
TYPE Original Research

PUBLISHED 14 May 2025

DOI 10.3389/fams.2025.1593680

OPEN ACCESS

EDITED BY

Yannan Chen,

South China Normal University, China

REVIEWED BY

Fengsheng Wu,

Yunnan University, China

Qingsong Wang,

Xiangtan University, China

*CORRESPONDENCE

Tatsuya Yokota

t.yokota@nitech.ac.jp

RECEIVED 14 March 2025

ACCEPTED 15 April 2025

PUBLISHED 14 May 2025

CITATION

Yamauchi N, Hontani H and Yokota T (2025)

Expectation-maximization alternating least

squares for tensor network logistic regression.

Front. Appl. Math. Stat. 11:1593680.

doi: 10.3389/fams.2025.1593680

COPYRIGHT

© 2025 Yamauchi, Hontani and Yokota. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Expectation-maximization
alternating least squares for
tensor network logistic
regression

Naoya Yamauchi1, Hidekata Hontani1 and Tatsuya Yokota1,2*

1Department of Computer Science, Nagoya Institute of Technology, Aichi, Japan, 2RIKEN Center for

Advanced Intelligence Project, Tokyo, Japan

In recent years, a learning method for classifiers using tensor networks (TNs)

has attracted attention. When constructing a classification function for high-

dimensional data using a basis function model, a huge number of basis

functions and coe�cients are generally required, but the TN model makes

it possible to avoid the curse of dimensionality by representing the huge

coe�cients using TNs. However, there is a problem with TN learning, namely

the gradient vanishing, and learning using the gradient method cannot be

performed e�ciently. In this study, we propose a novel optimization algorithm

for learning TN classifiers by using alternating least square (ALS) algorithm. Unlike

conventional gradient-based methods, which su�er from vanishing gradients

and ine�cient training, our proposed approach can e�ectively minimize squared

loss and logistic loss. To make ALS applicable to logistic regression, we introduce

an auxiliary function derived from Pólya-Gamma augmentation, allowing logistic

loss to be minimized as a weighted squared loss. We apply the proposed

method to the MNIST classification task and discuss the e�ectiveness of the

proposed method.

KEYWORDS

expectation-maximization (EM), majorization-minimization (MM), alternating least

squares (ALS), tensor networks, tensor train, logistic regression, Pólya-Gamma (PG)

augmentation

1 Introduction

Tensor networks (TNs) are mathematical models that represent a high-order tensor

by decomposing it into interconnected lower-order tensors (called core tensors) [1–4]. By

decomposing into lower-order tensors, TNs can greatly improve computational efficiency

on large high-order tensors. For example, in tensor train (TT) [5] or tensor ring [6]

networks, the number of parameters required to represent high-order tensors, which is

usually exponential, can be reduced linearly with respect to the order of tensors. This

property of TNs is exploited in many machine learning applications [7–12].

In classification and regression tasks, input data can or intermediate representations

often be represented as high-order tensors. Measurement data can sometimes naturally

be expressed as high-order tensors such as images, and it is also common to map the

input data into a high-dimensional feature space. However, input data or intermediate

representations given as high-order tensors lead to an exponential increase in the number

of entries as the order increases. Therefore, improving computational efficiency in solving

optimization problems for classification and regression is critically important in practical

applications. In early studies, two-dimensional linear discriminant analysis (LDA) [13]

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2025.1593680
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2025.1593680&domain=pdf&date_stamp=2025-05-14
mailto:t.yokota@nitech.ac.jp
https://doi.org/10.3389/fams.2025.1593680
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2025.1593680/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

and generalized LDA [14] are proposed for face identification

and gate recognition. In these works, the input data are tensors,

but also the regression coefficients (optimization parameters) are

represented as tensors at the same time. The point here is that

the high-dimensional linear transformation matrix consists of

regression coefficients and is decomposed into the Kronecker

products of small linear transformation matrices. This reduces

the search space in optimization and the problem can be solved

efficiently. Machine learning with TNs [7–12] can be seen as a more

general extension of these methods. In addition, this approach

is also applied to deep learning. The canonical polyadic tensor

decomposition model is applied to convolutional layers [15], the

TT network is applied to fully connected layers [16], and the low-

rank matrix model is applied to efficient adapters in large language

models [17].

In this study, we focus on the TN regression models [7].

This model is interesting in that it can be said to be the

most fundamental model in supervised learning with TNs. The

TN model first applies a non-linear mapping to transform

input data into high-order rank-one tensors. These tensors are

then multiplied by a high-order regression coefficient tensor to

produce output vectors. The number of entries in the high-

order regression coefficient tensor is exponential with respect to

the dimension of data, and it is easily incomputable with high-

dimensional problems like image classification. Such problems

are called the curse of dimensionality [18]. In TN regression,

the problem of curse of dimensionality can be avoided by

representing this high-order regression coefficient tensor with

a TN. In addition, the TN regression model obtains inference

results through multiple tensor product (contraction) calculations

in a TN but has the advantage that it can obtain the same

results regardless of the order of tensor product (contraction)

calculations. This is an advantageous condition for parallel

computing and significantly different from neural networks, which

must obtain inference results by performing calculations from

input to output sequentially.

In the TN regression proposed by Stoudenmire [7], an

optimization algorithm based on gradient descent was proposed

for learning with squared losses. The learning algorithm using

the gradient is applicable to various objective functions and is

highly versatile, but it has problems with the difficulty of tuning

the learning rate and slow convergence. In addition, the gradient

calculated by the product of many core tensors is power-based,

so it can be said to be unstable because there is a possibility of

gradient vanishing or gradient explosion. In addition, the sweep

algorithm using truncated singular value decomposition (SVD) can

increase the objective function, which hinders optimization. Thus,

optimization methods for learning TNs are not yet mature, and

continuous basic research is necessary.

In this study, we discuss efficient optimization algorithms for

TN regression. As the first contribution, we show that the problem

of TN regression based on squared losses can be optimized by

alternating least squares (ALS). The ALS algorithm updates the

core tensor while solving sub-optimization problems for each core

tensor. Since the loss function based on squared loss takes the

form of a convex quadratic function for each core tensor, it can

be said that the solution is closed form, and the objective function

decreases monotonically. In fact, this property is very powerful.

In addition, there are no hyperparameters in ALS, different from

gradient descent such as learning rate.

As the second contribution, we propose an algorithm for

leaning TN models based on logistic loss. In theory, optimization

using gradient descent should also be possible for logistic loss,

but in practice, the tuning of learning rate is difficult and its

convergence is slow. In this study, this problem is avoided by

using a majorization-minimization (MM) algorithm and ALS.

In the MM algorithm, an auxiliary function that is the upper

bound of the target loss function is obtained, and the core tensor

is updated by minimizing the auxiliary function instead of the

original objective function. Pólya-Gamma (PG) augmentation [19,

20] can be used to derive the auxiliary function of logistic loss,

which takes the form of a weighted squared loss. Since the auxiliary

function is a quadratic function with respect to the core tensor,

the optimization problem can be solved by ALS. The combination

of the MM algorithm and ALS ensures that the objective function

decreases monotonically. The proposed algorithm can also be said

to be expectation maximization (EM) in the sense of maximum

likelihood estimation using PG augmentation [20].

As a third contribution, we extend the proposed binary

classification problem to the multi-class classification problem. By

formulating the problem based on the sum of logistic losses for all

classes, the derivation of the auxiliary function by PG augmentation

can be directly applied for multi-class problems.

In computational experiments, we evaluated the proposed

TN learning algorithms for the classification task with MNIST.

These experiments include comparison with gradient descent,

confirmation of monotonic decrease, evaluation of classification

accuracy compared with different cost functions and algorithms,

and comparison of classification accuracy under various settings.

1.1 Notations

A vector, a matrix, and a tensor are denoted by a bold lowercase

letter, a ∈ R
I , a bold uppercase letter, B ∈ R

I×J , and a bold

calligraphic letter, C ∈ R
J1×J2×···×JN , respectively. An Nth-order

tensor, X ∈ R
I1×I2×···×IN , can be reshaped into a vector which is

denoted as vec(X) ∈ R

∏N
n=1 In . The operators⊗,⊙, and ◦ represent

the Kronecker product, the Khatri-Rao product, and the outer

product, respectively. mat1(·) and mat3(·) represent the operation

of reshaping the third-order tensor into a matrix. For a third-order

tensor Z ∈ R
I×J×K , its matricizations of modes of [(1), (2, 3)] and

[(3), (1, 2)] are denoted as mat1(Z) ∈ R
I×JK andmat3(Z) ∈ R

K×IJ ,

respectively. fold1(·) and fold3(·) stand for, respectively, inverse

operations of mat1(·) and mat3(·). For a fourth-order tensor T ∈

R
I×J×K×L, its matricization of modes of [(1, 2), (3, 4)] is denoted as

mat1,2(T) ∈ R
IJ×KL. The graphical notation of the TN diagrams in

the figures follows [4].

2 Tensor network model for
supervised learning

In this section, we briefly review classification models using

TNs [7], point out some issues with optimization and loss

functions, and explain the motivations of this study.

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

2.1 Tensor network model

Let us consider a problem to obtain a function ψ :R
M → R

which satisfies

y ≃ ψ(x), (1)

where x ∈ R
M represents input pattern and y ∈ R represents a

variable we want to predict from x.

The regression model using TN is given by the embedding

8 :R
M → R

d1×d2×···×dM of the feature vector x into a high-

dimensional space, and multiplying the coefficient tensor W ∈

R
d1×d2×···×dM along with the bias v ∈ R, as

ψ(x) = 〈W,8(x)〉 + v. (2)

The point here is that both W and 8(x) are represented by TNs.

Note that we introduce the bias v for a more general formulation

which is not considered in the original work by Stoudenmire and

Schwab [7]. Especially, W is represented by the tensor train (TT)

[5], and8(x) is represented by the rank-1 tensor decomposition. In

this study, we call this tensor network (TN)model.

Now, assuming that the same local mapping φ :R → R
d is

applied to each entry xj of x, the rank-1 tensor embedding can be

written as

8(x) = φ(x1) ◦ φ(x2) ◦ · · · ◦ φ(xM) ∈ R
d×d×···×d. (3)

Note that this rank-1 tensor embedding includes the standard

Gaussian radial basis function and the Fourier basis function with

the appropriate selection of φ. In the original work by Stoudenmire

and Schwab [7], the following local mapping is employed:

φ(xj) =
[

cos
(π

2
xj

)

, sin
(π

2
xj

)]⊤
. (4)

This local mapping encodes each entry xj of x into a two-

dimensional vector φ(xj), and the entire pattern x is represented

as the outer product of these local vectors. The representation of

the feature map in a tensor diagram is shown in Figure 1.

As shown in Figure 1, the large coefficient tensor W ∈

R
d×d×···×d is compactly represented using TT:

W = 〈〈A1,A2, ...,AM〉〉 , (5)

where Aj ∈ R
Rj−1×d×Rj is the j-th core tensor (TT-core), and Rj

is called TT-rank or bond dimension for 1 ≤ j ≤ M − 1 which

is an important hyper-parameter for controlling the capacity of

TN models. In the core tensors at both ends, R0 = RM = 1.

A TN model with large TT-ranks has a large capacity, but the

computational and training loads are also large.

In summary, let us put a set of all coefficients to learn as θ =

(A1,A2, ...,AM , v), then the TN model with θ is denoted by

ψ(x|θ) : = 〈〈〈A1,A2, ...,AM〉〉 ,8(x)〉 + v. (6)

The TN model is characterized by mapping the features into a very

high-dimensional space and performing linear regression in that

high-dimensional feature space, while not explicitly carrying out

the computations in the high-dimensional space.8 andW are very

higher-order tensors with dM entries, but the tensor contraction

〈W,8(x)〉 can be computed efficiently and it is not necessary

to compute 8 and W themselves explicitly. This approach helps

avoid the curse of dimensionality, which is a key issue of high-

dimensional classification models.

2.2 Gradient-based algorithm for tensor
network least squares regression

When training data {(xn, yn)}n∈[N] are given, the overall

structure of the TN regression is as shown in Figure 1. The

regression coefficients [e.g., TT-cores (A1, ...,AM)] and the bias

v are optimized using squared loss. The optimization problem is

expressed as

minimize
θ

∑

n∈[N](yn − ψ(xn|θ))
2. (7)

We refer this task as tensor network least squares regression

(TNLSR). Let the sum of squared losses be denoted as f (θ), the naive

gradient descent method is then given by

θ (t+1) ← θ (t) − µ∇θ f (θ
(t)). (8)

Here, µ is the learning rate.

In the original work by Stoudenmire and Schwab [7], a

sweep algorithm is proposed to optimize the regression coefficients

(A1,A2, ...,AM) in a block coordinate descent mannar with

truncated SVD. The sweep algorithm sequentially updates two core

tensorsAm andAm+1.

In each step of the sweep, two adjacent core tensors, Am and

Am+1, are contracted with a common TT rank Rm andmerged into

a single joint tensor Tm ∈ R
Rm−1×d×d×Rm+1 . Then, we compute

the gradient of the loss function with respect to Tm and update Tm

by gradient descent. Using truncated SVD, the matrix form of the

updated joint tensor Tm is decomposed into two matrices and their

tensorized forms are replaced by new core tensorsAm andAm+1.

Focusing to optimization with respect to Tm, the inner product

term of the TN model can be rewritten as:

〈W,8(x)〉 = 〈〈〈A1, · · · ,Am,Am+1, · · · ,AM〉〉 ,

φ(1) ◦ · · · ◦ φ(m) ◦ φ(m+1) ◦ · · · ◦ φ(M)〉 (9)

= 〈Tm, l
(m) ◦ φ(m) ◦ φ(m+1) ◦ r(m+1)〉, (10)

where we put φ(j) : = φ(xj), and l(m) and r(m+1) are respectively

results of the contraction of the left and right sides as shown in

Figure 2. In practice, this is calculated in parallel for all samples as

〈W,8(xn)〉 = 〈Tm, l
(m)
n ◦ φ

(m)
n ◦ φ

(m+1)
n ◦ r(m+1)n 〉 (11)

for all n ∈ [N]. By utilizing this, the gradient of the loss function

can be computed as

1Tm = −
∂f (Tm)

∂Tm
=

∑

n∈[N]

(yn − ψ(xn|θ))(l
(m)
n ◦ φ

(m)
n ◦ φ

(m+1)
n

◦r(m+1)n). (12)

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

FIGURE 1

Overview of least squares regression with TN model [7].

FIGURE 2

Analysis of TN model for gradient descent in tensor network

diagrams [4]. Tensor contraction results in the inner product

between Tm and l(m) ◦ φ(m) ◦ φ(m+1) ◦ r(m+1). (a) Results of

contraction. (b) Entire diagram for all samples.

Then, the joint tensor can be updated by gradient descent as Tm ←

Tm + µ1Tm.

Figure 3 shows the image of the entire sweep algorithm. The

upper part and the lower part in Figure 3 are called the forward

sweep and the backward sweep, respectively. In the forward sweep,

the following steps are performed:

Tm ←〈〈Am,Am+1〉〉 , (13)

Tm ←Tm + µ1Tm, (14)

[U,6,V]←trSVD(mat1,2(Tm),Rm), (15)

Am ←fold3(U
⊤), (16)

Am+1 ←fold1(6V
⊤), (17)

where trSVD(mat1,2(Tm),Rm) represents the truncated SVD with

rank Rm of the input matrix mat1,2(Tm) ∈ R
Rm−1d×dRm+1 . The

output matrices of trSVD(mat1,2(Tm),Rm) are U ∈ R
Rm−1d×Rm ,

6 ∈ R
Rm×Rm , and V ∈ R

dRm+1×Rm , respectively. In the backward

sweep, the following steps are performed:

Tm ←〈〈Am,Am+1〉〉 , (18)

Tm ←Tm + µ1Tm, (19)

[U,6,V]←trSVD(mat1,2(Tm),Rm), (20)

Am ←fold3(6U
⊤), (21)

Am+1 ←fold1(V
⊤). (22)

In the forward sweep, updates are performed in the order

A1,A2, · · · ,AM−2, and in the backward sweep, updates are

performed in the orderAM−1,AM−2, · · · ,A2.

In this algorithm, as an option, Rm in the truncated SVD can be

adaptively changed for each iteration. For example, one approach

is to determine Rm based on the singular values obtained via

SVD, removing components with small singular values. It should

be noted that truncated SVD can cause convergence to become

unstable. This is because truncated SVD is a process for parameter

compression and rank determination, which is not related to

minimizing the cost function. In most cases, the cost function

increases due to perturbations caused by parameter compression

using truncated SVD. The convergence behavior becomes unstable

because the cost function decreases due to gradient descent and

increases due to truncated SVD alternately.

In this paper, we refer to the above algorithm as TNLSR-GD-

SVD. Although TNLSR-GD-SVD has been reported with some

success in the classification task of MNIST [7], some problems

remain. First, the slow convergence of gradient-based methods

can be problematic. In general, many iterations are required for

the gradient method to reach the minimum since it is the first-

order method. Additionally, tuning an appropriate learning rate is

necessary and making efficient convergence challenging. Second,

instability in learning due to vanishing gradients is another issue.

When the gradient vanishes, the changes in parameters to be

updated by the optimization algorithm become negligible, which

can lead to training failure. Third, the use of squared loss is

inappropriate for classification problems. In general, logistic loss is

more suitable for learning classifiers.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

FIGURE 3

Overall sweep process in TNLSR-GD-SVD. The upper half represents a forward sweep, and the lower half represents a backward sweep. Each block

consists of contraction of two core tensor to construct a jonit tensor, the update of the joint tensor based on the gradient descent, decomposition of

the updated joint tensor with SVD, and replacement of two core tensors.

2.3 Motivation

In this study, we propose algorithms for learning TN models

based on alternating least squares (ALS), which is the workhorse

algorithm for tensor decompositions [6, 21–26]. By employing ALS,

the monotonic decrease of the objective function is guaranteed

without tuning hyperparameters, leading to stabler and faster

convergence.

In the case of classification, it is appropriate to minimize the

logistic loss

h(θ) =
∑

n∈[N]

−yn log

[

1

1+ e−ψ(xn|θ)

]

−(1− yn) log

[

e−ψ(xn|θ)

1+ e−ψ(xn|θ)

]

(23)

rather than squared loss. In this paper, we refer to this task as tensor

network logistic regression (TNLR). TNLR can be solved in the same

mannar as TNLSR-GD-SVD by replacing the gradient calculation

(Equation 12) for logistic loss, we refer to this as TNLR-GD-SVD.

However, the problems of gradient descent also remain.

In this study, we propose a new optimization algorithm to

address this problem using ALS. Instead of directly minimizing

logistic loss (Equation 23), the proposed method introduces an

auxiliary function that provides an upper bound and minimizes

logistic loss by minimizing the auxiliary function. This approach

is generally known as the majorization-minimization (MM)

algorithm [27, 28]. For the derivation of the auxiliary function, we

employ the PG augmentation [19, 20]. It results in the two-step

algorithm of (E-step) computing expectation of latent variable, (M-

step) updating θ to minimize weighted least squares by ALS. The

derived optimization algorithm can be interpreted as a kind of EM-

ALS [29, 30]. Due to the properties of MM and ALS, monotonic

decrease (non-increase) of the logistic loss can be guaranteed.

3 Alternating least squares for tensor
network least squares regression

3.1 Subproblems and their solutions

In this section, we consider solving the problem shown in

Equation 7 by using the ALS algorithm. First, we do not consider

the joint core tensor Tm here and update each core tensorAm one

by one. ALS algorithm updates each core tensor A1,A2, · · · ,AM

alternately through suboptimization. The update rules are given by

(Am, v)← argmin
Am ,v

f (Am, v), m = 1, . . . ,M. (24)

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

FIGURE 4

Analysis of TN model for ALS in tensor network diagrams [4]. Tensor contraction results in the inner product between Am and l(m) ◦ φ(m) ◦ r(m).

Inserting a vectorization-tensorization operation, equivalent to identity mapping, results in the matrix-vector form with Khatri-Rao products. The

node with diagonal line represents a superdiagonal tensor.

Let us consider to reorganize the objective function by seeing

(Am, v) as optimization parameters for specific m. When

optimizing the squared loss (Equation 7) as a sub-optimization

problem for them-th core tensorAm, the inner product of the TN

model is transformed as

〈W,8(x)〉 = 〈〈〈A1, · · · ,Am, · · · ,AM〉〉 ,φ
(1)
n ◦ · · · ◦ φ

(m)

◦ · · · ◦ φ(M)〉

= 〈Am, l
(m) ◦ φ(m) ◦ r(m)〉, (25)

where we put φ(j) : = φ(xj), and l(m) and r(m) are respectively

results of the contraction of the left and right sides as shown in

Figure 4a. In practice, this is calculated in parallel for all samples

as

〈W,8(xn)〉 = 〈Am, l
(m)
n ◦ φ

(m)
n ◦ r

(m)
n 〉 (26)

for all n ∈ [N]. Let the matrices L(m), 8(m), R(m) and the vector y

be defined as

L(m) = [l
(m)
1 , l

(m)
2 , · · · , l

(m)
N] ∈ R

Rm−1×N ,

8(m) = [φ
(m)
1 ,φ

(m)
2 , · · · ,φ

(m)
N] ∈ R

d×N ,

R(m) = [r
(m)
1 , r

(m)
2 , · · · , r

(m)
N] ∈ R

Rm×N ,

y = [y1, y2, · · · , yN]
⊤ ∈ R

N ,

(27)

then the objective function of the sub-optimization problem in

Equation 7 can be written as

f (Am, v) = ‖y− (L(m) ⊙8(m) ⊙ R(m))⊤vec(Am)− v1‖22. (28)

Above transformation can be graphically verified by using tensor

network diagram shown in Figure 4b.

Now, the objective function (Equation 28) can be clearly seen as

a standard least squares problem. Let us put βm = [vec(Am)
⊤, v]⊤

and Zm = [(L(m)⊙8(m)⊙R(m))⊤, 1], then the solution is given by

β̂m = (Z⊤mZm)
−1Z⊤my. (29)

Am and v can be updated by replacing with corresponding

entries from β̂m. The squared loss (Equation 7) takes the form

of a quadratic function for each parameter, and the update rule

through sub-optimization is given in closed form, ensuring that the

error always decreases (monotonic nonincrease). Compared with

gradient-based optimization algorithms, which require the careful

tuning of learning rate, ALS can stably reduce the objective function

without any hyperparameters.

In practice for stabilizing matrix computations, we use

β̂
(ǫ)

m = (Z⊤mZm + ǫI)
−1Z⊤my (30)

with small ǫ > 0. This corresponds to adding a Tikhonov

regularization, which adds the sum of squares of the regression

coefficients ǫ||βm||
2
2 as a penalty term to the objective function

(Equation 28).

3.2 Optimization with orthogonalization
and sweep

In the optimization of TNs, there is an issue of scale non-

uniqueness regarding core tensors. For example, for any c 6= 0, we

have:

W =
〈〈

A1, · · · ,Ai, · · · ,Aj, · · · ,AM

〉〉

=
〈〈

A1, · · · , cAi, · · · , c
−1

Aj, · · · ,AM

〉〉

.
(31)

Here, increasing c results in an increase in the value of cAi, while

c−1Aj decreases, but it does not affect the value of the objective

function f (θ). If such scale biases become extreme, numerical

calculations can become unstable.

To address this problem, in the optimization of TNs,

orthogonalization and sweep are combined with ALS [24].

Figure 5 shows the image of the entire algorithm. In this

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

FIGURE 5

Overall sweep process in ALS. The upper half represents a forward sweep, and the lower half represents a backward sweep. Each block consists of

the update of core tensor based on the least squares, orthogonalization by QR decomposition, and contraction of the residual components and the

next core tensor.

paper, we refer to the above algorithm as TNLSR-ALS-QR.

The upper and lower parts are called the forward sweep and

the backward sweep, respectively. The half black and half

white circular objects represent the left-orthogonal or right-

orthogonal tensors.

At the start of the optimization, we assume that all

tensors except A1 are right-orthogonal tensors. In the

forward sweep, we update core tensors in the order of

A1,A2, · · · ,AM−1, and update rules for the m-th core tensor is

given by

(Am, v)← argmin
Am ,v

f (Am, v), (32)

[Q,R] ←QR(mat3(Am)
⊤), (33)

Am ←fold3(Q
⊤), (34)

Am+1 ←fold1(Rmat1(Am+1)), (35)

where QR(mat3(Am)
⊤) represents the QR decomposition of the

input matrix mat3(Am)
⊤ ∈ R

Rm−1d×Rm . The QR decomposition

results in a colum orthogonal matrix Q ∈ R
Rm−1d×Rm and

an upper triangular matrix R ∈ R
Rm×Rm . After the ALS

update, the updated core tensor Am is separated into a left-

orthogonal tensor fold3(Q
⊤) and residual components R by QR

decomposition. The residual components are integrated into the

next core tensor (i.e., Am+1). At the end of the forward sweep,

all core tensors except AM are left-orthogonal. Note that the QR

decomposition in this algorithm does not change the value of the

objective function.

In the backward sweep, we update core tensors in the order of

AM ,AM−1, · · · ,A2, and update rule for the m-th core tensor is

given by

(Am, v)← argmin
Am ,v

f (Am, v), (36)

[Q,R] ←QR(mat1(Am)
⊤), (37)

Am ←fold1(Q
⊤), (38)

Am−1 ←fold3(mat3(Am−1)
⊤R⊤). (39)

After the ALS update, the updated core tensorAm is separated into

a right-orthogonal tensor fold1(Q
⊤) and the residual components

R⊤ by QR decomposition. The residual components are integrated

into the previous core tensor Am−1. At the end of the backward

sweep, all core tensors exceptA1 are right-orthogonal.

3.3 Adaptive rank determination

TT-ranks or bond dimensions Rm are important

hyperparameters to control the capacity of the TN models

and appropriate rank settings are different for different data in

general. In Sections 3.1, 3.2, TT ranks are determined prior to

optimization and fixed until convergence. However, it is difficult

to know the appropriate rank in advance of learning. Hence, we

consider a method to determine the rank adaptively according to

the data while learning. This method is used in TNLSR-GD-SVD

[7], and also in modified ALS for the standard TT decomposition

[24]. In this option, the entire algorithm is almost the same as

TNLSR-GD-SVD but only the update rule for Tm is different.

We update Tm ∈ R
Rm−1×d×d×Rm+1 with the solution of the

suboptimization problem, and the TT rank Rm is determined using

the singular values of mat1,2(Tm). We refer to this algorithm as

TNLSR-ALS-SVD.

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

3.3.1 Update rules for Tm

The objective function in Equation 7 with respect to Tm can be

reorganized as

f (Tm, v) =
∥

∥

∥y− (L(m) ⊙8(m) ⊙8(m+1) ⊙ R(m+1))⊤ vec(Tm)− v1
∥

∥

∥

2

2
.

(40)

Let us put γm = [vec(Tm)
⊤, v]⊤ and Zm,m+1 = [(L(m) ⊙ 8(m) ⊙

8(m+1) ⊙ R(m+1))⊤, 1], then the optimal solution is given by:

γ̂m,m+1 = (Z⊤m,m+1Zm,m+1)
−1Z⊤m,m+1y. (41)

In practice, we use Tikhonov regularization as

γ̂
(ǫ)
m,m+1 = (Z⊤m,m+1Zm,m+1 + ǫI)

−1Z⊤m,m+1y. (42)

3.3.2 Adaptive rank determination with singular
values

The TT-rank Rm is determined by using singular values of

mat1,2(Tm) ∈ R
Rm−1d×dRm+1 as

σ1 ≥ σ2 ≥ · · · ≥ σD (43)

where we denote the maximum rank of mat1,2(Tm) by D =

min(Rm−1d, dRm+1).

One of typical methods to determine the rank is to remove weak

components with a small threshold ε > 0. Hence, the estimated

rank is given by R̂m = max{r | σr ≥ ε}. Another typical method to

determine rank is to apply a threshold 0 < δ ≤ 1 to the cumulative

contribution ratio Cr =
∑r

i=1 σi
∑D

i=1 σi
. In this case, the estimated rank is

given by R̂m = min{r | Cr ≥ δ}.

It should be noted that when the rank is not fixed but is

determined adaptively using truncated SVD, the monotonically

decreasing nature of the objective function in ALS is no longer

guaranteed. This adverse effect can be mitigated by setting ε

to a small value or δ to a large value, but the rank may then

become large, leading to large computational cost and overfitting

to the data. This tradeoff will also be affected by the Tikhonov

regularization.

4 EM algorithm for tensor network
logistic regression

4.1 Likelihood function in logistic
regression

Minimizing the objective function given by the sum of squared

losses can be seen as the maximum likelihood estimation under

the assumption that observations y follow a normal distribution

with expectation ψ(x|θ). However, this is not appropriate from

the perspective of a classification task. In particular, in logistic

regression (binary classification), we assume that observations y

follow a Bernoulli distribution with expectation 1
1+e−ψ(x|θ)

, and the

likelihood function with training samples {xn, yn}n∈[N] we want to

maximize is given by

L(θ) =

N
∏

n=1

(

1

1+ e−ψ(xn|θ)

)yn
(

e−ψ(xn|θ)

1+ e−ψ(xn|θ)

)1−yn

. (44)

Here, we aim for maximizing the likelihood (Equation 44) or

minimizing its negative logarithm (Equation 23) by learning θ

using ALS.

4.2 Majorization-minimization with ALS

In this study, we propose to employmajorization-minimization

(MM) [28] for the optimization of Equation 44. Let us put the

objective function h(θ) = − log L(θ), we introduce auxiliary

function g(θ |θ ′) which holds the conditions

h(θ) ≤ g(θ |θ ′), h(θ) = g(θ |θ). (45)

Using this conditions, the algorithm

θ (t+1) = argmin
θ

g(θ |θ (t)) (46)

ensures the monotonic decrease of h(θ), as

h(θ (t+1)) ≤ g(θ (t+1)|θ (t)) ≤ g(θ (t)|θ (t)) = h(θ (t)). (47)

If the minimizer of the auxiliary function g(θ |θ (t)) is available

in a closed form that is efficiently computable at each step

(Equation 46), the algorithm becomes highly practical.

4.2.1 Derivation of the auxiliary function
Here, we explain how to derive an appropriate auxiliary

function for the logistic regression problem. This can be achieved

by applying the Pólya-Gamma (PG) augmentation [19]. PG

augmentation is a method primarily proposed for Bayesian

statistical modeling in logistic regression. This method introduces

latent variables following the PG distribution, which enables

efficient sampling from the posterior distribution. In addition,

an expectation-maximization algorithm utilizing PG augmentation

was proposed by Scott and Sun [20]. Please note that our study

is not based on a Bayesian framework, but rather we use a PG

augmentation to a maximum likelihood estimation with the MM

framework.

Let us put Ln(θ) the n-th contribution to the likelihood function

L(θ) =
∏

n∈[N] Ln(θ), and we aim to obtain its lower-bound

function

Bn(θ |θ
′) ≤ Ln(θ),Bn(θ |θ) = Ln(θ). (48)

The auxirialy function is given by sum of its negative logarithm as

g(θ |θ ′) =
∑

n∈[N]

− logBn(θ |θ
′). (49)

We can see clearly that Equation 49 holds Equation 45.

Applying theoretical results by Polson [19], the n-th

contribution of the likelihood function can be transformed

and bounded by Jensen’s inequality as

Ln(θ) =

(

1

1+ e−ψ(xn|θ)

)yn
(

e−ψ(xn|θ)

1+ e−ψ(xn|θ)

)1−yn

=
(eψ(xn|θ))

yn

1+ eψ(xn|θ)

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

=
1

2
eκnψ(xn|θ)

∫ ∞

0
e−ωn

ψ(xn |θ)
2

2 p(ωn|1, 0)dωn

=
ρ̂n(θ

′)

2
eκnψ(xn|θ)Eωn∼PG(1,ψ(xn|θ ′))



e
−ωn

(

ψ(xn |θ)
2−ψ(xn |θ

′)2

2

)





≥
ρ̂n(θ

′)

2
eκnψ(xn|θ)e−ω̂n(θ

′) ψ(xn |θ)
2−ψ(xn |θ

′)2

2 = :Bn
(

θ |θ ′
)

,

(50)

where κn : = yn −
1
2 , p(ωn|b, c) with parameter b > 0, c ∈ R is

probability density function of PG distribution, PG(1,0) represents

PG distribution with b = 1 and c = 0, and we define

ω̂n(θ) : = Eωn∼PG(1,ψ(xn|θ))[ωn] =
1

2ψ(xn|θ)
tanh

(

ψ(xn|θ)

2

)

,

(51)

ρ̂n(θ) : = Eωn∼PG(1,0)

{

e−ωn
ψ(xn |θ)

2

2

}

. (52)

Clearly, we can see Bn(θ |θ) = Ln(θ), and it satisfies the conditions

in Equation 48.

By taking the negative logarithm of Bn, we obtain

− logBn(θ |θ
(t)) =

1

2
ω̂n(θ

(t))

(

ψ(xn|θ)−
κn

ω̂n(θ (t))

)2

+ const,

(53)

and the overall auxiliary function g(θ |θ (t)) is given as the form of

weighted least squares:

g(θ |θ (t)) =
1

2

∑

n∈[N]

ω̂n(θ
(t))

(

ψ(xn|θ)−
κn

ω̂n(θ (t))

)2

+ C, (54)

where C is a constant term that does not contribute to the

optimization. Lastly, we can see that it is an iterative algorithm

of expectation maximization (EM) in which the expectation of

the latent variable ω̂n(θ
(t)) is computed based on the current

coefficient values θ (t) by Equation 51, and the resulting ω̂n(θ
(t)) is

used as a weight coefficient to minimize the weighted least squares

(Equation 54).

4.2.2 EM-ALS algorithm
From Equation 46 and Equation 54, the EM algorithm can be

obtained as

ω̂(t)
n =

1

2ψ(xn|θ (t))
tanh

(

ψ(xn|θ
(t))

2

)

for all n ∈ [N], (55)

θ (t+1) = argmin
θ

∑

n∈[N]

ω̂(t)
n

(

ψ(xn|θ)−
κn

ω̂
(t)
n

)2

, (56)

where updating latent variable ω̂
(t)
n is E-step, and updating

coefficients θ (t+1) is M-step.

We employ the ALS update for the M-step. Objective function

of the sub-problem (Equation 56) with respect to (Am, v) can be

transformed as

g(Am, v|θ
(t)) = ‖�

1
2
t (κ ⊘ ωt)−�

1
2
t (L

(m) ⊙8(m) ⊙ R(m))⊤vec(Am)

+v�
1
2
t 1‖

2
2, (57)

1: Initialize θ = {A1,A2,...,AM, υ}

2: repeat

3: (Forward Sweep)

4: for m = 1,2,...,M− 1 do

5: Calculate ω from the current θ;

6: (Am,υ)← argmin(Am,υ)
g(Am, υ|θ);

7: Orthogonalize Am by QR decomposition and

integrate upper triangular matrix into

Am+1;

8: Overwrite θ = {A1,A2,...,AM, υ} with the

latest parameters;

9: end for

10: (Backward Sweep)

11: for m = M,M− 1,...,2 do

12: Calculate ω from the current θ;

13: (Am, υ)← argmin(Am,υ)
g(Am, υ|θ);

14: Orthogonalize Am by QR decomposition and

integrate the upper triangular matrix into

Am−1;

15: Overwrite θ = {A1,A2,...,AM,υ} with the

latest parameters;

16: end for

17: until Convergence

Algorithm 1. TNLR-EMALS-QR: EM-ALS algorithm for TN logistic

regression.

where we put �t = diag(ω̂
(t)
1 , ω̂

(t)
2 , ..., ω̂

(t)
N) ∈ R

N×N , ωt =

[ω̂
(t)
1 , ω̂

(t)
2 , ..., ω̂

(t)
N]⊤ ∈ R

N , κ = [κ1, κ2, ..., κN]
⊤ ∈ R

N , and ⊘

stands for entry-wise division. This is almost the same form as

Equation 28, and the minimizer is given in closed form as

β̂m = (Z⊤m�tZm)
−1Z⊤mκ . (58)

Then θ (t+1) can be updated by replacing the appropriate entries

with β̂m. In practice, we use

β̂
(ǫ)

m = (Z⊤m�tZm + ǫI)
−1Z⊤mκ (59)

with small ǫ > 0 for stable matrix computation.

The overall algorithm is shown in Algorithm 1. We refer to

the proposed algorithm as TNLR-EMALS-QR. This algorithm is

structured by combining the sweep with QR and EM-ALS, where

the parameter θ is divided into M blocks, orthogonalization using

QR decomposition at each update, forward sweep and backward

sweep. Optionally, it is possible to introduce an adaptive rank

algorithm in a similar way to TNLSR-ALS-SVD. We call this

TNLR-EMALS-SVD.

4.3 Extension to multi-class classification

4.3.1 Design of TN models
This section discusses how to extend the TN model for multi-

class classification. Thus, let us consider a problem to obtain a

function: ψ(·|θ) :RM → R
K which satisfies

y ≃ a ◦ ψ(x|θ), (60)

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

FIGURE 6

Image of a multi-class classification model with TN. Additional mode of length K representing the number of classes is with the right-end core tensor

AM. The contraction with 8(x) results in a K-dimensional vector. The logistic loss is calculated for each output dimension.

where x ∈ R
M represents pattern, y ∈ {0, 1}K represents its one-hot

encoded label, and a :R
K → [0, 1]K is some non-linear activation

function.

A naive choice of activation function for multi-class

classification is softmax, and cross entropy loss is minimized

for learning θ . In this case, gradient-based optimization is possible,

but tuning the learning rate is difficult and the convergence is

inefficient. Here, PG augmentation can be applied to the above

problem setting [20], but this is not a good method for the

TN model. The PG augmentation for the multi-class problem

proposed by Scott and Sun [20] requires that each channel of output

ψ(x|θ) be calculated from separated independent coefficients:

ψ(x|θ1, θ2, ..., θK) =
[

ψ(x|θ1) ψ(x|θ2) · · · ψ(x|θK)
]⊤

. This

means learning K TN models separately, which is not practical.

In this study, we propose a more practical method for learning

single TN model in multi-class classification. An overview of the

proposed method is shown in Figure 6. In the proposed method,

similar to Stoudenmire’s TNmodel [7], a mode of length K is added

to only one core tensor in the TT decomposition. This is much

easier than constructing K TT decompositions. The TN model for

multi-class classification is given by

ψ(x|θ) = 〈〈A1,A2, ...,AM〉〉 ×8(x)+ v ∈ R
K , (61)

where× stands for the corresponding tensor contraction operation

and θ = (A1,A2, ...,AM , v). Note that 〈〈A1,A2, ...,AM〉〉 × 8(x)

outputs a K-dimensional vector and bias v is also a K-dimensional

vector.

Furthermore, we employ entry-wise logistic sigmoid for

activation function:

a(z) =













σ (z1)

σ (z2)
...

σ (zK)













(62)

for z = [z1, z2, ..., zK] ∈ R
K , where σ (z) : = 1

1+e−z
is logistic

sigmoid function. Coefficients θ is learned with training samples

{xn, yn}n∈[N] by minimizing sum of logistic loss for all channels as

∑

n∈[N]

∑

k∈[K]

−yk,n log

[

1

1+ e−ψk(xn|θ)

]

− (1− yk,n) log

[

e−ψk(xn|θ)

1+ e−ψk(xn|θ)

]

, (63)

where yk,n stands for the k-th entry of yn and ψk(xn|θ) is the k-th

output ofψ(xn|θ). Since Equation 63 is the sum of logistic losses for

individual K classes, the PG augmentation discussed in Section 4

can be applied directly to obtain its auxiliary function.

The approach using the multichannel logistic function can be

interpreted as a model where each channel independently generates

either 0 or 1. In this approach, it is assumed that each label

yk,n (k-th channel of yn) follows a Bernoulli distribution with

expectation ψk(xn|θ) independently. Consequently, the label can

contain multiple ones in a vector under the assumption, such

as [1, 0, 0, 1, 0, · · ·], making it suitable for applications beyond

classification. Specifically, this approach can also be applied to tasks

in which independent attributes are assigned to each channel of the

data. On the other hand, this model has an important limitation:

Since the outputs are independent across channels, it does not

guarantee consistency, such as ensuring that the sum of output

values equals 1. Therefore, careful consideration is required when

interpreting them as probability values.

4.3.2 EM-ALS for learning multi-class TN
classifiers

From Equation 63, auxiliary function can be directly derived by

applying PG augmentation to individual k-th channels one-by-one.

This results in the following EM algorithm:

ω̂
(t)
k,n
=

1

2ψk(xn|θ (t))
tanh

(

ψk(xn|θ
(t))

2

)

for all n ∈ [N], k ∈ [K],

(64)

θ (t+1) = argmin
θ

∑

n∈[N]

∑

k∈[K]

ω̂
(t)
k,n



ψk(xn|θ)−
κk,n

ω̂
(t)
k,n





2

, (65)

where κk,n : = yk,n −
1
2 .

Next, we reorganize the objective function with respect to Am

and v as sub-optimization parameters. Here, we assume that the

additional mode of length K is with M-th core tensor AM . Then

the size of AM is (RM−1, d,K). The term of tensor contraction in

ψ(xn|θ) can be transformed as

〈〈A1,A2, ...,AM〉〉 ×8(xn) =Am × (l(m)
n ◦ φ

(m)
n ◦ R

(m)
n)

= (l(m)
n ⊗ φ

(m)
n ⊗ R(m)

n)⊤vec(Am),

(66)

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

FIGURE 7

Multi-class TN model of K classes in tensor network diagrams. A

class mode of length K is added to the right-end core tensor. The

class mode remains in R(m) after contraction.

where l
(m)
n ∈ R

Rm−1 , φ(m)
n ∈ R

d, and R
(m)
n ∈ R

Rm×K are results

of contraction as shown in Figure 7. Note that R(m) ∈ R
Rm×K is a

matrix which is different from a case of binary classification. The

entire objective function of the sub-optimization problem can be

expressed as

g(Am, v|θ
(t)) =

∥

∥

∥

∥

�
1
2
t (κ ⊘ ωt)−�

1
2
t Bm vec(Am)−�

1
2
t Kv

∥

∥

∥

∥

2

2

,

(67)

where

κ = vec













κ1,1 κ2,2 · · · κ1,N

κ2,1 κ2,2 · · · κ2,N
...

...
. . .

...

κK,1 κK,2 · · · κK,N













∈ R
KN , (68)

ωt = vec













ω̂
(t)
1,1 ω̂

(t)
2,2 · · · ω̂

(t)
1,N

ω̂
(t)
2,1 ω̂

(t)
2,2 · · · ω̂

(t)
2,N

...
...

. . .
...

ω̂
(t)
K,1 ω̂

(t)
K,2 · · · ω̂

(t)
K,N













∈ R
KN , (69)

�t = diag(ωt) ∈ R
KN×KN , (70)

Bm =



















(

l
(m)
1 ⊗ φ

(m)
1 ⊗ R

(m)
1

)⊤

(

l
(m)
2 ⊗ φ

(m)
2 ⊗ R

(m)
2

)⊤

...
(

l
(m)
N ⊗ φ

(m)
N ⊗ R

(m)
N

)⊤



















∈ R
KN×Rm−1dRm , (71)

K =













IK×K
IK×K
...

IK×K













∈ R
KN×K . (72)

Defining the optimization parameter as βm = [vec(Am)
⊤, v⊤]⊤,

the optimal solution for βm in the auxiliary function (Equation 67)

is given by

β̂m = (Z⊤m�tZm)
−1Z⊤mκ , (73)

where Zm = [Bm,K]. For the same reason as in the binary

classification case, Tikhonov regularization is applied as

β̂
(ǫ)

m = (Z⊤m�tZm + ǫI)
−1Z⊤mκ . (74)

4.4 Computational complexity

Here we show the computational complexity of the main

processes in the tensor networkmodel. First, the standard inference

is given by the inner product of two low-rank tensors and is

O(dR2M) whereM is the dimension of x, d is the local dimension,

R is the rank (assuming Rm = R for all m) and K is the number of

classes (assuming K < R).

In learning TN models, the computational complexity for

one iteration of GD-QR is O(dR2MNK). In the case of GD-

SVD, it is O(dR2(MNK + d2R)) because it requires singular value

decomposition of the matrix of size (dR, dR). The computational

complexity of ALS-QR is O(dR2(MNK + d2R4)) because it is

necessary to solve a normal equation of dimension dR2. In the same

way, the computational complexity of ALS-SVD isO(dR2(MNK +

d5R4)) because it is necessary to solve a normal equation of

dimension d2R2.

Note that the difference between squared loss and logistic loss

makes no difference in computational complexity, just a few extra

computations in the case of logistic loss.

5 Experimental results of multi-class
classification

In this experiment, we evaluate the behaviors of the proposed

algorithm and the performance of the learned classifiers in the

classification task of MNIST. The default settings for the TNmodel

are as follows: The original 28 × 28 images were downsampled

to 7 × 7 images for the comparison, and the pixel values were

normalized to the range [0,1]. The images were vectorized as 49-

dimensional vectors x ∈ [0, 1]49, and these are inputs into the

TN models. The local mapping was based on Equation 4. Let the

maximum TT-rank be R and use this as a hyperparameter of the

TN model. We compared different optimization algorithms for

learning the TN model as shown in Table 1. The learning rates for

the descent of the gradient wereµ = 10−4. The tradeoff parameters

of the Tikhonov regularization were ǫ = 10−5.

5.1 Optimization behavior

Figure 8 shows the comparison of the optimization behaviors

for various learning algorithms for the binary classification of

MNIST of even and odd numbers. TT-rank is fixed as R = 8 for all

algorithms, and the truncated SVD truncates with R̂ = 8 without

adaptive rank determination. For the gradient descent, the learning

rates were carefully tuned for better convergence. For reference, the

results for two different learning rates are shown in Figure 8. 50

sweep results are shown for gradient-based methods, and 10 sweep

results are shown for ALS-based methods.

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

TABLE 1 Compared algorithms.

Algorithm Loss function Update rule Orthogonalization

TNLSR-GD-SVD [7] Squared loss Gradient SVD for Tm

TNLSR-GD-QR Squared loss Gradient QR forAm

TNLSR-ALS-SVD (proposed) Squared loss ALS SVD for Tm

TNLSR-ALS-QR (proposed) Squared loss ALS QR forAm

TNLR-GD-SVD Logistic loss Gradient SVD for Tm

TNLR-GD-QR Logistic loss Gradient QR forAm

TNLR-EMALS-SVD (proposed) Logistic loss EM-ALS SVD for Tm

TNLR-EMALS-QR (proposed) Logistic loss EM-ALS QR forAm

FIGURE 8

Optimization behaviors of various algorithms for learning TN models. Fifty sweep results are shown for gradient-based methods, and 10 sweep

results are shown for ALS-based methods.

In both the squared loss and logistic loss cases, TNLSR-ALS-

QR and TNLR-EMALS-QR converged faster and reached better

optimal solutions compared to gradient descent. For gradient

methods, SVD tends to achieve better final objective values, while

for ALS, QR tends to achieve better final objective values. The

squared/logistic loss achieved by the proposed methods after

10 sweeps was 0.0133/4.12e3 for ALS-QR and 0.0170/4.67e3 for

ALS-SVD. In contrast, the squared/logistic loss achieved by the

gradient method after 50 sweeps was 0.0511/2.96e4 for GD-QR and

0.0360/1.69e4 for GD-SVD. The proposed method achieves smaller

loss values with fewer sweeps for both loss functions. It can also

be seen that the objective function is decreasing monotonically.

Gradient descent with a high learning rate will lead to failure,

while gradient descent with a low learning rate will converge

slowly. Using the sweep algorithm with truncated SVD tends to

make optimization unstable (peaks are mixed into the convergence

curve).

Table 2 shows average computational time per iteration for

various ranks R. The measurements were performed on a

workstation with an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

TABLE 2 Average computational time [sec] per iteration for various

ranks R.

R = 8 R = 16 R = 32 R = 64

TNLSR-GD-SVD 0.4276 1.7191 3.9143 7.2933

TNLSR-GD-QR 0.4208 1.7140 3.8246 6.7421

TNLSR-ALS-SVD 0.5203 2.3020 9.8796 88.8213

TNLSR-ALS-QR 0.4012 1.6241 5.3361 25.9800

TNLR-GD-SVD 0.5190 1.8093 3.8556 7.2808

TNLR-GD-QR 0.5125 1.7891 3.8474 6.6590

TNLR-EMALS-SVD 0.6969 2.9031 11.0452 82.5117

TNLR-EMALS-QR 0.6126 2.2878 6.8102 28.3058

with 128 GB memory. In general, we can see that ALS has a higher

computational cost than GD. QR-type algorithm is much better

than the SVD-type algorithm in computational cost for ALS.

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

FIGURE 9

Classification accuracy of MNIST.

TABLE 3 Comparison of classification accuracy.

TNLSR-ALS-QR TNLR-ALS-QR TNLR-GD-QR TNLR-GD-SVD

R = 2 40.14% 59.33% 11.35% 28.24%

R = 4 49.99% 85.71% 27.38% 36.08%

R = 8 92.98% 95.49% 53.50% 66.48%

R = 16 96.86% 97.34% 73.41% 82.76%

R = 32 97.59% 97.53% 84.33% 88.31%

R = 64 97.71% 97.71% 88.51% 90.36%

R = 128 97.13% 97.62% 90.23% 91.23%

The highest accuracy values are highlighted in bold.

5.2 Classification accuracy

The classification accuracy on the MNIST dataset, tested by

varying the maximum TT-rank R to 128, is shown in Figure 9

and Table 3. Number of sweeps were 10. For training accuracy,

the proposed TNLR-EMALS-QR outperformed all algorithms for

all R. This clearly demonstrates that the proposed method works

well as an optimization algorithm. It can also be confirmed that

minimizing logistic loss is more appropriate than minimizing

squared loss in learning classifiers. For test accuracy, the proposed

TNLR-EMALS-QR outperformed all algorithms for almost all R.

Although the maximum test accuracy is the same for TNLR-

EMALS-QR and TNLSR-ALS-QR, we can see that TNLSR-ALS-

QR has a stronger tendency to overfit as R increases. These results

demonstrate the importance of enabling the optimization of logistic

losses.

5.3 Hyperparameter sensitivity

5.3.1 Increasing the local dimension d

In this section, we present experimental results for

different local dimensions. We used a local mapping

with d > 2, which is proposed by Stoudenmire and

Schwab [7], as

φs(xj) =

√

(

d − 1

s− 1

)

(

cos
(π

2
xj

))d−s (

sin
(π

2
xj

))s−1
, (75)

where s represents the index of entries of φ(xj). It matches

Equation 4 with d = 2. Using this function, the multi-class

classification of MNIST was performed by changing the local

dimension d to 2, 4, 8, and 16.

The results of training and test accuracy are shown in Figure 10.

In both squared and logistic losses, high classification performance

was observed for d = 2, d = 4, and d = 8. Training

and test accuracy both dropped significantly when d = 16.

In general, a larger d should increase the expressive power of

the TN model. However, the observed drop in training accuracy

suggests potential optimization difficulties. For larger d, it may

lead to being the landscape of the objective function complex

and to stuck poor local minima. Considering the weight of the

model and the cost of training, d = 2 seems sufficient for

this task.

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

FIGURE 10

Classification accuracies for di�erent local dimensions.

5.3.2 Adaptive rank determination
Here we demonstrate TNLR-EMALS-SVD with an option of

adaptive rank determination using the cumulative contribution rate

Cr defined in Section 3.3.2. The initial rank was set to R = 8, and

the adaptive rank determination was made in the range of 2 ≤

R ≤ 100. The experiments were carried out with two cumulative

contribution rate thresholds: δ = 0.9 and δ = 0.99.

In the case of δ = 0.9, the classification accuracy of the learned

classifier was 70.95%. The minimum, median and maximum TT

ranks finally obtained were 2, 3, and 7, respectively. Oscillations of

the optimization curve are observed. It seems that the threshold was

too small.

In the case of δ = 0.99, the classification accuracy of the learned

classifier was 96.74%. The minimum, median and maximum

TT ranks finally obtained were 2, 21.5, and 100, respectively.

The objective function was stably decreased without oscillations.

Although it does not achieve the highest accuracy of the fixed rank

algorithm, it seems to be still an effective option considering the

burden of selecting hyperparameters.

5.3.3 Input dimensions
Although the input dimensionality is not a hyperparameter

for the model, it can have a significant impact on the behavior

of TN models given the vanishing gradient problem. Here we

investigate this by experimenting with different downsampling

ratios on MNIST images. Specifically, the input size was varied

from a 3 × 3 pixel (9-dimensional vector) to a 14 × 14 pixel (196-

dimensional vector), with the pixel size changing by 1 pixel. The

TT ranks were set at R = 8, and the local dimension was set

at d = 2.

The results are shown in Figure 11. It can be seen that

both training and test accuracy increases as the number of

input dimensions increases, and then decreases as the number of

dimensions increases further. It is intuitive that accuracy improves

as input dimensions increase, but the decrease in accuracy is

not. Since accuracy decreases in both training and testing, this

phenomenon is not due to overfitting, but rather is highly likely

FIGURE 11

Classification accuracies for di�erent input dimensions.

that learning is not going well. One of the causes of this may

be gradient vanishing. The level of accuracy drop is significant

in the gradient method, but it can be seen that the level of

accuracy drop is reduced in the proposed algorithms based

on ALS.

6 Conclusion

In this study, we propose the use of ALS for supervised learning

using TN models rather than gradient descent. We show that

squared loss can be directly minimized by ALS and logistic loss can

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

be minimized by EM-ALS with PG augmentation. In experiments,

the effectiveness of the proposed algorithms is demonstrated in the

classification task of MNIST. For the properties of MM and ALS,

the monotonic decrease of the objective function is guaranteed

in the proposed algorithms, and convergence is much faster than

gradient descent.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://pytorch.org/vision/main/generated/

torchvision.datasets.MNIST.html.

Author contributions

NY: Writing – review & editing, Writing – original draft. HH:

Writing – review & editing. TY: Writing – original draft, Writing –

review & editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was partially

supported by the Japan Society for the Promotion of Science (JSPS)

KAKENHI under Grant 23K28109.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Gen AI was used in the creation

of this manuscript. The authors used Gen AI for only English

proofreading.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Cichocki A, Lee N, Oseledets I, Phan AH, Zhao Q, Mandic DP. Tensor
networks for dimensionality reduction and large-scale optimization: part 1 low-
rank tensor decompositions. Found Trends Mach Learn. (2016) 9:249–429.
doi: 10.1561/2200000059

2. Cichocki A, Phan AH, Zhao Q, Lee N, Oseledets I, Sugiyama M, et al.
Tensor networks for dimensionality reduction and large-scale optimization: part 2
applications and future perspectives. Found Trends Mach Learn. (2017) 9:431–673.
doi: 10.1561/9781680832778

3. Fernández YN, Ritter MK, Jeannin M, Li JW, Kloss T, Louvet T, et al. Learning
tensor networks with tensor cross interpolation: new algorithms and libraries. arXiv
preprint arXiv:240702454 (2024).

4. Yokota T. Very basics of tensors with graphical notations: unfolding, calculations,
and decompositions. arXiv preprint arXiv:241116094 (2024).

5. Oseledets IV. Tensor-train decomposition. SIAM J Sci Comput. (2011)
33:2295–317. doi: 10.1137/090752286

6. Zhao Q, Zhou G, Xie S, Zhang L, Cichocki A. Tensor ring decomposition. arXiv
preprint arXiv:160605535 (2016).

7. Stoudenmire E, Schwab DJ. Supervised learning with tensor networks. In:
Advances in Neural Information Processing Systems (2016).

8. Amiridi M, Kargas N, Sidiropoulos ND. Low-rank characteristic tensor
density estimation part I: foundations. IEEE Trans Signal Proc. (2022) 70:2654–68.
doi: 10.1109/TSP.2022.3175608

9. Amiridi M, Kargas N, Sidiropoulos ND. Low-rank characteristic tensor density
estimation part II: compression and latent density estimation. IEEE Trans Signal Proc.
(2022) 70:2669–80. doi: 10.1109/TSP.2022.3158422

10. Sengupta R, Adhikary S, Oseledets I, Biamonte J. Tensor networks in
machine learning. Eur Mathem Soc Magaz. (2022) 126:4–12. doi: 10.4171/
mag/101

11. Fields C, Fabrocini F, Friston K, Glazebrook JF, Hazan H, Levin M, et al.
Control flow in active inference systems-part II: tensor networks as general models
of control flow. IEEE Trans Molec Biol Multi-Scale Commun. (2023) 9:246–56.
doi: 10.1109/TMBMC.2023.3272158

12. Memmel E, Menzen C, Schuurmans J, Wesel F, Batselier K. Position: tensor
networks are a valuable asset for green AI. In: Proceedings of ICML (2024).

13. Ye J, Janardan R, Li Q. Two-dimensional linear discriminant analysis. In:
Advances in Neural Information Processing Systems (2004).

14. Tao D, Li X, Wu X, Maybank SJ. General tensor discriminant analysis and gabor
features for gait recognition. IEEE Trans Pattern Anal Mach Intell. (2007) 29:1700–15.
doi: 10.1109/TPAMI.2007.1096

15. Lebedev V, Ganin Y, Rakhuba M, Oseledets I, Lempitsky V. Speeding-up
convolutional neural networks using fine-tuned CP-decomposition. arXiv preprint
arXiv:14126553 (2014).

16. Novikov A, Podoprikhin D, Osokin A, Vetrov DP. Tensorizing neural networks.
In: Proceedings of NeurlPS (2015). p. 28.

17. Hu EJ, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, et al. LoRA: low-rank
adaptation of large language models. In: Proceedings of ICLR (2022).

18. Bishop CM, Nasrabadi NM. Pattern Recognition and Machine Learning. Cham:
Springer. (2006).

19. Polson NG, Scott JG, Windle J. Bayesian inference for logistic models
using Pólya-Gamma latent variables. J Am Stat Assoc. (2013) 108:1339–49.
doi: 10.1080/01621459.2013.829001

20. Scott JG, Sun L. Expectation-maximization for logistic regression. arXiv preprint
arXiv:13060040 (2013).

21. Carroll JD, Chang JJ. Analysis of individual differences in multidimensional
scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika.
(1970) 35:283–319. doi: 10.1007/BF02310791

22. Harshman RA. Foundations of the PARAFAC procedure: Models and conditions
for an “explanatory” multimodal factor analysis. UCLA Working Paper Phonet. (1970)
16:1–84.

23. Kroonenberg PM, De Leeuw J. Principal component analysis of three-mode
data by means of alternating least squares algorithms. Psychometrika. (1980) 45:69–97.
doi: 10.1007/BF02293599

24. Holtz S, Rohwedder T, Schneider R. The alternating linear scheme for tensor
optimization in the tensor train format. SIAM Sci Comput. (2012) 34:A683–713.
doi: 10.1137/100818893

25. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.
(2009) 51:455–500. doi: 10.1137/07070111X

Frontiers in AppliedMathematics and Statistics 15 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html
https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html
https://doi.org/10.1561/2200000059
https://doi.org/10.1561/9781680832778
https://doi.org/10.1137/090752286
https://doi.org/10.1109/TSP.2022.3175608
https://doi.org/10.1109/TSP.2022.3158422
https://doi.org/10.4171/mag/101
https://doi.org/10.1109/TMBMC.2023.3272158
https://doi.org/10.1109/TPAMI.2007.1096
https://doi.org/10.1080/01621459.2013.829001
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02293599
https://doi.org/10.1137/100818893
https://doi.org/10.1137/07070111X
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Yamauchi et al. 10.3389/fams.2025.1593680

26. Cichocki A, Mandic D, De Lathauwer L, Zhou G, Zhao Q, Caiafa C,
et al. Tensor decompositions for signal processing applications: from two-way
to multiway component analysis. IEEE Signal Process Mag. (2015) 32:145–63.
doi: 10.1109/MSP.2013.2297439

27. Kiers HA. Majorization as a tool for optimizing a class of matrix functions.
Psychometrika. (1990) 55:417–28. doi: 10.1007/BF02294758

28. Sun Y, Babu P, Palomar DP. Majorization-minimization algorithms
in signal processing, communications, and machine learning. IEEE

Trans Signal Proc. (2016) 65:794–816. doi: 10.1109/TSP.2016.260
1299

29. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from
incomplete data via the EM algorithm. J R Stat Soc. (1977) 39:1–22.
doi: 10.1111/j.2517-6161.1977.tb01600.x

30. Tomasi G, Bro R. PARAFAC and missing values. Chemometr
Intell Labor Syst. (2005) 75:163–80. doi: 10.1016/j.chemolab.2004.
07.003

Frontiers in AppliedMathematics and Statistics 16 frontiersin.org

https://doi.org/10.3389/fams.2025.1593680
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1007/BF02294758
https://doi.org/10.1109/TSP.2016.2601299
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1016/j.chemolab.2004.07.003
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Expectation-maximization alternating least squares for tensor network logistic regression
	1 Introduction
	1.1 Notations

	2 Tensor network model for supervised learning
	2.1 Tensor network model
	2.2 Gradient-based algorithm for tensor network least squares regression
	2.3 Motivation

	3 Alternating least squares for tensor network least squares regression
	3.1 Subproblems and their solutions
	3.2 Optimization with orthogonalization and sweep
	3.3 Adaptive rank determination
	3.3.1 Update rules for Tm
	3.3.2 Adaptive rank determination with singular values

	4 EM algorithm for tensor network logistic regression
	4.1 Likelihood function in logistic regression
	4.2 Majorization-minimization with ALS
	4.2.1 Derivation of the auxiliary function
	4.2.2 EM-ALS algorithm

	4.3 Extension to multi-class classification
	4.3.1 Design of TN models
	4.3.2 EM-ALS for learning multi-class TN classifiers

	4.4 Computational complexity

	5 Experimental results of multi-class classification
	5.1 Optimization behavior
	5.2 Classification accuracy
	5.3 Hyperparameter sensitivity
	5.3.1 Increasing the local dimension d
	5.3.2 Adaptive rank determination
	5.3.3 Input dimensions

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

