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Cumulative hazard ratio
estimation for adverse events
data from two-stage dynamic
treatment regimes

Sifiso Vilakati*

Department of Biostatistics, University of the Free State, Bloemfontein, South Africa

Accurate analysis of adverse events in two-stage dynamic treatment regimes

is complicated by the presence of competing risks, such as death, which can

preclude the observation of an adverse event and introduce bias into standard

survival estimates. To address these challenges, this study employs cumulative

hazard functions to compare the safety profiles of di�erent treatment policies,

o�ering a more precise quantification of adverse event risk in the context of

competing outcomes. The Nelson-Aalen estimator is utilized to decompose the

overall hazard into cause-specific components, enabling a nuanced assessment

of both mortality and adverse event risks. By appropriately censoring for

competing events, the proposed approach ensures unbiased estimation of

cumulative hazards, thereby facilitating robust and interpretable comparisons

between treatment strategies. Our methodology is demonstrated through the

estimation of the cumulative hazard ratio for adverse events in a real world data

set for leukemia.

KEYWORDS

adverse events, competing risks, cumulative hazard ratio, Kaplan-Meier estimator,
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1 Introduction

Dynamic treatment regimes, also referred to as treatment policies, adaptive treatment

strategies, or multi-stage treatment strategies, constitute a systematic framework for the

allocation of time-dependent treatments. These regimes are informed by intermediate

responses to prior interventions and relevant covariates. For example, in the management

of leukemia, a two-stage dynamic treatment regime might involve the following steps:

initiating treatment with three cycles of chemotherapy, followed by an infusion of GM-

CSF; assessing the patient for complete remission; if complete remission is achieved,

transitioning to maintenance therapy, and if not, discontinuing treatment. The primary

goal in leukemia treatment is to improve overall survival rates. Therefore, a key objective

is to identify the treatment regime that produces the most favorable survival outcomes.

Determining the optimal patient-specific treatment regime allows clinicians to select the

most appropriate therapeutic options based on the patient’s medical history. Identifying

the ideal set of rules is challenging due to significant inter-individual variability in patient

characteristics. Nonetheless, if the number of treatment regimes is limited, it becomes

feasible to estimate their effects on overall outcomes and to compare these regimes based

on their respective treatment effects.
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Various statistical designs are employed to estimate the

efficacy of treatments within different regimes: (1) the single-

stage randomization design, which entails randomizing patients

to all potential treatment regimes at the onset of the trial; (2)

multiple separate trials for the initial and subsequent stages; and

(3) sequential multiple assignment randomized trials (SMART).

A SMART design with two stages of randomization is referred

to as a two-stage randomization design. The first method is

relatively straightforward to implement but is associated with

high costs and necessitates a large sample size. Conversely, the

second method raises concerns regarding the comparability of

patients across different trials. SMART designs, however, offer

several advantageous features. They enable researchers to draw

conclusions more rapidly with comparable total sample sizes. The

implementation of SMART designs is also straightforward; patients

are randomized to initial treatment options upon entering the trial,

and those progressing to the next stage are randomized to available

second-stage treatments based on their intermediate responses to

the initial treatment, and so forth.

Numerous methodologies for estimating survival distributions

and comparing various treatment policies have been introduced

in the literature [1–3]. These methodologies primarily utilize

efficacy data derived from these designs. In SMART designs also

collected is information on adverse events, documenting the side

effects experienced by patients under different treatment policies.

However, there has been limited methodological development

focused on adverse events data from two-stage randomization

designs. Generally, clinical trials emphasize efficacy data, often

analyzing adverse events data using crude rates. In time-to-

event settings, crude rate estimators that ignore censoring can be

biased. Therefore, it is recommended to employ survival methods

for analyzing adverse events data in clinical trials with survival

endpoints [4].We advocate for the application of the samemethods

used in efficacy data analysis to safety data analysis.

Recent advances in the statistical analysis of adverse events

in clinical trials have underscored the importance of accounting

for complex event structures and trial designs. Allignol et al. [4]

provided a foundational critique of traditional survival analysis

methods, such as the Kaplan-Meier estimator, when applied to

adverse events data in the presence of competing risks. Their work

demonstrated that standard approaches can yield biased estimates

of adverse events probabilities, particularly when events like death

preclude the observation of an adverse event. The competing

risks situation is shown in Appendix Figure 1. To address these

limitations, they advocated for the use of the cumulative incidence

function and competing risks models, which more accurately

reflect the probability of experiencing specific events over time.

Their methodological framework also highlighted the need for

careful hazard modeling, distinguishing between cause-specific and

sub-distribution hazards, and provided practical guidance for the

analysis of recurrent events and the interpretation of censored data.

Building on this foundation, Vilakati and Cortese [5]

extended these principles to the analysis of safety data in

two-stage randomization designs. Recognizing the additional

biases introduced by multi-stage allocation and time-dependent

treatment decisions, they developed weighted versions of classical

estimators such as the Kaplan-Meier and Nelson-Aalen estimators

using inverse probability weighting to correct for the complexities

of two-stage designs Their methodology is descriptive in nature,

primarily estimating the probability and cumulative hazards of

experiencing the adverse event of interest, and it does not

facilitate comparisons of adverse event experiences between

different treatment policies. Consequently, this paper proposes

using cumulative hazards within the context of competing risks

to perform such comparisons focusing on the time to first serious

adverse event [6].

2 Materials and methods

Consider a two-stage randomization design for a clinical

study, where patients are initially assigned to one of two first-

stage treatments, A1 and A2. Those who respond to the initial

treatment and consent to continue are then randomized to one of

two maintenance treatments, B1 and B2. The treatment regimes

AjBk, where j, k = 1, 2, represent the approach of administering

Aj followed by Bk if the patient responds and agrees to further

maintenance therapy. The objective is to compare these treatment

regimes in terms of overall survival. An example of a two-stage

randomization design where responders are randomized to the

second stage treatments is shown below in Figure 1.

The observed data from this design can be characterized by the

following variables:

Xji,Ri,RiT
R
i ,RiZki,Ui,1i

where Xji is an indicator for the j-th initial treatment, Ri indicates

response and consent,TR
i denotes the time to response and consent,

Zki is the indicator for the k-th maintenance treatment, Ui denotes

the observed death or censoring time, and 1i is the indicator for

death or censoring.

We make the following two key assumptions: (1) the censoring

time Ci is conditionally independent of the other variables given

the induction therapy, and (2) πz = P(Zi = 1|Ri = 1), which

represents the probability of being randomized to the B treatment

and is typically fixed by design.

FIGURE 1

An example of a two-stage standard SMART design.

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2025.1595650
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Vilakati 10.3389/fams.2025.1595650

2.1 Cumulative hazard ratio estimator

Adverse events data are subject to competing risks, where a

patient may die before experiencing the adverse event of interest,

thus making death a competing risk. It has been recommended

that the survival methods employed for analyzing efficacy data

should also be applied to the analysis of safety data. In this

context, we propose utilizing cumulative hazards to compare

adverse events data across different treatment policies. Cumulative

hazards are particularly appropriate in competing risk scenarios,

and the use of the Kaplan-Meier estimator is discouraged [4].

Generally, the modeling of competing risks data is based on

hazard functions. When analyzing adverse events data, the hazard

function decomposes into two cause-specific hazards: death and

the adverse event. Only adverse events are considered when

computing the Nelson-Aalen estimator of the cumulative hazard

for experiencing an adverse event. Practically, this can be achieved

by censoring the competing event. In the context of competing

risks, it is essential to analyze all event-specific hazards to obtain a

comprehensive understanding of the data. In the following sections,

we demonstrate the estimation of the cumulative hazard ratio for

the adverse event. The analysis for the competing cause, death, is

conducted in a similar manner.

The hazard function for adverse event for treatment policy

AjBk, where j, k = 1, 2, can be expressed using a stratified

proportional hazards model with treatment policies as strata

λjk(t) = λjk0(t) exp
(

β⊤
V

)

, j = 1, 2 and k = 1, 2, (1)

where λjk0(t) is the baseline hazard function for adverse event

for treatment policy AjBk, and β is a vector of coefficients

corresponding to baseline covariates V. The coefficient estimate β̂

can be obtained by solving a pseudo-score equation.

Consider analyzing adverse events for the treatment policies

AjBk, where j, k = 1, 2. We note that the inference in Equation 1

does not focus on the parameter vector β , instead, it aims to

compare the hazards associated with different treatment regimes

for adverse events data. Utilizing the analytical framework of

Inverse Probability Weighting (IPW), we define the weight

function for the treatment regime AjBk as follows:

Wjk = Xji[(1− Ri)+ RiZki/πjk]/πj, (2)

where πj = P(Xji = 1) and πjk = P(Zki = 1|Xji = 1,Ri = 1).

This indicates that both responders (Ri = 1) and non-responders

(Ri = 0) to treatmentAj are weighted according to the probabilities

of randomization when analyzing adverse events data for the

treatment regime AjBk. Using the counting process notation, the

event and the at risk processes are defined as Ni(t) = 1iI(Ui ≤ t)

and Yi(t) = I(Ui ≥ t) respectively. The weighted event and

risk indicators for treatment policy AiBk are defined as Njki =

Wjki1iI(Ui ≤ t) and Yjki = WjkiI(Ui ≥ t). The cumulative baseline

hazard for the adverse events for the treatment regime AjBk can be

expressed as

3̂jk0(t, β̂) =

n
∑

i=1

∫ t

0

dNjki(s)
∑n

p=1 Ypk(s) exp(β̂⊤Vp)
. (3)

This allows for a comparison of different treatment regimes in

terms of their adverse events based on the ratio of their cumulative

baseline hazards. The ratio for comparing treatment regimes with

regards to adverse events AjBk and Aj′Bk′ is defined as:

θjk,j′k′ (t) =
3jk0(t)

3j′k′0(t)
. (4)

This ratio of cumulative baseline hazards for the adverse events

reflects the ratio of cumulative hazards when covariates are held

constant, as shown by:

θjk,j′k′ (t) =
3jk0(t)

3j′k′0(t)
=

3jk0(t) exp(β̂
⊤Vi)

3j′k′0(t) exp(β̂⊤Vi)
=

3jk(t)

3j′k′ (t)
. (5)

It can be shown that this ratio converges asymptotically to a

Gaussian process. Test for comparisons of the cumulative hazard

ratios for the adverse events can also be based on the log ratio

estimator of the cumulative baseline hazards at specific time

points, say t0. The variance of the estimator is obtained via the

delta method. Wald-type tests can be then be constructed and

comparisons be made.

In cases where we want to compare adverse events from more

than two treatment policies, an overall test of difference among the

the treatment policies can be done using the Wald chi-square test.

Here the test statistic is compared to a chi-square distribution with

(JK− 1) degrees of freedom (df). More details on this can be found

in Tang andWahed [7]. In what follows we show how this approach

can be applied in analyzing safety data from a real world data.

3 Results

In the Cancer and Leukemia Group B 19808 (CALGB 19808)

study, 302 patients were randomly assigned to receive induction

chemotherapy regimens comprising cytosine arabinoside (Ara-C;

A), daunorubicin (D), and etoposide (E) either without (ADE)

or with (ADEP) PSC-833 (P). This study targeted patients under

the age of 60 with newly diagnosed acute myeloid leukemia.

Eligibility criteria required that patients had not previously been

treated for leukemia and were under the age of 60. Approximately

75% of the patients responded to the induction chemotherapy

in both treatment arms. The National Cancer Institute criteria

were employed to define response criteria. Responders to the

induction therapy were subsequently randomized to receive one

of two maintenance therapies: recombinant interleukin-2 (rIL-2)

or no rIL-2 (observation). To be eligible for the second stage of

randomization, patients needed to have responded to the induction

therapies and provided consent for the second stage treatments.

Survival times were calculated from the date of random assignment

to the date of death from any cause, with patients still alive at

the end of the follow-up period being right-censored [8]. Further

details of this clinical dataset are provided in Kolitz et al. [8, 9].

The CALGB 19808 study comprises two datasets: the primary

dataset and the adverse events dataset. This analysis specifically

focused on the time to the first serious adverse event. The

two datasets were merged using the patient ID number, which

is consistent across both datasets. All analysis were conducted

using R.
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The results in Table 1 show that the cumulative hazard ratios

for the comparisons between different treatment policies are close

to 1, with confidence intervals that include 1. This suggests that

there are no significant differences in the cumulative hazard of

experiencing adverse events between the treatment policies. For

example, the comparison between ADE-OBS and ADE-rIL-2 yields

a CHR of 1.413 with a CI of 0.882 to 1.943, indicating no

significant difference. Similarly, the comparison betweenADE-OBS

TABLE 1 Cumulative hazard ratio estimation for the CALGB 19808 study.

Comparison CHR CI log CHR CI

ADE-OBS vs. ADE-rIL-2 1.413 0.882, 1.943 0.346 –0.030, 0.721

ADE-OBS vs. ADEP-OBS 1.082 0.749, 1.413 0.078 –0.228, 0.385

ADE-OBS vs. ADEP-rIL-2 1.406 0.836, 1.976 0.341 –0.065, 0.746

ADE-rIL-2 vs. ADEP-OBS 0.766 0.461, 1.070 –0.267 –0.664, 0.130

ADE-rIL-2 vs. ADEP-rIL-2 0.995 0.521, 1.469 –0.005 –0.482, 0.472

ADEP-OBS vs. ADEP-rIL-2 1.210 0.822, 1.778 0.262 –0.106, 0.629

Induction chemotherapy regimes: cytosine arabinoside (Ara-C;A), daunorubicin (D), and

etoposide (E) without (ADE) or with (ADEP) PSC-833 (P). Maintenance therapies:

recombinant interleukin-2 (rIL-2) and no rIL-2 (obs). CHR, cumulative hazard ratio; CI,

confidence interval, upper, lover limit. Comparisons done at the 75th percentile.

and ADEP-OBS yields a CHR of 1.082 with a CI of 0.749 to 1.413,

also indicating no significant difference.

Alternatively, the Wald chi-square test can be conducted, with

the results presented in Table 2. The overall test for differences

among all treatment policies is not significant at the 5% level

of significance across all time points. This indicates that the

cumulative hazards of experiencing the adverse event of interest do

not differ among the various treatment regimes. Similarly, pairwise

comparisons reveal no significant differences in the cumulative

hazards of experiencing the adverse event of interest, including the

first serious adverse event.

The results in Table 2 further support the findings from Table 1.

The overall test for differences among all treatment policies at

different time points (35, 60, and 88) is not significant, with p-values

of 0.773, 0.208, and 0.117, respectively. This indicates that there are

no significant differences in the cumulative hazards of experiencing

the adverse event of interest among the various treatment regimes.

Pairwise comparisons also reveal no significant differences, with

p-values greater than 0.05 for all comparisons.

4 Discussion

The analysis of adverse events data in two-stage randomization

designs is crucial for understanding the safety profile of different

TABLE 2 Application to CALGB 19808 study.

H0 Time Test statistic df P-value

ADE-OBS= ADE-rIL= ADEP-OBS= ADEP-rIL-2 35 1.115 3 0.773

ADE-OBS= ADE-rIL 1.553 1 0.213

ADE-OBS= ADEP-OBS 1.875 1 0.999

ADE-OBS= ADEP-rIL-2 0.697 1 0.404

ADE-rIL-2= ADEP-OBS 0.533 1 0.466

ADE-rIL-2= ADEP-rIL-2 0.521 1 0.470

ADEP-OBS= ADEP-rIL-2 1.001 1 0.315

ADE-OBS= ADE-rIL= ADEP-OBS= ADEP-rIL-2 60 4.54 3 0.208

ADE-OBS= ADE-rIL 1.578 1 0.209

ADE-OBS= ADEP-OBS 0.534 1 0.465

ADE-OBS= ADEP-rIL-2 3.764 1 0.055

ADE-rIL-2= ADEP-OBS 0.466 1 0.495

ADE-rIL-2= ADEP-rIL-2 0.304 1 0.581

ADEP-OBS= ADEP-rIL-2 2.245 1 0.134

ADE-OBS= ADE-rIL= ADEP-OBS= ADEP-rIL-2 88 5.901 3 0.117

ADE-OBS= ADE-rIL 0.494 1 0.482

ADE-OBS= ADEP-OBS 2.539 1 0.111

ADE-OBS= ADEP-rIL-2 0.118 1 0.731

ADE-rIL-2= ADEP-OBS 3.391 1 0.065

ADE-rIL-2= ADEP-rIL-2 0.068 1 0.795

ADEP-OBS= ADEP-rIL-2 3.441 1 0.062

Induction chemotherapy regimes: cytosine arabinoside (Ara-C;A), daunorubicin (D), and etoposide (E) without (ADE) or with (ADEP) PSC-833 (P). Maintenance therapies: recombinant

interleukin-2 (rIL-2) and no rIL-2 (obs).
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treatment policies. In this study, we focused on the cumulative

hazard ratio estimation for adverse events data from a two-stage

dynamic treatment regime. The results indicate that there are no

significant differences in the cumulative hazard of experiencing

adverse events across the different treatment policies in the CALGB

19,808 study. This finding is important as it suggests that the

toxicity levels of the treatment policies are comparable, which is a

critical consideration in the selection of treatment regimes.

The use of cumulative hazards in the context of competing risks

provides a more accurate estimation of the risk of adverse events.

By censoring the competing event, we ensure that the estimation is

not biased by the occurrence of other events, such as death. This

approach allows for a clearer comparison of the safety profiles of

different treatment policies.

The focus of this study is consistent with previous research that

has highlighted the importance of using survival analysis methods

for the evaluation of safety data in clinical trials, not just using crude

incidence rates only. The application of these methods to adverse

events data ensures that the analysis is robust and provides a

comprehensive understanding of the safety profile of the treatment

regimes.

5 Conclusion

It has been recognized that safety data often does not receive

the same level of attention as efficacy data [6]. Typically, safety data

analysis relies on crude incidence rates, which may be insufficient.

While time-to-event statistical methods are commonly employed

for efficacy endpoints in clinical studies, they are seldom applied

to safety data analysis. We suggest the use of the cumulative

hazard ratios for comparing different treatment policies in terms of

their toxicity. The focus in two-stage randomization designs with

survival endpoints is on the estimation of the survival distributions

and comparing the different treatment policies but such policies

should be less toxic to the patients. This paper has contributed in

showing how treatment policies can be compared in terms of their

toxicities and this work builds on the work done in Vilakati and

Cortese [5].

Allignol et al. [4] recommend employing survival analysis

methods for the evaluation of safety data when the primary

endpoint in a clinical trial is a time-to-event. In alignment with

this perspective, we also endorse the application of survival analysis

techniques tailored for two-stage randomization designs in the

assessment of safety data from such designs. Consequently, we

suggest the use of cumulative hazards in comparing different

treatment policies in terms of their toxicities. This approach aligns

the analysis of safety data with that of efficacy data in these study

designs, focusing on the time to the first serious adverse event.

Censoring due to a competing event, such as death, preserves

the structure of the competing process’s intensity, meaning that

the hazard estimation for adverse events remains valid under

this approach. However, this censoring is considered informative

because it influences the actual probabilities of experiencing each

event. Therefore, while it is appropriate to analyze the hazard of

adverse events using methods like the Nelson–Aalen estimator

with censoring at the competing event, it is equally important to

separately analyze the hazard of the competing event itself, such

as death without a prior adverse event, to provide a complete and

accurate understanding of the event dynamics, however, in this

paper we could not analyze the death events because there are very

few death events in our dataset.

This paper focused on the time to the first adverse event, the

methods of this paper could be extended to recurrent events using

the Andersen–Gill model. Thismodel extends the Cox proportional

hazards framework using the counting process paradigm, allowing

for themodeling of the intensity of recurrent adverse events and the

inclusion of past event occurrences as time-dependent covariates.

Furthermore, although the present study is based on cumulative

hazard ratio analysis, future work could also compare adverse

events for different treatment policies using methods based on the

cumulative incidence function (CIF).
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Additional requirements

Appendix A: Adverse events and
competing risks

An individual who enters the study can either experience the

adverse event of interest or die before experiencing the adverse

event. Death is a competing event.

Appendix Figure A1

Competing risks situation for adverse events data.
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