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Introduction: High-performance computing (HPC) has been a pivotal driving 
force of technological development.

Methods: This study evaluates the environmental impact of HPC by analyzing 
energy consumption and carbon emissions across major global centers. 
We analyzed data from the top 500 HPC centers, using linear regression to 
fill in missing values for max power due to a high Pearson correlation. The 
representativeness of the TOP500 dataset was validated via distribution fitting 
and Monte Carlo simulations, confirming that it captures over 99.8% of high-
end global HPC power consumption.

Results: (1) Applying a logistic model to relate the average utilization rate of the 
four major countries to the ratio of HPC market size to the number of centers 
(R2 = 0.775). Global annual energy consumption ranges from 2.3–4.2 billion 
kW·h at average utilization, with the US accounting for 1.68 billion kW·h. (2) 
Carbon footprint calculations using energy mix data (2016–2022) incorporated 
an Environmental Impact Index (EII) to weigh ecological sensitivity, linking CO2 
emissions to a 0.5% GDP loss per trillion tons, totaling $2.18 million in economic 
losses. (3) Forecasting models projected 2030 emissions at 1.071 × 1020 kg 
under average utilization with sobol analysis demonstrating marginal energy 
consumption fluctuations due to uncertainty. (4) Renewable energy adoption 
analysis showed strong inverse correlations between clean energy use and 
emissions in the US (R2 = 0.904), China (R2 = 0.99), and Germany (R2 = 0.779), 
while quantifying air pollutants like SO2, NOx and PM10. (5) The combined 
differential equation and regression models captured the dynamic evolution 
of energy efficiency and its impact on energy consumption, revealing through 
2025 projections that policy incentives can substantially enhance energy 
efficiency (from 21.22 to 30.90) while reducing energy consumption (from 
0.3449 to 0.3278).

Discussion: This study underscores the urgency of balancing HPC growth with 
sustainability through renewable integration and operational efficiency.
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1 Introduction

The rapid advancement of computer technologies has propelled 
high-performance computing (HPC) to the forefront of technological 
innovation. HPC systems have driven breakthroughs in scientific 
research, machine learning, and simulation modeling by processing 
massive datasets at unprecedented speeds (1). However, these 
computational capabilities incur significant environmental costs, 
particularly through energy-intensive operations.

The escalating emissions of greenhouse gases have emerged as a 
crucial challenge in contemporary world, where climate change mitigation 
dominates global discourse (2). The generation of electricity often 
correlates with greenhouse gas emission, especially when relying on fossil 
fuels. This certainly leads to vast amount of CO2 production. The 
demanding nature of HPC capabilities often imposes extra burden on the 
local power grids, resulting in a less environmentally friendly reliance on 
non-renewable energy sources. Furthermore, the environmental concern 
brought by HPC is far more than carbon emission. HPC poses various 
environmental challenges beyond energy consumption (3), including 
significant water usage for cooling, electronic waste generation, habitat 
destruction from rare earth material extraction, land use concerns, air 
pollution from fossil fuel power plants, risks from cooling system 
chemicals, and socioeconomic disparities in energy access due to large 
data centers and resource mining.

As HPC emerges as a cornerstone of global technological 
advancement, reconciling its indispensable role with environmental 
stewardship becomes imperative. Indeed, we  ought to explore 
sustainable solutions to mitigate the impact of high-powered 
computing on the planet. Researchers and policymakers are 
increasingly focusing on understanding and quantifying the 
environmental footprint of HPC, as well as developing strategies to 
promote energy efficiency, renewable energy adoption, and 
responsible waste management practices within the industry.

In this study, we aim to achieve the following goals: (1) Qualify global 
HPC energy demand by analyzing annual consumption under both 
average and peak utilization scenarios. (2) Develop a carbon emission 
model that evaluates HPC’s carbon footprint to reflect real-world 
operational variability. (3) Project future impacts by integrating HPC 
growth trajectories, sectoral energy demands, and evolving energy mixes, 
establishing 2030 emission scenarios. (4) Develop a renewable energy 
adoption model to assess emission reduction potential and challenges in 
transitioning to 100% renewables, while exploring synergies with other 
environmental factors like energy efficiency. (5) Provide a series of feasible 
solutions, including both technical and policy solutions that can solve 
alleviate HPC’s impact on the environment.

2 Preliminaries

2.1 Assumptions

2.1.1 Assumption 1
The TOP500 list comprehensively represents global 

HPC infrastructure.

2.1.1.1 Approach: distribution fitting and 
representativeness estimation of TOP500 power data

To evaluate this Assumption, power consumption data from the 2016 
HPC TOP500 list were processed. Missing values were imputed using 

least squares fitting. Subsequently, the Kolmogorov–Smirnov (K-S) test 
was employed to assess whether the sample data followed a specific 
theoretical distribution. Four candidate distributions were considered: 
lognormal, gamma, Weibull-min, and normal. The optimal distribution 
was selected based on the smallest K-S statistic and the largest p-value.

To further assess the goodness of fit, quantile–quantile (Q-Q) plots 
were generated by comparing the sample quantiles to those of the 
candidate distributions. The closer the plotted points lay along the 
reference line, the better the fit. Once the best-fitting distribution was 
identified, its parameters were used to define a probability density 
function (F(P)), with the corresponding cumulative distribution 
function given by:

 ( ) ( )= ≤ iF P P P  (1)

Where F(P) represented the probability that the power 
consumption Pi of a system was less than or equal to a given value 
P. Let Pmin denoted the minimum power consumption observed in the 
TOP500 dataset. The TOP500 list then corresponded to those systems 
with power consumption greater than or equal to Pmin, and the 
proportion r was defined as:

 ( ) ( )µ σ 2log ~ ,x
 

(2)

Where N was the total number of HPC systems worldwide. By 
analyzing the value of r, one can determine whether the TOP500 
dataset was representative of the broader global HPC power 
consumption landscape.

2.1.1.2 Findings: results of distribution testing and 
parameter estimation

This study calculated the K-S statistics and p-values for each of the 
four candidate distributions. Among them, the lognormal distribution 
yielded the smallest K-S statistic (0.0575), indicating the closest match 
to the empirical data. Its p-value was 0.087, which exceeds the 
conventional significance threshold of 0.05, suggesting insufficient 
evidence to reject the null hypothesis that the data follow a lognormal 
distribution. Therefore, this distribution curve was selected for fitting.

Meanwhile, this conclusion was further supported by the Q-Q 
plots shown in Figure 1A and the distribution curve in Figure 1B, 
which visually confirm the appropriateness of the lognormal fit.

The fitted parameters of the lognormal distribution were: μ = 53.7102, 
σ = 1.1294, s = 723.6495. Here, μ0 denoted the location (shift) parameter, 
σ was the shape parameter (standard deviation in the logarithmic space), 
and s was the scale parameter, typically represented as s = emu.

According to the original dataset, the minimum power 
consumption in the TOP500 list was 77 kW. Based on the fitted 
cumulative distribution function, the corresponding value of 
r = 0.0012, indicating that the TOP500 represents approximately the 
top  0.12% in terms of energy consumption. This implies that the 
TOP500 dataset effectively captures the power consumption 
characteristics of the most energy-intensive HPC systems worldwide.

2.1.1.3 Justification: distributional characteristics and 
modeling implications

The findings suggested that the lognormal distribution was a 
statistically and conceptually appropriate model for characterizing HPC 

https://doi.org/10.3389/fams.2025.1595365
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Yu et al. 10.3389/fams.2025.1595365

Frontiers in Applied Mathematics and Statistics 03 frontiersin.org

power consumption. From a physical standpoint, the power consumption 
of HPC systems is mainly shaped by several key factors, including 
hardware configuration (such as the number of CPUs or GPUs and the 
size of memory), architectural efficiency, system utilization, and cooling 
technology. These factors collectively result in a distribution of energy 
consumption that displays several distinct features. First, the distribution 
is clearly right-skewed: the majority of HPC systems operate in the low 
to moderate power range, while a small number of machines, consume 
exceptionally high levels of energy. Second, energy consumption is 
inherently non-negative, as it cannot fall below zero. Third, the power 
values span a broad range, from several tens of kilowatts to multiple 
megawatts, indicating a significant degree of variation across systems. 
Given these characteristics, it is appropriate to consider statistical models 
that can capture long-tailed, positively skewed distributions. The 
lognormal distribution is a natural choice in this context, as it commonly 
arises in multiplicative processes and has been widely used to describe 
phenomena such as energy consumption, wealth distribution, and city 
population sizes. In contrast, gamma and Weibull distributions offer 
flexible alternatives, while power-law distributions, though relevant in 
extreme-value theory, may overstate the dominance of outlier systems.

From a modeling perspective, the method of estimating global 
representativeness through cumulative distribution analysis is both 
parsimonious and informative. By comparing the empirical minimum of 
the TOP500 to the fitted cumulative distribution function, the resulting 
value of r serves as a proxy for the proportion of systems that the dataset 
effectively represents. The result of r = 0.0012 indicates that the TOP500 
comprises the top 0.12% of energy-consuming HPC systems, reinforcing 
the assumption that the sample is representative of high-end global 
trends. However, caution is warranted in extending this representativeness 
to mid- and low-range HPC systems, which may follow different 
structural and operational dynamics. Future studies could benefit from 
additional data sources beyond the TOP500 list, including regional or 
industrial computing facilities, to further validate the distributional 
assumptions and improve global energy modeling accuracy.

2.1.2 Assumption 2
The energy consumption structure of HPC centers in each 

country follows the overall energy structure of that country.

2.1.2.1 Justification
This assumption was supported by Li et  al., their result 

conducted a comprehensive empirical analysis of HPC system 
carbon footprints across multiple geographical regions (4). Their 
findings indicate that the operational carbon emissions of HPC 
systems were strongly correlated with the carbon intensity of the 
regional power grid, rather than with any independent or customized 
energy sourcing. Specifically, they analyzed HPC facilities in 
countries such as Japan, the United Kingdom, and the United States, 
and demonstrated that the same system—when powered by different 
national grids—results in significantly different carbon footprints. 
This implies that HPC centers typically rely on standard national 
electricity supply infrastructures, and thus their energy sourcing 
reflects the composition of the broader grid, including proportions 
of coal, natural gas, nuclear, and renewable energy. The study 
concludes that the regional grid’s carbon intensity is the dominant 
factor in determining the operational sustainability of 
HPC. Therefore, it is both methodologically valid and empirically 
grounded to assume that an HPC center’s energy structure follows 
that of its host country.

2.1.3 Assumption 3
HPC facilities consist primarily of CPU, memory and storage.

2.1.3.1 Justification
These three components consume the most of an HPC facility’s 

power, so in the calculation of HPC energy consumption, the influence 
of other minor components is negligible.

2.1.4 Assumption 4
There will not be  a sudden decrease in the demand for HPC 

caused by unpredictable factors, such as economic downturns.

2.1.4.1 Justification
Based on projections from Fortune Business Insights (5), the 

global HPC market is expected to grow steadily from 2019 to 
2032, driven by the integration of AI and the increasing 
computational demands of complex algorithms. The report 

FIGURE 1

The Q–Q plot and the lognormal distribution curve. (A) Displays he lognormal distribution curve. (B) Displays the Q–Q plot.

https://doi.org/10.3389/fams.2025.1595365
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Yu et al. 10.3389/fams.2025.1595365

Frontiers in Applied Mathematics and Statistics 04 frontiersin.org

emphasizes HPC’s central role in enabling major advances across 
industries such as data analytics, predictive modeling, and 
enhanced simulations.

This steady growth projection, even in the face of economic 
uncertainties in recent years, provides strong support for the 
assumption that demand for HPC is unlikely to experience a sudden 
decline due to unpredictable factors such as economic downturns.

2.2 Data and variables

We collected data on worldwide HPC centers’ Pmax, Nc, and Rmax 
from the TOP500 HPC list for 2014 to 2024, which enabled the 
calculation of average power consumption (6, 7). We  assessed 
utilization rates in China, France, Germany, and the United States, 
using data from 19 countries to establish benchmarks from 2016 to 
2024. To estimate energy consumption, we identified emission factors 
for oil, natural gas, coal, nuclear, and renewable sources, quantifying 
CO2 emissions per unit of energy. We analyzed carbon emissions for 
2016, 2019, and 2022 across 20 countries to evaluate the contribution 
of each energy type (8).

Our environmental impact assessment included emissions of sulfur 
dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and 
particulate matter (PM10). We considered the fuel proportions—natural 
gas, oil, and coal—used in each country, calculating total emissions by 
evaluating fuel consumption and applying corresponding emission 
factors. We also collected impact factor data for each fuel type.

Additionally, we incorporated global GDP data and assessed costs 
related to carbon emission reduction, developing an environmental 
impact index based on various energy sources. We utilized Rpeak data 
for HPC development with global GDP data to evaluate energy 
demand in other sectors, optimizing our energy consumption model. 
Energy efficiency data for each HPC from 2014 to 2023 was also 
collected to calculate average efficiency.

Detailed variables are found in Supplementary Table 1.

3 Mathematical modeling and results

3.1 Problem 1: understanding the scope

To calculate and predict energy consumption of different countries 
while considering full capacity and average utilization rates, 
we construct the following formula (see Figure 2):

 =max maxEC P T·  (3)

 
· ·avg max avgEC P Tη=

 (4)

Here, T represented the annual time basis (8,760 h).

3.1.1 The use of linear regression to fill in missing 
data

This paper collected data on worldwide HPC centers’ Pmax, Nc, and 
Rmax from the TOP500 HPC list from 2014 to 2024, enabling the 
calculation of average power consumption (6, 7).

After arranging the HPCs in ascending order based on Nc, this 
study identified missing Pmax values of some HPC centers. To address 
this issue, linear regression was implemented to model the relationship 
between the existing Nc and Pmax values. Missing Pmax values were 
estimated by substituting Nc into the derived function.

To address this issue, we  implemented linear regression to 
estimate these values due to the strong linear relationships indicated 
by the Pearson correlation coefficients, as shown in Figure 3A.

The resulting regression function is as follows:

 

·
·

2 4
max c

4 2
max

5.282 10 6.027 10
4.723 10 , 0.813

P N
R R

−

−
= × + ×

+ × =
 (5)

The R2 of this regression function is as high as 0.813, which means 
that by using this function, we can fill in all missing Pmax effectively.

3.1.2 Calculation of average utilization rate
To calculate the average utilization, our team refers to a formal 

essay that records the ηcpu, ηmem, ηstg of 50 HPCs in China in 2016 (9). 
The relevant equations, adopted from another research, apply to our 
calculation of ηavg. The calculations of Pcpu and Pmem were based on the 
models of another study (10).

 max cpu mem stgP P P P= + +
 (6)

 
·avg max avgP P η=

 (7)

The final equation utilized was:

 
· · · ·max avg cpu cpu mem mem stg stgP P P Pη η η η= + +

 (8)

The calculated ηavg for 50 Chinese HPCs in 2016 was 67.6%.

3.1.3 Logistic fits
This study used a rating provided by a previous study to calculate 

the average utilization rate of the United States, Germany, and France 
in 2016 based on the utilization of China HPCs (11). To estimate the 
average utilization rate for HPCs in various countries other than these 
four countries, and in other years other than 2016, we use these four 
countries’ ratio of market size to the number of HPCs and the average 
utilization rate to plot a scatter graph (shown in Figure 3B) (12, 13).

We observed the relationship between the ratio and the rate. 
Because there was an upper and a lower limit of the utilization rate of 
HPCs, we use logistic fit instead of linear regression:

 
( )·

2
avg 1.360 0.472

0.95 , 0.775
1 E

R
e

η
− +

= =
+  

(9)

The logistic model helps us estimate the average use rate of 
different countries at any year using the ratio of Market size to HPC 
number. France, Germany, America, and China have distinct 
utilization rates because of available market size data. The market size 
of the rest of the countries was recorded as a whole, so we categorized 
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them as “other” and calculated their market size per HPC by 
subtracting the HPCs in the four major countries from 500. The use 
rate of other was then calculated. Table 1 displays the rating and ratio 
used and the resulting utilization rate.

3.1.4 Change of energy consumption across time 
and countries

For each country group, energy consumption at the average 
utilization rate and at full capacity was computed. This study calculated 
and compared an HPC’s energy consumption at the average utilization 
rate by multiplying the ECmax of that facility by the average utilization 
rate in the country where that HPC facility was located. Global totals 

were derived by summing values for all TOP500 HPCs. Thus, 19 
representative countries that possess HPC had been selected. This 
paper calculated the annual energy consumption of HPC facilities in 
each country in the last decade.

The changes of energy consumption of HPC facilities in each 
country during the last decade were shown in the following 
graphs, with separate graphs for the USA, Japan, and China 
(Figures 4A–F).

Global annual energy consumption ranges were:

 max3,198,786,630 5,869,681,840EC≤ ≤

FIGURE 2

Logical flow of Problem 1.

https://doi.org/10.3389/fams.2025.1595365
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Yu et al. 10.3389/fams.2025.1595365

Frontiers in Applied Mathematics and Statistics 06 frontiersin.org

 avg2,267 ,243,623 4,203,676,800EC≤ ≤

Both ECmax and ECavg were highest in 2017 and lowest in 2014.
Country-specific distributions (Figures 4G,H) showed:

 max20,686,068 1,676,768,241EC≤ ≤

 avg15,674,290 1,239,115,648EC≤ ≤

When divided by countries, both ECmax and ECavg were the highest 
in America and the lowest in Poland.

3.2 Problem 2: HPC carbon emissions 
model

3.2.1 Carbon footprint calculation
Our analysis employed ECavg as the primary metric for 

representing the real-world energy usage patterns. Drawing upon 
energy structure data from 20 representative HPC-intensive countries 

(12, 13). This study categorized national energy portfolios into 5 
distinct types: coal, natural gas, petroleum, nuclear energy, and 
renewable energy (14).

 { }
· ·total

, , , ,
i i

i c g p n r
C k ECα

∈

 
 =
 
 

∑
 

(10)

The calculation framework utilized the following notation:
αi represented the proportion of the i-th energy type within the 

national energy mix
ki denotes CO2 emissions (kg per kWh) for each energy type.
Subscripts indicated energy sources: c (coal), g (gas), p 

(petroleum), n (nuclear), r (renewable).
Notably, αr carried an emission factor of zero as renewable 

energy generation produces no direct carbon emissions. Thus, the 
studies’ calculations focused on the four non-renewable 
energy categories.

The total carbon emissions from HPC countries in 2016, 2019, 
and 2022 were as shown in Figure 5A. China and the United States 
exhibited carbon emissions significantly higher than those of other 
countries (China: 0.7681 billion tons in 2016, 0.651 billion tons in 
2019, 0.4647 billion tons in 2022; United States: 0.8256 billion tons 
in 2016, 0.4884 billion tons in 2019, 0.4938 billion tons in 2022), 
while Japan’s carbon emissions were of the same order of 
magnitude (174.5 million tons in 2016, 93.55 million tons in 2019, 
184.1 million tons in 2022). Generally, the total carbon emissions 
from HPC decreased in countries with larger economic scales and 
increased in countries with lower economic scales (e.g., Brazil: 
0.626 million tons in 2016, 3.212 million tons in 2019, 11.61 
million tons in 2022).

3.2.2 Environmental impact index (EII) calculation
The Environmental Impact Index (EII) incorporated energy-

specific sensitivity coefficients (Sensitivityi) that quantified the 
relative environmental impact of each energy type. This study 

FIGURE 3

Understanding the scope. (A) Displays Pearson matrix of Pmax, Rmax, and Nc. (B) Displays logistic fit for utilization rate.

TABLE 1 Utilization rates and market size ratios by country.

Country Provided 
rating

Resulting 
utilization 

rate

Percent 
(market 

Size/HPC 
number)

USA 4.5 0.725 0.298

China 3 0.676 (calculated) 0.263

Germany 5 0.750 0.516

France 4 0.750 0.500

Other / 0.698 0.280
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FIGURE 4

Change of energy consumption. (A) Displays average energy consumption of America, Japan, and China. (B) Displays max energy consumption of 
America, Japan, and China. (C) Displays average energy consumption of different countries. (D) Displays max energy consumption of different 

(Continued)
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derived the EII through a weighted summation of carbon 
emissions multiplied by their respective sensitivity coefficients, 
normalized by total emissions. This index provided a standardized 
measure of HPC’s environmental impact across different 
national contexts.

 

{ } ( )α∈
× ×

= ∑
, , ,

total

Sensitivityi c g p n
i i iE t

EII
C  

(11)

Figure  5B displayed the results of the EII calculation, which 
quantified the environmental impact of HPC in these countries for 
the three selected years. As the figure indicated, the EII of the 
United States and China was far higher than that of other countries, 
while Japan, Germany, France, and the United  Kingdom 
followed closely.

3.2.3 Economic loss measurement
This study quantified the economic consequences of 

HPC-related emissions using established climate-economy 
relationships. The model applied a conversion factor whereby each 
trillion tons of CO2 emissions corresponded to 0.5% reduction in 
global GDP (15).

 
· ·total

15
0.5%

1 10
CEL GDP

kg
=

×  
(12)

The total world GDP in 2016, 2019, and 2022 was 76.59 trillion 
dollars, 87.752 trillion dollars, and 99.67 trillion dollars, respectively. 
The economic loss caused by HPC in each HPC country is then 
calculated and shown in Figure 5C. The total economic loss due to 
carbon emission from HPC in 2016, 2019, and 2022 reached as high 
as 2,183,499 dollars.

3.3 Problem 3: future HPC and energy 
trends projection

To analyze the impact of HPC development and rising energy 
demands from other sectors, as well as the effects of different 
energy structures on carbon emissions, a regression model was 
first established to link the development of HPC computing and 
the growth of energy demand in other sectors to overall energy 
consumption. Based on the model developed in the second 
question, carbon emissions were derived from 
energy consumption.

3.3.1 Factor in terms of HPC development
To quantify the impact of the evolution of HPC over time on 

energy consumption, the peak theoretical performance of 
supercomputers (Rpeak) was used as a key metric for HPC development. 
Data for Rpeak from the TOP500 list during the years 2014–2023 
were collected.

A quadratic regression model was adopted due to its strong fit and 
better alignment with recent trends. The general form of the fitted 
model was:

 = + +2
peak ·Year ·YearR a b c  (13)

Subsequently, the predicted Rpeak values were obtained for the 
years 2014 to 2030 using the fitted model. These values were used as 
input to the energy consumption projection model established in 
Section 3.2.3.

The regression analysis yielded the following quadratic equation 
for HPC performance:

 = × + × + ×8 2 9 9
peak 8.0 10 ·Year 3.0724 10 ·Year 2.8082 10R  (14)

countries. (E) Displays max energy consumption of the whole world. (F) Displays average energy consumption of the whole world. (G) Displays average 
energy consumption distribution heatmap. (H) Displays max energy consumption distribution heatmap.

FIGURE 4 (Continued)

FIGURE 5

HPC carbon emissions model. (A) Displays carbon emission of HPC countries. (B) Displays EII graph of HPC countries. (C) Displays economic loss of 
HPC in the main HPC countries.
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This model achieved a coefficient of determination of 
R2 = 0.9519, indicating a strong fit with the observed data and 
reflecting the decelerated growth of computing power in 
recent years.

3.3.2 Factor in terms of increasing demand of the 
other sector

In qualifying the extent to which increasing energy demand in 
other sectors would impact future energy consumption of HPC, the 
energy price was considered (14). In this respect, data of the global 
energy commodity price index, which was expressed as PI, from 2014 
to 2023 were correlated and analyzed for their correlation with energy 
consumption ECother in other sectors, which was derived via 
subtracting EC of HPC from the global energy consumption (16–19). 
Since energy price was highly interrelated with various social factors 
such as current affairs, data points with large fluctuations were 
intentionally removed. Based on the remaining data, a logistic fitting 
model was constructed to examine how PI would change with 
increasing ECother.

To evaluate the relationship between energy demand in other 
sectors and global energy prices, a logistic regression model was 
applied. The resulting equation was:

 ( )( )=
+ − × −other

334.2864
1 exp 0.0000045632 1,674,700

PI
EC  

(15)

With an R2 of 0.7868, this model was capable of explaining about 
79% of the increase in energy prices due to the growth of energy 
demand in other sectors. Assuming that there were no other variables 
playing roles in the system, a reasonable prediction of the future 
energy prices could be made.

3.3.3 Energy structure model after optimization 
by two above factors

Building upon the previous analysis regarding HPC development and 
rising energy demand in other sectors, these two factors were integrated 
into the energy structure model to improve its representational accuracy. 
A multivariate polynomial regression was used to fit the relationship 
between average energy consumption ECavg2 and the two variables: peak 
computing power Rpeak and energy price index PI. The specific degrees of 
two independent variables and interaction terms were determined based 
on the R-squared value and consistency with reality. The regression model 
was in the following form:

 ( )=avg2 peakf ,REC PI  (16)

A similar model was constructed for estimating the maximum 
energy consumption ECmax2, using the same independent variables and 
polynomial form.

Subsequently, the regression functions were brought back into the 
carbon emission function from Section 3.2:

 { }
· ·total

, , , ,
i i

i c g p n r
C k ECα

∈

 
 =
 
 

∑
 

(17)

Where

 { }
α

∈
=∑

, , , ,
1i

i c g p n r  
(18)

By altering the percentage of various energy sources, this 
approach could provide insights into the change in 
carbon emissions.

Indeed, building upon these inputs, the following polynomial 
regression equations were established for average and maximum 
energy consumption:

 

avg2 peak
2

peak peak

0.2881 0.0047 PI 0.0496
0.0600PI· 0.0096

EC R
R R

= − −

+ −
 (19)

With R2 = 0.8425. In this model, the variable PI represented the 
normalized energy price index, where the original price values were 
standardized using a mean of 75.09 and a standard deviation of 18.6. 
The variable Rpeak represented the normalized peak computing power 
of HPC systems, standardized using a mean of 3.528 × 109 and a 
standard deviation of 3.341  ×  109. Moreover, for maximum 
energy consumption:

 

max 2 peak
2 2

peak peak

0.3748 0.0099PI 0.0423
0.0047 PI 0.0368PI· 0.0076

EC R
R R

= + −

+ + +
 (20)

With R2 = 0.9983. In this model, the variable PI and Rpeak were 
normalized based on the same standard above.

Here, Figures 6A–D provided visual representations of the 
polynomial fitting surfaces for ECavg and ECmax, respectively. In 
Figures 6A,B, when energy prices were extremely low, average 
energy consumption decreased as Rpeak increases, reflecting the 
energy-saving benefits of improved computational efficiency. 
When computing power was low, a rise in energy prices also led 
to reduced consumption, likely due to suppressed computational 
demand. However, at higher levels of Rpeak, the opposite trend 
emerged—higher prices coincided with increased energy use. 
This may be explained by the behavior of large-scale HPC centers, 
where organizations concentrated intensive workloads under 
rising energy costs to optimize budget efficiency, resulting in 
greater total consumption. Figures 6C,D revealed similar patterns 
for ECmax, though the trends appeared more pronounced. In 
particular, maximum energy consumption increased rapidly when 
both computing power and energy price were high. Overall, 
despite potential uncertainties, both models demonstrated strong 
predictive performance, with high goodness-of-fit and consistency 
with observed real-world behavior.

3.3.4 Realistic bounds in 2030
To make a prediction of the future ECavg and ECmax2, the growth 

models of Rpeak and PI ought to be constructed. The value of Rpeak in 
2030 could be readily obtained, while for PI, future data of ECother was 
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required. A linear regression model was constructed to make this 
projection, which was given by:

 ·otherEC a Year b= −  (21)

By substituting the value of ECother into the previous function of 
PI, the change in PI in the following years was calculated. Then, the 
scope of EC in 2030 can be acquired.

To further estimate the scope of carbon emissions in the 2030s, 
projections of national energy structures were required. In this 
part of the study, the Grey Prediction Model GM(1,1) was 
primarily employed.

To construct the input for the GM model, data from the years 
2013, 2016, 2019, and 2022 were collected for each country 
because of availability, detailing the share of four major energy 
types—nuclear, coal, oil, and natural gas—in total national energy 
consumption (20–23). Thus, for each energy type and country, a 
separate GM(1,1) model was built to project its share in 2031, 
representing the carbon emission scenario in the 2030s. All grey 
model forecasts followed the standard GM(1,1) procedure: the 
original data series x(0) was first accumulated to generate the 
series x(1); the background values z(1) were then computed as the 
average of consecutive elements in x(1); finally, the parameters a 
and b were estimated via least squares using the equation 
( ) ( ) ( ) ( )0 1x k az k b+ = . The initial value ( ) ( )0 1x , corresponding to 

the first observation year (2013), was used as the initial condition 
to solve the model analytically:

 

( )


( ) ( ) ( ) ( )1 0 11 ,a kb bx k x e
a a

− − = − + 
 

 
( )


( ) ( )


( ) ( )


( )0 1 1 1x k x k x k= − −
 (22)

Although the original years were 2013, 2016, 2019, 2022, for 
modeling convenience, the time series was set as k = 1, 2, 3, 4, 
assuming uniform step intervals.

The validity and accuracy of these models were assessed through 
level ratio tests and relative error evaluations, which provided 
guidance on both the applicability of the GM model and the reliability 
of its forecasts.

In cases where the GM model failed the diagnostic tests or yielded 
low-accuracy results, alternative curve-fitting methods were 
employed. These included linear regression, logarithmic regression, 
inverse regression, and S-curve (logistic) fitting. For each problematic 
data series, multiple models were tested and the one with the highest 
R2 value and best visual fit to empirical patterns was selected.

Data limitations were also addressed appropriately. For China, 
India, Japan, and South Korea, where nuclear energy data for 2019 
were unavailable, the missing value was replaced by the average of the 
2016 and 2022 figures. Negative values produced by any forecasting 
method were adjusted to zero, and the share of renewable energy was 
subsequently calculated as the residual from unity (i.e., 1—sum of 
other shares). If this residual yielded a negative value, it was likewise 
adjusted to zero.

Subsequently, using the energy consumption predictions and 
the carbon emission function introduced in Problem 2, the final 
estimates of national and global carbon emissions in 2030 were 
calculated. To obtain the energy consumption in 2031  in each 
country, GM(1,1) was again utilized, with data collected from the 
HPC TOP500 List in 2013, 2016, 2019, and 2022. After 
classification and summation, the researcher calculated the power 
ratio RP by dividing the total average power Pavg, i of each country 
by the total average power of the world Pavg. All the data was in 

FIGURE 6

Energy structure model after optimization by two above factors. (A) Displays fitting curve of ECavg. (B) Displays contour map of ECavg. (C) Displays fitting 
curve of ECmax. (D) Displays contour map of ECmax.
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original percentage shares without normalization. Due to some 
data deficiency, missing values were filled up using average values, 
and abnormal values were processed as well. Then, the projected 
power ratio in 2031 was calculated through GM(1,1), with level 
ratio tests and relative error evaluations determining whether the 
model was suitable. Again, for cases where the GM model did not 
fit, linear regression, logarithm regression, or inverse regression 
were incorporated as alternatives.

Since

 

( )
( )

avg,avg, avg,

avg avgavg

360 24

360 24
ii i

P
PP E

R
P EP

× ×
= = =

× ×
 

(23)

Where Eavg, i refers to the average energy consumption of each 
country, and Eavg2 refers to the average energy consumption in the 
world, which could be obtained through the equation in Section 3.3.3. 
Therefore, the energy consumption ECi in each country was given by:

 = × avg2p pEC R E  (24)

Through Equation 13, the final carbon emission value could 
be obtained.

In order to estimate the energy price index P in 2030, the following 
linear regression was used to forecast ECother:

 = + × − +1.8887 04 year 3.6714 07y e e  (25)

With an R2 value of 0.9092, indicating a strong linear growth 
trend. Substituting the projected value of ECother into Equation 12, 

future values of PI were obtained. These, together with the extrapolated 
value of Rpeak, enabled the calculation of both ECavg and ECmax for 2030, 
which were 1.127180873 and 1.623270845, respectively. In 2031, ECavg 
and ECmax were 1.35256363 and 1.967819606.

To further quantify the resulting carbon emissions, national 
energy structures were forecasted for each country. In evaluating 
the accuracy of the national energy mix projections, the level ratio 
test and relative error evaluation demonstrated that the majority 
of the GM(1,1) models achieved acceptable predictive accuracy 
and fit. In cases where the GM model showed instability or failed 
the tests, alternative modeling approaches were adopted. Notably, 
Sweden’s nuclear energy share was forecasted using linear 
regression due to the instability of GM results, while France’s 
natural gas data required the removal of outliers and subsequent 
linear fitting. Germany, Norway, Poland, and Sweden also 
employed logarithmic regression for natural gas projections after 
outlier removal. For Switzerland, the natural gas share was 
forecasted using an S-curve (logistic) model, which captured the 
gradual growth pattern more effectively than alternatives. The 
average power share for each country was calculated using 
consistent methods; detailed procedures were not included here 
due to the extensive volume of data. Missing values were imputed 
by taking the arithmetic mean of adjacent years, while abnormal 
entries—caused by limitations in the original data source—were 
corrected using linear interpolation. This approach was justified 
by the fact that HPC systems were large-scale infrastructure that 
were rarely dismantled or abruptly shut down, and thus their 
energy consumption rates were expected to remain relatively 
stable over time. The results were shown in the table below. 
Through calculation, the total carbon emission generated by 
maximal power operation was 1.071 × 1020 kg.

FIGURE 7

Carbon emission prediction histogram by country.
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Detailed information is found in Supplementary Table 2.
Finally, a visual representation of the resulting emission bounds 

under different structural assumptions was provided in Figure  7, 
which illustrated the potential variability in national and global 
carbon emissions based on the projected changes in energy 
consumption and structure.

3.3.5 Sensitivity analysis
To quantify the impact of input uncertainties on the model 

output, a global sensitivity analysis was conducted using the 
Sobol method, a variance-based technique capable of 
decomposing the output variance into contributions attributable 
to individual input variables and their interactions. The objective 
was to identify the relative influence of the energy price index 
and peak computing power on the predicted average energy 
consumption per unit of computing power in 2030.

The Sobol method was grounded in the functional ANOVA 
decomposition of a model function ( )f X , where ( ) ( )= 1 2,f x X X
represents the input parameter vector. The total variance of the model 
output ( )=Y f X  was decomposed as:

 
( ) 1,2, , ,

1

k

i ij k
i i j

Var Y V V V …
= <

= + +…+∑ ∑

                              ( )
~1 i

Ti
VS

Var Y
= −

                      
(26)

Where ( )|i i iV VarX Y X=     denoted the variance contribution 
of input Xi, Vij represented the second-order interaction between Xi 
and Xj, and the final term accounts for higher-order interactions. 
From this decomposition, three key sensitivity indices were defined: 
the first-order index 

( )
= i

i
VS

Var Y
the total-order index 

( )
= − ~1 i

Ti
VS

Var Y
(where ~iV  denoted the variance excluding Xi), and 

the second-order index 
( )

= ij
ij

V
S

Var Y
, which quantified 

pairwise interactions.
In this study, the model inputs included the original energy price 

index originalPI  and the original peak computing power Rpeak original), 
both defined within the range (10−6, 1010). To ensure adequate 
coverage of the input space and accurate estimation of sensitivity 
indices, input samples were generated using the Saltelli sampling 
scheme, which was a quasi-Monte Carlo method designed specifically 
for Sobol analysis. A base sample size of 1,024 was used, resulting in a 
total of 6,144 evaluations, consistent with the sampling requirement 
of N(k + 2), where N was the base sample size and k the number of 
input variables.

Each sampled input pair was evaluated through a standardized 
model function. The original variables were first standardized to 
improve numerical stability and interpretability. The standardized 
variables were then substituted into the following predictive equation:

 

avg peak
2

peak peak

0.2881 0.0047· 0.0496·

0.0600· · 0.0096·

EC PI R

PI R R

= − −

+ −
   (27)
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The Sobol sensitivity analysis was then performed using the SALib 
Python library. The output variance was decomposed to compute the 
first-order sensitivity indices (S1), representing the direct contribution 
of each variable to output variance, and the total-order indices (ST), 
accounting for both direct and interaction effects. Additionally, 
second-order indices (S2) were calculated to evaluate the joint 
interaction effect between the two inputs.

This approach provided a comprehensive assessment of how 
variability in the input space propagates through the model and affects 
predictions of future energy efficiency. The results were visualized 
through bar plots for S1 and ST, and a heatmap for S2, enabling a detailed 
interpretation of individual and interactive parameter influences.

For the first-order Sobol sensitivity indices, the parameter Rpeak original 
showed a high first-order index of 0.7214, indicating it contributed the 
most to the output variance when considered individually. In contrast, 
PIoriginal had a much lower first-order index of 0.0459, suggesting a 
relatively minor direct effect. The corresponding confidence intervals 
were ±0.0878 for Rpeak original and ±0.0459 for PIoriginal.

Regarding the total-order Sobol indices, Rpeak original again exhibited 
a dominant influence with a total-order index of 0.9578, compared to 
0.2815 for PIoriginal. This indicates that Rpeak original not only has a strong 
direct effect but also plays a substantial role through interactions with 
other parameters. The confidence intervals were ±0.0862 and ±0.0372 
for Rpeak original and PIoriginal, respectively.

As for the second-order interaction effects, the interaction 
between PIoriginal and Rpeak original yielded a Sobol index of 0.2363, with a 
confidence interval of ±0.0810. This suggested that there was a notable 
synergistic effect between the two parameters that contributes 
appreciably to the overall model uncertainty.

The results indicated that Rpeak original was the dominant influencing 
factor, contributing the mostly to both the first order and total 
variance. A strong interaction effect was also observed between the 
two input variables.

3.4 Problem 4: renewable energy 
impact expansion

3.4.1 Investigation on renewable energy

3.4.1.1 The impact of increasing proportion of 
renewable energy

This study selected three representative countries with high HPC 
deployment and substantial carbon emissions: the United  States, 
China, and Germany (24). In the analysis, the proportion of 
renewable energy was used as the independent variable (x), while 
carbon emissions served as the dependent variable (y). Our study 
plotted data points of carbon emissions against renewable energy 
share, including the theoretical endpoint (100%, 0), which represents 
a fully renewable scenario with zero emissions (25). After testing 
several regression functions, this study founded that an inverse 
function provided the best fits for the data points (26, 27), capturing 
the non-linear relationship between increasing renewable energy 
usage and corresponding carbon emissions reduction. The regression 
for these three countries was shown in Figure 8.
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Regression function for US carbon emission:

 
×

= − × + =
7

7 24.984 103.709 10 , 0ˆ 0.9 4y R
x  

(28)

Regression function for China carbon emission:

 
×

= − × + =
7

8 29.630 101.156 10 , 9ˆ 0. 9y R
x  

(29)

Regression function for Germany carbon emission:

 
×

= − × + =
7

6 21.044 101.262 10 , 7ˆ 0.7 9y R
x  

(30)

Anchored in the fact that renewable energy still generates 
carbon emission in the production, transportation, and instillation 
process, we utilized the model which has horizontal asymptote, 
thereby more realistic and reasonable assessing carbon emissions 
changes (28).

3.4.1.2 Sensitivity analysis
This study conducted a sensitivity analysis of the inverse 

regression models (see Figure 9). Using the U.S. model as an example, 
this study varied the coefficient by ±10%, resulting in 
a = 4.984 × 107 ± 4.984 × 106. Setting x = 0.2, the baseline result was 
2.1211 × 108. After changing a0 or a1 by 10%, the result was 
2.3703 × 108 or 1.8719 × 108, which only changed by 11.75%, this 
means that our model was relatively stable and insensitive to 
abnormal data.

3.4.2 The impact of HPC on the other 
major field

3.4.2.1 Further study about HPC gas emission
Beyond carbon emissions, HPC systems contributed to 

environmental degradation through the release of other 
pollutants. This model incorporated key pollutants such as sulfur 
dioxide (SO₂), nitrogen oxides (NOx), carbon monoxide (CO), 
and particulate matter (PM₁₀), based on established 
emission guidelines.

This study considered three primary fuel types—coal, oil, and 
natural gas—in our calculations. The energy derived from each fuel 
type (Efuel,i) was computed as:

 
·fuel , totali iE p EC=

 (31)

Then, the corresponding mass or volume was calculated as:
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Pollutant emissions were then computed using:

 = ×pollutant, fuel, pollutant,i i im M f  (34)

Or

 = ×pollutant, fuel, pollutant,i i im V f  (35)

Thus, the comprehensive formulas for emissions become:
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(37)

This process allowed for the accurate calculation of emissions 
based on the characteristics of each fuel type utilized in HPC. The 
following was the diagram that reveal the harmful gases emission data 
(see Figure 10A):

In addition, to directly calculate the environmental impact of 
emissions from different fuels used in HPC, this study multiplied the 
emissions of each pollutant by its unit impact index on human health 
and then sum these values to obtain the total HPC impact index. This 
could be expressed mathematically as:
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j
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 =
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∑
 

(38)

Here, cmax was the maximum concentration of that gas that people 
could survive, and 4.68 × 1020 m3 was the total volume of 
the atmosphere.

The graphs showed each impact index of different countries in 
each year (see Figure 10B):

3.5 Problem 5: solutions and advocacy

Fuzzy evaluation was employed to assess multiple factors, including 
feasibility, cost, environmental impact, policy support, sustainability, and 
risk, based on a comprehensive membership vector S (29, 30). 
Recommendations were categorized into technological and policy options. 
The fuzzy evaluation method was applied to four solution categories—
energy efficiency optimization, renewable energy integration, waste heat 
recovery systems, and environmental monitoring and reporting—to 
identify the optimal approach through multi-criteria scoring (14, 31, 32).
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3.5.1 Fuzzy decision

The followings were the basic model of Fuzzy Decision, the 
detailed model was in Supplementary Table 3.

3.5.1.1 Fuzzy decision matrices

 (1) Energy Efficiency Optimization
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Equations below were collectively followed to evaluate both 
technology and government factors and calculate the score:
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= =
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(39)

Shown equation above, the total score S was computed by 
calculating the integrated membership vector for each score level k 
as follows:

 ·k i ikM ω µ= ∑  (40)

Where wi was the factor weights and μik was the corresponding 
membership degrees. The total score was then obtained by summing 
the products of these integrated membership vectors and their 
associated scores vk. The weight μik was determined using the Analytic 
Hierarchy Process (AHP) to conduct a comprehensive evaluation 
from multiple perspectives (the specific AHP procedure was presented 
in a later section).

 ·k kS M υ= ∑  (41)

The following was the dual weight method equation:
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The dual weight method above normalized each score vk by the 
total sum υ

=
∑

1

m

j
j

. The integrated membership vector for each level k 
was computed similarly, leading to the final score S:
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(43)

3.5.2 Analytic hierarchy process for weight 
calculation

Subsequently, the AHP was utilized to determine the weight of 
each evaluation criterion. The consistency index was calculated to 
ensure that the results met the required threshold (see Table 2).

The table presented the AHP results, which systematically derived 
the relative weights of evaluation criteria through pairwise 
comparisons. The weight distribution demonstrated that risk 
assessment carried the highest priority (23.65%), followed by 
environmental impact (22.355%) and sustainability (18.65%), while 
feasibility (12.737%), economic investment (12.712%), and policy 
support (9.897%) constituted relatively lower weights in the 
decision framework.

The procedure began with the construction of a judgment matrix 
A, where each element aij represented the relative importance of factor 
ai compared to aj, thus forming a subjective evaluation matrix.
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Then, when determining the weights of each indicator, this study 
adopted the square root method to calculate the eigenvector.

The specific steps were as follows: First, this paper computed the 
geometric mean of each row in the judgment matrix to derive the 
initial weights. Next, these values were normalized to obtain the 
relative weights (eigenvector), followed by a consistency check to 
ensure the reliability of the results.
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This approach ensured an objective and systematic determination 
of the weights for each factor in the AHP model.

 
∗

=
= = …∏

1
, 1,2, ,

n
ni ij

j
w a i n  

(44)

Then, normalized the weight vector.
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The final weight vector:

 = …  1 2, , , T
nW w w w  (46)

Next, a consistency check was conducted. The first step involved 
calculating the maximum eigenvalue (λmax) of the judgment matrix.
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Among them, (AW)i was the i-th element of the product of the 
matrix A and the weight vector W.

Then the consistency index CI and the consistency ratio CR 
were calculated.
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Here, RI was the random consistency index, obtained by looking 
up the table. If CR < 0.1, the matrix passed the consistency test; 
otherwise, the judgment matrix needed to be adjusted.

The consistency validation confirmed the reliability of these 
judgments, with the maximum eigenvalue (λmax) calculated as 6.406. 
Using the standard random consistency index (RI) of 1.25 for the 
matrix dimension, the consistency ratio (CR = CI/RI = 0.065) satisfied 
the acceptable threshold (CR < 0.1), thereby validating the consistency 
of the pairwise comparison matrix. This mathematical verification 
ensured the logical coherence of the expert judgments in the 
AHP implementation.

3.5.3 Final score calculation

Finally, weights for the scores of t technologies and policy were 
evaluated to obtain the final total plan score. The formula for the final 
total scores, considering the political and technology policy score, was:

 α β= +1 2kS S S  (50)

Since this study considered both policies to be equally important, 
we simply added their scores together and divided by two.

Finally, we calculated both Double-Weight Method Scores and 
Total Score Method Scores for each policy and method. First, the 
Double-Weight Method Scores for the eight policies—including the 
use of low-power processors and GPUs, establishment of energy 
efficiency standards for HPC centers, installation of solar panels or 
wind turbines, encouragement of HPC centers to invest in renewable 
energy infrastructure, design of waste heat recovery systems, regulated 
recovery and utilization of waste heat, and establishment of an 
environmental monitoring system to track energy consumption and 
emissions in real time—were 0.172, 0.172, 0.162, 0.164, 0.161, 0.173, 
0.162, and 0.159, respectively. The corresponding Total Score Method 
Scores were 58.553, 58.512, 54.973, 55.829, 54.659, 58.819, 55.122, 
and 54.079.

The final Double-Weight Method Scores for the methods—
including Energy Efficiency Optimization, Renewable Energy 
Integration, Waste Heat Recovery System, and Environmental 
Monitoring and Reporting—after incorporating both political and 
technological policies were 0.1722, 0.1630, 0.1670, and 0.1606, 
respectively. The final Total Score Method Scores for these methods 
were 58.5329, 55.4015, 56.7392, and 54.6009.

In conclusion, based on both the data and the graph, the Energy 
Efficiency Optimization scheme achieved higher scores in both 
evaluation systems. Therefore, Energy Efficiency Optimization was 
highly recommended.

3.5.4 Incorporation of recommended 
scheme in the model

To incorporate energy efficiency schemes into our model and 
optimize its performance, this study first collected energy 
efficiency data from 2016 to 2023 based on the Top500 HPC 
rankings (6, 7). It was assumed that the energy efficiency (EE) of 
HPC systems improved over time at a natural rate, influenced by 
the current state of efficiency and technological constraints. To 
evaluate the effectiveness of incentive mechanisms in improving 
energy efficiency and reducing energy consumption, this study 
first constructed a dynamic model based on differential equations 
to describe the temporal evolution of energy efficiency (EE). A 
logistic growth model was employed to represent the natural 
progression of technology:

 
·old old

old 1dEE EEb EE
dt a

 = − 
   

(51)

Here, EEold denoted the energy efficiency (i.e., computing 
power per unit of energy) at a given time t in the baseline model. 
The parameter b represented the intrinsic growth rate, reflecting 
the pace of technological advancement, while a denoted the 
theoretical upper bound of energy efficiency. The initial condition 
was set as EE(0) = EE0. This model captured the typical logistic 
growth behavior: rapid initial improvement, gradually slowing 
progress due to increasing technological difficulty, and eventual 
saturation as the efficiency approaches the upper limit.
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Building on the policy incentive mechanism for high-efficiency 
HPC systems discussed in the previous section, the model was 
extended as follows:

 
( )·new new

new 1dEE EEb EE
dt a

δ  = + − 
   

(52)

In this formulation, EEnew represents the energy efficiency under 
policy intervention, and δ  > 0 captures the additional growth rate 
attributed to policy incentives. This modification allowed the 

efficiency to improve more rapidly and approach the upper limit 
an earlier.

Analytical solutions to both differential equations were 
derived, and the parameters were subsequently determined via 
least squares fitting. Based on this, a logarithmic regression model 
was established between ECmax and EE, in order to predict how 
changes in energy efficiency influence the maximum 
energy consumption.

Here, a denoted the maximum achievable energy efficiency, b 
represented the natural growth rate, and δ  reflected the additional 
growth rate induced by policy incentives.

FIGURE 9

Sensitivity analysis.

FIGURE 8

Regression graph of carbon emission of three typical countries. (A) Displays regression graph of carbon emission of US. (B) Displays regression graph 
of carbon emission of China. (C) Displays regression graph of carbon emission of Germany.
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By solving the above differential equations analytically, this study 
derived the following logistic functions for EE under the two scenarios:

 
( ) ( )( )=

+ − −
old

old1 exp
aEE t
b t c  

(53)

 
( ) ( )( )( )δ

=
+ − + −

new
new1 exp

aEE t
b t c  

(54)

In these equations, c indicated the inflection point, corresponding 
to the time at which EE reached half of its maximum value and 
experienced the most rapid growth.

Based on historical data fitting, the study determined the model 
parameters as follows: the theoretical upper bound of energy efficiency 
b was 56.7134, the intrinsic growth rate b was 0.3675, and the policy-
induced additional growth rate δ  was 0.2325. Furthermore, the 
predicted saturation years for energy efficiency under the baseline and 
policy-intervention scenarios were cold = 2026.4 and cnew = 2024.7, 
respectively. These results indicated that policy incentived accelerate 
the improvement of energy efficiency, leading to an earlier convergence 
toward the maximum achievable efficiency.

The baseline model exhibited a high goodness-of-fit with 
R2 = 0.96286, while the incentivized model achieved a slightly lower 
but acceptable R2 = 0.84245, still capturing the accelerated growth 
trend effectively. The value of δ = 0.2325 was selected through multiple 
simulations, balancing empirical fit with plausible policy impact.

Building upon the EE projection, this study further established a 
regression model to investigate the relationship between EE and the 
maximum potential energy consumption per unit time ( maxEC ). The 
following logarithmic regression function was obtained:

 ( )= − +max 0.0456·log 0.4843EC EE  (55)

This model yielded a goodness-of-fit of R2 = 0.7715 and presented 
a concave-up, decreasing trend, indicating that improvements in 
energy efficiency were associated with reductions in 
energy consumption.

To quantify the impact of the incentive mechanism, this study 
forecasted EE and maxEC  values for the year 2025 under both baseline 
and incentivized scenarios. The results are presented in Table 3.

As shown in Table 3, under the incentivized scenario in 2025, 
energy efficiency increased significantly (from 21.22 to 30.90), while 
the maximum energy consumption decreased (from 0.3449 to 0.3278). 
These findings suggested that enhancing energy efficiency through 
policy incentives played a critical role in mitigating 
energy consumption.

4 Discussion

The present study has addressed that the environmental impact of 
HPC and how it can be mitigated through decarbonization pathways. 
Our analysis of HPC centers worldwide reveals that global annual 
energy consumption ranges from 3.2 billion kW·h to 5.9 billion kW·h, 
with the United  States being the largest consumer. The carbon 

footprint associated with HPC energy consumption was substantial, 
with total economic losses reaching over $2 million due to CO2 
emissions. Furthermore, our prediction models indicate that by 2030, 
the environmental impact of HPC was projected to grow, with total 
carbon emissions of approximately 1.7 billion kg at average utilization 
rates. Regression models for the US, China, and Germany demonstrate 
that as renewable energy adoption increases, carbon emissions 
decrease significantly. Additionally, energy efficiency optimization 
strategies, such as those derived from the AHP, can reduce energy 
consumption while maintaining sustainability.

4.1 HPC energy consumption and 
environmental impact

The carbon footprint calculation approach was selected based on 
its alignment with guidelines for sector-specific emissions accounting 
(8, 33). Moreover, the average energy consumption rather than peak 
demand was utilized to reflect real-world HPC operational conditions. 
In addition, the EII’s incorporation of sensitivity coefficients addressed 
a key limitation of conventional carbon accounting by differentiating 
emission sources based on their ecological harm potential. This 
approach was derived from established environmental risk assessment 
frameworks (34). The persistent high EII values for coal-dependent 
HPC operations underscored the importance of considering both the 
quantity and type of emissions in sustainability assessments.

The study of carbon emissions from HPC centers using both the 
EII and economic loss calculations indicated the severe environmental 
impacts that arise from HPC centers. Our result also emphasized the 
potential for reducing carbon emissions by increasing the share of 
renewable energy in HPC energy mixes. These cumulative $2.18 
million global impact figure serves as a valuable baseline for future 
studies examining the economic returns of green computing initiatives.

Additionally, our model has supplemented previous research, 
particularly regarding energy consumption in HPC. HPC systems 
emitted not only carbon dioxide but also various pollutants, including 
sulfur compounds (e.g., sulfur dioxide), nitrogen oxides, carbon 
monoxide, and particulate matter (PM10). This comprehensive 
approach enables a thorough assessment of HPC’s environmental 
impact and clarifies the relationship between energy use and pollution 
(29, 30). Thus, accurately evaluating these emissions could provide a 
scientific basis for effective reduction strategies and help mitigate 
HPC’s carbon footprint. By examining these pollutants, we  could 
better understand their cumulative effects on public health and the 
environment, guiding policymakers and industry stakeholders. As 
global emphasis on sustainability grows, transitioning HPC systems 
to cleaner, low-carbon energy sources was essential. Our model aims 
to support research and inform policy, promoting the sustainable 
development of HPC technologies while balancing technological 
progress with environmental protection.

4.2 Renewable energy necessity

It is important to note that an inverse regression model has 
quantified the relationship between renewable energy share and 
carbon emissions. Using 100% renewable energy to power HPC 
facilities might lead to significant benefits but also meet challenges. 
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Transition to renewable sources such as solar, wind, and 
hydroelectric power can alleviate carbon footprint and improve 
energy security by reducing reliance on fossil fuels, which are 
significantly subject to market volatility and geopolitical tensions 
(35). The Verne Global data center in Iceland effectively utilizes 
the country’s abundant geothermal and hydroelectric resources for 
sustainable energy (36). However, many regions lack the necessary 
sunlight, wind, or geographical conditions for large-scale 
renewable energy utilization, which impedes global 
implementation of renewable energy (37, 38). Additionally, the 
intermittent and unpredictable nature of solar and wind energy 
poses challenges for the stability of power supply demanded by 
HPC facilities (39–41). Moreover, the transition to renewable 
energy can disrupt existing energy markets and economic 
structures, impacting jobs and industries in charge of fossil fuels. 
This shift requires policies to mitigate economic impacts and 
ensure a just transition for affected workers and communities (42).

Specifically, carbon emissions declined significantly as the 
renewable energy share increased, with sharper reductions observed 
at higher renewable levels. Therefore, the present analysis confirmed 

that the inverse function model maintained predictive consistency 
under moderate uncertainty, affirming its applicability while 
suggesting that further refinement through advanced sensitivity 
methods may enhance precision.

4.3 Policy recommendations

This investigation employed the fuzzy decision framework and 
AHP to evaluate the emission-reduction policies. As global attention 
increasingly shifted toward sustainability, transitioning HPC systems 
to cleaner, low-carbon energy sources has become imperative. The 
model in the research was designed to support ongoing research and 
guide policy decisions, fostering the sustainable development of HPC 
technologies while balancing innovation with 
environmental stewardship.

Furthermore, AHP enabled the decomposition of complex 
decision problems into hierarchical structures and leveraged expert 
knowledge to derive weights that were transparent and theoretically 
justified. While the method was not without its dependence on expert 
inputs—which could introduce bias—its systematized logic and 
interpretability rendered it particularly suited to multi-criteria 
decision-making contexts. This article suggests that beyond 
technological improvements, policy interventions also played a pivotal 
role in shaping emission reduction trajectories, coordinating 
stakeholders, and establishing long-term regulatory frameworks. 
Therefore, which showed that these were two key policy orientations: 

FIGURE 10

Harmful gases by country. (A) Displays harmful gases emission data by country. (B) Displays harmful gases impact index by country varied from years.

TABLE 2 AHP results.

Item Eigenvector Weight Largest Eigenvalue CI

Economic input 0.763 12.712%

6.406 0.081

Environmental implication 0.764 12.737%

Government support 0.594 9.897%

Sustainability 1.119 18.65%

Risk assessment 1.419 23.65%

Feasibility 0.764 12.737%

TABLE 3 Projected values of energy efficiency and maximum energy 
consumption in 2025 (baseline vs. incentivized scenario).

Year EEold ECold EEnew ECnew

2025 21.2187 0.3449 30.9019 0.3278
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technology-driven and politically driven approaches. The findings 
suggested that both dimensions exerted critical influence on the 
success of emission-reduction efforts in HPC. To reflect this 
co-dependence, the final scoring model assigned equal weights (50%) 
to technological and political factors, thus emphasizing their joint 
importance. Compared to approaches that disproportionately 
emphasized a single domain, this balanced weighting scheme 
enhanced both the comprehensiveness and stability of the overall 
policy evaluation framework.

In short, we  could determine that the energy efficiency 
optimization scheme had both higher score in two evaluation system. 
That is to say, we highly recommended energy efficiency optimization.

4.4 Limitations and future directions

Nonetheless, this study had several limitations. First, limited 
by the available data, we could not find data that described all 
countries’ HPC facilities’ situation. Instead, we had to use model 
to estimate the value, which might cause deviation compared to 
real situation. Second, although the logistic model was 
theoretically sound, it might underestimate growth potential in 
the presence of breakthrough innovations. Moreover, factors such 
as the cost of efficiency improvements and the specific types or 
intensities of policy instruments were not explicitly modeled, 
potentially constraining the realism of the scenario simulations. 
Despite these limitations, efforts were made to mitigate their 
impact through parameter sensitivity analyses and model 
validation. The model remained parsimonious in structure while 
yielding reasonable forecasts and policy-relevant insights. Thus, 
the adopted methodology was considered acceptable and 
meaningful for macro-level analysis.

We suggest that partner with HPC facilities to collect real-time 
energy mix data, develop region-specific impact factors and 
integration with macroeconomic models for HPC siting optimization 
should be future research priorities.

5 Conclusion

In summary, this study offered a systematic analytical 
framework for understanding the evolution of energy efficiency 
and provided theoretical and empirical support for the role of 
policy incentives in shaping energy consumption trajectories in 
HPC systems. Our results provided a solid foundation for 
discussing the carbon-energy nexus within global computing 
infrastructure. These findings highlight the urgent needed for 
cleaner energy sources and energy-efficient HPC practices to 
mitigate the sector’s ecological impact and ensure a more 
sustainable technological future.
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