E-12 | 99E-14 | 098 098 | 100 | 099 | 0.99 - 143
8 1.0 1.0 1.OE-12 | 1.0E-14 | 1.0E-16 | 098 098 | 1.0E-12 | 99E-15 | 99E-17 | 098 098 | 1.00 | 099 | 0.99 - 1.46
Perturbed setting 1 (cvipx1.1) | 6 1.1 1.0 1.OE-06 | 1.0E-08 | 1.0E-10 = 1.08 098 | 1.0E-06 & 99E-09 | 99E-11 | 0.8 098 | 100 | 099 | 0.99 0.999 1.42
7 1.1 1.0 L.OE-09 | LOE-11 | 1OE-13 108 098 | 1.0E-09 | 9.9E-12 | 99E-14 = 0.98 098 | 100 | 099 | 0.99 0.999 143
8 1.1 1.0 L.OE-12 | 1OE-14 | 1.0E-16  1.08 098 | 1.0E-12 | 99E-15 | 99E-17 = 0.98 098 | 100 | 099 | 0.99 0.999 1.47
Perturbed setting 2 (cv,;x1.1) | 6 1.0 1.1 L.OE-06 | 1.OE-08 | 10E-10 | 098 1.08 | 10E-06 | 9.9E-09 | 99E-11 | 0.8 098 | 100 | 099 | 099 0.998 1.44
7 1.0 1.1 L.OE-09 | LOE-11 | 1OE-13 | 098 1.08 | 1.0E-09 | 9.9E-12 | 99E-14 | 098 098 | 100 | 099 | 099 0.998 1.46
8 1.0 1.1 LOE-12 | LOE-14 | 1OE-16 | 098 1.08 | 10E-12 | 9.9E-15 | 99E-17 | 0.98 098 | 100 | 099 | 099 0.998 1.48
Perturbed setting 3 (dy.x 1.1) 6 1.0 1.0 | 1.1E-06 | 1LOE-08 | 10E-10 | 098 098 | LIE-06 & 99E-09 | 9.9E-11 | 098 098 | 1.00 | 099 | 0.99 1.000 143
7 1.0 1.0 | 1.1E-09 | LOE-11 | LOE-13 | 098 098 | LIE-09 & 99E-12 | 99E-14 | 098 098 | 1.00 | 099 | 0.99 1.000 145
8 1.0 1.0 | 11E-12 | 1LOE-14 | 10E-16 | 098 098 | LIE-12 | 99E-15 | 99E-17 | 098 098 | 1.00 | 099 | 0.99 1.000 1.48
Perturbed setting 4 (dj > 1.1) 6 1.0 1.0 1.OE-06 | 1.1E-08 | 1OE-10 | 103 098 | 1.0E-06 & 1.1E-08 | 99E-11 | 103 098 | 1.00 | 099 | 0.99 1.000 1.48
7 1.0 1.0 LOE-09 | 1.1E-11 | LOE-13 | 103 098 | 1.0E-09 & L.IE-11 | 99E-14 | 103 098 | 1.00 | 099 | 0.99 1.000 1.49
8 1.0 1.0 1.OE-12 | 1.1E-14 | 10E-16 | 103 098 | 1.0E-12 | 1.1E-14 | 99E-17 | 103 098 | 1.00 | 099 | 0.99 1.000 1.54
Perturbed setting 5 (. x 1.1) 6 1.0 1.0 1.OE-06 | 1.0E-08 | 1.1E-10 | 098 1.03 | 1.OE-06 | 9.9E-09 | 1.1E-10 | 098 103 | 100 | 099 | 0.99 0.999 1.50
7 1.0 1.0 LOE-09 | LOE-11 | 11E-13 | 098 1.03 | LOE-09 | 99E-12 | 11E-13 | 098 103 | 100 | 099 | 099 0.999 1.50
8 1.0 1.0 L.OE-12 | 1OE-14 | 11E-16 | 098 1.03 | LOE-12 | 99E-15 | 1.1E-16 | 098 103 | 100 | 099 | 0.99 0.999 1.58

In all settings, tensor sizes are set to 1,000 for all modes. Perturbed Settings 1, 2, 3, 4, and 5 respectively increase CVfibs CVnzs dges dﬁb, and d,,; target values of “Reference Setting” by 10%, with other features held fixed. The values corresponding to perturbed features
for each setting are shown in purple color. The Feature Ratio is the ratio of resulting over target feature values. The Robustness Ratio is the ratio of the feature ratio in the perturbed setting over the feature ratio in the reference setting; and is reported only for the
perturbed feature within each setting.
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0.98 and 1.03. These results support that GENTENSOR can
effectively reproduce desired structural characteristics even in
higher-dimensional settings.

To evaluate robustness, we compare the generator’s output in
the perturbed setting to its output in the reference setting. We
define the robustness ratio as the ratio of the feature ratio in the
perturbed setting over the feature ratio in the reference setting.
In other words, the robustness ratio measures how proportionally
the output feature changes in response to a controlled change in
the input feature. A robustness ratio close to 1.0 indicates that the
generator reacts proportionally to the input perturbation, which is a
desirable robustness property. As shown in Table 7, the robustness
ratios range from 0.998 to 1.000 for all perturbed settings and
tensor orders. These results demonstrate the structural robustness
of GENTENSOR, since it maintains consistent structural behavior
under small deviations in input features.

A robustness ratio close to one indicates that the generator
reacts proportionally to the input perturbation, which is a desirable
robustness property. As shown in Table 7, the robustness ratios
across all perturbed features and tensor orders range from 0.998
to 1.000. These results demonstrate that the generator is robust,
meaning it maintains consistent structural behavior under small
deviations in input features.

The last column of Table 7 reports the tensor generation time
as an average of three runs. It is seen that perturbing CV or density
does not significantly impact runtime. Furthermore, the runtime
shows just a slight and expected increase as M increases, indicating
that dimensionality alone does not significantly impact the runtime
of GENTENSOR.

4 Discussion
4.1 Related work

To the best of our knowledge, there is only one study (and
its extension) that extracts tensor features for optimizing sparse
tensor computations in the literature: Sun et al. [24] proposed a
framework, namely SpTFS, that automatically predicts the optimal
storage format for CPD. SpTFS lowers the sparse tensor to fixed-
sized matrices and gives them to convolutional neural networks
(CNN) as inputs along with tensor features. The authors improve
SpTES by adopting both supervised and unsupervised learning-
based machine learning models in a recent work [15].

The previous works [15, 24] have considered the features for
only one mode, assuming that the tensor is already sorted along
that mode. However, real-world tensor sizes diverge significantly
so that sizes in some modes reach millions while some are only
orders of ten or even less. Therefore, considering the global
values might result in losing some important information about
the structure of the tensor. Moreover, the feature extraction
implementation of SpTFS is not publicly available in its official
repository [25], which includes only the learning scripts and
trained models. In contrast, our FEATENSOR framework provides
comprehensive multi-mode feature extraction without requiring
any preprocessing. As a publicly available and parallelized tool,
FEATENSOR enables broader applicability and reproducibility,
making it a more flexible and practical choice for large-scale
sparse tensor analysis. Other widely used libraries for tensor
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decomposition or sparse storage optimization, such as SPLATT
[18], ParTI [19], and HiCOO [12], do not provide any documented
standalone feature extraction module either. Thus, to the best
of our knowledge, FEATENSOR represents the first open-source
framework offering parallel, multi-mode feature extraction for
sparse tensors.

Although several sparse matrix and graph generators are
proposed in the literature [26-30], the studies on sparse tensor
generators are very limited. Chi and Kolda [31] aim to produce
low rank tensors; and Smith and Karypis [32] used their method
to generate synthetic tensors whose values follow a Poisson
distribution. Baskaran et al. [33] used MATLAB Tensor Toolkit
[34] to generate synthetic sparse tensors but these are rather small
tensors with less than one million nonzeros. Due to the deficiency of
publicly available sparse tensors, Sun et al. [24] produced synthetic
tensors by combining sparse matrices in Suite Sparse [35] collection
such that the elements of matrices form the modes of tensors.
However real-world tensors are much sparser than real matrices
and thus the structure of tensors generated by their method may
differ significantly from the real ones.

4.2 Limitations

To the best of our knowledge, FEATENSOR and GENTENSOR
are the first open-source tools with feature-preserving tensor
generation and efficient multi-method feature extraction for sparse
tensors. Despite their demonstrated utility, some limitations
remain that offer opportunities for future enhancement. While this
work primarily focuses on replicating structural sparsity patterns,
it does not explicitly incorporate constraints on nonzero values
or tensor rank. These aspects may affect downstream tasks such
as classification, regression, or clustering, where the semantics of
nonzero entries are important.

Additionally, although both FEATENSOR and GENTENSOR
are parallelized via OpenMP for shared-memory systems, their
applicability to distributed-memory environments remains
unexplored. Extending these tools to scale across nodes would
broaden their utility in HPC settings. Addressing these aspects
would further enhance the quality of these tools, making it a
promising direction for future research.

GENTENSOR is designed with the flexibility to incorporate
any distribution. However, its current version utilizes normal
and log-normal distributions to determine the nonzero layout.
Furthermore, the positions of the nonzeros, as well as the indices
of nonzero slices and fibers, are selected uniformly, and nonzero
values are drawn from a uniform distribution. As part of future
work, we plan to extend GENTENSOR by exploring alternative
distribution models for both layout and value generation.

In this work, the effectiveness of GENTENSOR has mainly been
demonstrated through matching structural features and replicating
CPD performance. These evaluation metrics were selected to
capture both the structural fidelity and practical applicability of
the generated tensors. Nonetheless, we acknowledge that other
potential indicators could offer complementary perspectives. For
instance, tensor rank or spectral characteristics might provide
insight into latent structure fidelity. Moreover, evaluating the
generated tensors under alternative decomposition models, such
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as Tucker, could reveal behavioral differences not captured
by CPD alone. Graph-based similarity metrics also present a
potential direction. While such alternatives may broaden the
scope of evaluation, they often depend on specific applications
or assumptions, which our current generic generator intentionally
avoids. Exploring these dimensions in a targeted context remains a
promising direction for future work.

5 Conclusion

In this study, we introduce two tools, FEATENSOR and
GENTENSOR, which we designed and developed to advance
research in sparse tensor operations. FEATENSOR is a feature
extraction framework for sparse tensors that provides four different
methods, prioritizing efficiency in extracting tensor features. It
serves as the first publicly available, multi-mode, and parallel
feature extraction framework for sparse tensors. This contribution
is particularly valuable, as feature extraction itself is challenging
and computationally expensive due to the large number of fibers
and slices in real sparse tensors. We evaluate the performance of
various feature extraction methods and observe that the methods
introduced in this work outperform conventional approaches.

GENTENSOR is a smart sparse tensor generator that adheres
to a comprehensive set of tensor features. Experimental results
validate its effectiveness in mimicking real tensors, both in terms
of sparsity patterns and tensor decomposition performance. A
key advantage of GENTENSOR is its use of size-independent
features, enabling the generation of tensors at different scales
while preserving essential properties of real tensors. This capability
facilitates the creation of large synthetic sparse tensor datasets
that exhibit characteristics and behavior similar to real-world data.
This is particularly useful for performance and scaling experiments
involving tensor decomposition kernels that depend on tensor
sparsity patterns. Moreover, experimental results demonstrate that
GENTENSOR generalizes well to higher-order tensors and is robust
to typical variations in the input feature set. The generator can
therefore be reliably used in realistic benchmarking and modeling
scenarios where input characteristics may not be precisely known.
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