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Ever since Density Peak Clustering (DPC) was published in Science, it has been
widely favored and applied in various fields due to its concise and efficient
computational theory. However, DPC has two major flaws. On the one hand,
it fails to find cluster centers of low-density clusters in datasets with uneven
density distribution. On the other hand, its single assignment strategy, which only
assigns points to high-density clusters, can lead to incorrect clustering due to
a chain reaction. To address these weaknesses, a new density peak clustering
algorithm based on weighted mutual K-nearest neighbors called WMKNNDPC
is proposed in this paper. WMKNNDPC offers two significant advantages: (1)
It introduces the concept of mutual K-nearest neighbors by using K-nearest
neighbors and inverse K-nearest neighbors, allowing for the identification of
cluster centers in clusters with uneven density distribution through a new local
density calculation method. (2) It includes a remaining points assignment method
based on weighted mutual K-nearest neighbors, which involves two stages: first,
the initial assignment of data points is done by combining mutual K-nearest
neighbors and breadth-first search, and second, the membership degree of data
pointsis calculated based on weighted mutual K-nearest neighbors for remaining
points assignment. This method allows for efficient assignment based on the
local distribution of points, avoiding the disadvantages of using a fixed K-value
in DPC-derived algorithms based on K-nearest neighbors. The WMKNNDPC
algorithm has been extensively tested on two-dimensional synthetic datasets,
real datasets, facial recognition dataset and parameter analysis. The experimental
results indicate that our algorithm performs the best on most datasets.

KEYWORDS

K-nearest neighbors, inverse K-nearest neighbors, weighted mutual K-nearest
neighbors, local density, remaining points assignment, density peak clustering

1 Introduction

Nowadays, due to the explosive growth of social data, data mining has become
widespread in various industries, helping people understand data and make informed
decisions. Clustering technology is an unsupervised learning method in data mining that
focuses on a large amount of unlabeled data and uses data point similarity to classify. This
results in highly similar data being grouped into the same category, while there is low data
similarity between different categories [1]. Clustering algorithms can be categorized into
partition clustering [2], hierarchical clustering [3], density clustering [4], grid clustering
[5], model clustering [6], and graph clustering [7] based on different partition theories.
These algorithms have been successfully applied in areas such as customer segmentation
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[8], image processing [9-11], product recommendation [12], social
networks [13], big data application [14] and data security [15].

So far, several traditional clustering algorithms have been
developed, such as K-means [16], DBSCAN [17, 18], Spectral
Clustering (SC) [19], and Expectation-Maximization Clustering
(EM) [20], along with numerous enhanced methods. However, they
are unable to effectively handle datasets of various shapes, sizes,
and densities.

In 2014, Rodriguez and Laio [21] published a paper in Science
titled “Clustering by fast search and find of density peaks.” The
paper introduced a clustering algorithm called DPC, which gained
significant attention from researchers. DPC is a density-based
clustering algorithm that operates on two key assumptions: low-
density data points tend to cluster near the center point, and
different cluster centers are usually far apart. This algorithm
requires only one parameter and demonstrates efficient clustering
center identification and data point assignment for most datasets,
delivering strong clustering performance.

While the DPC process is straightforward and clustering is
effective, there are several issues, with two notable shortcomings.
One problem is that when dealing with manifold datasets, the
strategy for assigning remaining points can easily cause a chain
reaction, leading to significant assignment errors, as depicted in
Figure la. In this dataset, comprising three clusters, the data points
on both sides of the semicircle are incorrectly assigned to the
other two clusters. Another issue arises when dealing with datasets
featuring uneven density distribution. The lack of consideration
for sparsity between data points when calculating local density can
result in errors in selecting cluster centers, as shown in the dataset
in Figure 1b. This dataset contains two clusters with uneven density
distribution, leading to issues with multiple peaks when calculating
candidate cluster centers.

In response to the shortcomings of DPC, numerous researchers
have conducted a series of work, primarily focusing on two aspects:
optimizing local density calculation and improving assignment
strategy. In the meantime, several research findings have been
produced. These include concepts such as K-nearest neighbors [22],
fuzzy K-nearest neighbors [23], shared K-nearest neighbors [24],
layered K-nearest neighbors [25], reverse K-nearest neighbors [26],
and so on, which have been incorporated into DPC. However, these
improved algorithms still use a fixed K-value parameter and lack
consideration for the local distribution of the dataset.

Therefore, this paper proposed a new density peak clustering
algorithm WMKNNDPC based on weighted mutual K-nearest
neighbors, which, like most derived-DPC algorithms, requires a
mutual K-nearest neighbors hyper-parameter. The WMKNNDPC
algorithm can identify clusters with arbitrary shapes, densities, and
sizes, and it offers two major contributions: (1) It defines mutual
K-nearest neighbors based on K-nearest neighbors and inverse K-
nearest neighbors, and redesigns the local density of mutual K-
nearest neighbors. This method is adaptable, no longer using a fixed
parameter K, and can calculate more accurate local density based
on the local points distribution, which makes it easier to select
the correct clustering center and avoid the issue of multiple peaks.
(2) It introduces a remaining points assignment method based on
weighted mutual K-nearest neighbors, utilizing mutual K-nearest
neighbors, breadth-first search, and points membership probability
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for assigning. This approach helps in avoiding point assignment
errors and stopping the domino effect.

The paper is organized as follows: In Section 2, we analyze the
latest progress of the DPC algorithm. In Section 3, we provide a
detailed introduction to the proposed WMKNNDPC algorithm. In
Section 4, we conduct a large number of experiments and compare
our algorithm with seven classic algorithms for analysis. In the
Section 5, we provide a summary of the works and looks forward
to the future.

2 Related works

This section explains the basic theory of the DPC algorithm and
analyzes the latest research status of DPC-derived algorithms.

2.1 DPC analysis

The DPC clustering process is straightforward and easy to
comprehend [21]. Firstly, it defines two methods for local density
calculation, which are calculated using piecewise functions and
Gaussian kernels, as shown in Equations 1, 2.

1, z<0

pi=;x<di,-—dc>,x<z)={ 0 2= 0 1)
)

i\’
pi = Zexp (—((;) ) (2)

Where p; represents the local density of data point x;, djj is
the Euclidean distance from data point x; to xj, and d. is the
only truncation distance parameter. x(.) is a piecewise function
defined as follows: If the parameter z is less than 0, x(z) equals
1, otherwise x(z) equals 0. According to DPC, local density
calculation for large-scale datasets is more suitable for Equation 1,
otherwise Equation 2 is used. However, this presents a problem:
researchers do not know which method of local density calculation
is more accurate and effective for different datasets. As a result, only
two methods are employed for calculation, leading to additional
computational workload.

Secondly, DPC defines another important variable, the relative
distance §; , which represents the shortest distance from data point
x; to data point x; with higher density. The calculation method is
shown in Equation 3.

5,’: min (d’J) (3)

Xj 1 pi<pj

When data point x; has the maximum local density, DPC
considers it a peak point and sets the relative density to the
maximum value using Equation 4.

6 = max(dj) (4)

Once the local density and relative distance are calculated, DPC
identifies potential cluster centers using a decision graph. These
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FIGURE 1

Problems faced by DPC in pathbased and jain datasets. (a) DPC on pathbased. (b) DPC On Jain.
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potential cluster centers are characterized by having the highest
local density and relative distance simultaneously for data point x;.
The process for calculating potential cluster centers is outlined in
Equation 5.

Vi = pibi (5)

DPC usually selects points with high local density and
relative distance as actual clustering centers, or manually identifies
significant outliers by drawing decision graph to determine the
number of clustering centers. Finally, assign the remaining points
sequentially to the nearest and denser data points.

2.2 Research progress of DPC

Since the density peak clustering algorithm was published in
2014, numerous researchers have conducted extensive research in
the past decade to address the shortcomings of DPC.

The first stage is between 2016 and 2019. At the beginning,
the density peaks clustering based on K-nearest neighbors (DPC-
KNN) algorithm [27] redefined a new local density using the
average distance from the data point to K-nearest neighbors, while
considering the distribution differences between points, avoiding
the limitation of DPC using a unified truncation distance when
defining local density, and achieving good clustering performance.
However, DPC-KNN has two shortcomings. Firstly, it still uses
the percentage parameter to obtain K-nearest neighbors, which is
very sensitive and makes it difficult to determine the optimal value.
Secondly, it cannot accurately obtain cluster centers when dealing
with datasets with uneven density distribution. Subsequently,
the fuzzy weighted K-nearest neighbors density peak clustering
algorithm (FKNN-DPC) was proposed by Xie et al. [23], which
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has better robustness compared to DPC and DPC-KNN. FKNN-
DPC adopts the K-nearest neighbors method and fuzzy set theory
to design a new local density and develops a two-stage remaining
point assignment strategy. However, this method uses a fixed K-
value each time to calculate local density and assign sample points,
without considering the local distribution of sample points. To
address the issue of DPC dependency and truncation distance
parameters, the Natural Neighbor-based clustering algorithm with
density peaks (NaNDP) [28] was first formed by introducing the
idea of natural neighbors. NaNDP does not require additional
parameters and can expand from the cluster center by searching
for the natural neighborhood of the cluster midpoint. Finally,
extension rules are defined to determine the boundaries of the
cluster. However, NaNDP still adopts the assignment principle of
DPC, which is not good for handling boundary points. To solve the
problem of DPC not being able to correctly select cluster centers,
the adaptive density peak clustering based on K-nearest neighbors
with aggregating strategy (ADPC-KNN) [29] designed a method
for automatically selecting initial cluster centers and improved
the clustering performance by using the idea of cluster density
reachability. However, the unique parameter K of this method
needs to be manually preset. The shared-nearest-neighbor-based
clustering by fast search and find of density peaks (SNN-DPC)
algorithm was proposed by Liu et al. [24], which redefines local
density based on nearest neighbors and shared neighbors, which
can better adapt to the local environment of sample points. At the
same time, a two-stage remaining point assignment strategy was
also proposed based on shared neighbors. SNN-DPC can effectively
handle various datasets, but its problems are consistent with
FKNN-DPC, which requires the use of fixed K-nearest neighbors
parameter in the clustering process. Based on two assumptions
in DPC, the comparative density peaks clustering (CDP) [30] is
a clustering algorithm based on comparative quality and density
measurement, and experiments have shown that CDP has better
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performance than DPC in most cases. A feasible density peaks
clustering algorithm with a merging strategy (FDPC) [31] has been
proposed to address the issue of DPC being unable to handle
multiple peaks. It uses support vector machines to calculate the
feedback values between clusters after finding the initial cluster
center, and clusters based on the feedback values. In response to the
dilemma of DPC being unable to distinguish overlapping clusters,
Parmar et al. [32] designed a residual error-based density peak
clustering algorithm (REDPC), which uses residuals to calculate
local density and identify low-density sample points. This method
can generate a decision graph that is more conducive to clustering,
but it has multiple process parameters and poor autonomy.

The second stage, from 2020 to the present, has further
generated a series of DPC-derived algorithms. In 2020, a novel
systematic density based clustering method using anchor points
(APC) [33] was proposed, which uses anchor points as the
center to obtain intermediate clusters and automatically selects
appropriate clustering strategies. The experimental results show
that APC has good clustering performance in most cases. Although
APC combines the advantages of DPC and DBSCAN, the four
custom parameters incur significant time overhead. Ren et al.
[25] proposed an improved density peaks clustering algorithm
based on the layered K-nearest neighbors and subcluster merging
(LKSM-DPC) to address the issue of multiple peaks in DPC.
This algorithm uses layered K-nearest neighbors to define local
density, which is beneficial for extracting cluster centers. At
the same time, a subcluster merging strategy based on shared
neighbors and universal gravitation is designed, and comparative
experiments show that LKSM-DPC has some advantages. But
LKSM-DPC also has obvious shortcomings, that is, selecting
how many sub-clusters to merge requires a lot of trying, which
increases the time cost. To cope with imbalanced datasets, a novel
clustering algorithm related to density based clustering algorithm
for identifying diverse density clusters effectively named IDDC
[34] has emerged. It determines the local density of sample points
by defining relative density and searches for unassigned points
from a clustering perspective, designing a new assignment strategy.
However, IDDC requires two parameters. A graph adaptive density
peaks clustering algorithm based on graph theory (GADPC) [35]
was proposed in 2022. GADPC based on the turning angle and
graph connectivity automatically selects cluster centers, and the
remaining points move closer to the corresponding cluster centers.
The algorithm is more feasible when dealing with datasets with
different densities such as Jain and Spiral, but it ignores the issue of
selecting parameters for the same DPC. Similarly, for imbalanced
datasets, Zhao et al. [36] proposed a new density peaks clustering
algorithm based on fuzzy and weighted shared neighbor (DPC-
FWSN), which redefines local density using the nearest neighbors
fuzzy kernel function and designs a weighted shared neighbors
similarity assignment strategy. Experimental tests have shown that
DPC-FWSN can effectively handle datasets with uneven density
distribution, but its drawback is that it still uses a manual setting of
the nearest neighbors parameter K. Based on FKNN-DPC, Xie et al.
[37] further proposed the standard deviation weighted distance
based density peak clustering algorithm (SFKNN-DPC) with better
robustness, considering the contribution of each feature to the
distance between data points, adopting the standard deviation
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weighted distance, and designing a divide and conquer assignment
strategy. For DPC, which cannot find cluster centers in sparse
clusters, an adaptive nearest neighbors density peak clustering
algorithm (ANN-DPC) [38] was proposed. Firstly, the adaptive
nearest neighbors of points are introduced to accurately define the
local density of points. Then, the sample points are divided into
super score, core, linked, and slave points to check for suitable
cluster centers. Finally, a new assignment strategy is designed
using the adaptive nearest neighbors algorithm combined with
breadth-first search and fuzzy weighted adaptive nearest neighbors
algorithm. For ANN-DPC, the performance is excellent, but it is
still necessary to specify the number of clusters in advance. Fan
et al. [39] designed a density peak clustering based on improved
mutual K-nearest neighbor graph (MKNNG-DPC) by defining K-
nearest-neighbor sample set, distance-upper-bound point, distance
level and mutual K-nearest-neighbors set. However, this method
requires consideration of constructing a mutual K-nearest neighbor
graph, and at the same time requires two parameters: truncation
distance d. and K-nearest neighbors. In 2023, Li et al. [40]
constructed a new local density based on MKNNG-DPC and
designed a two-stage sub cluster merging method, thus proposing
a fast density peaks clustering algorithm based on improved
mutual K-nearest-neighbors and sub-cluster merging (KS-FDPC).
However, calculating the similarity of sub-clusters and merging
them both require additional storage and time overhead.

3 WMKNNDPC algorithm

In this section, we will provide a detailed introduction to our
proposed density peak clustering algorithm based on weighted
mutual K-nearest neighbors (WMKNNDPC). For the specific
technical details, please refer to the following sections.

3.1 Mutual K-nearest neighbors local
density

In DPC, local density calculation depends on the truncation
distance d.. However, determining the optimal value for d. can
be challenging when working with different datasets. KNN-DPC
addresses this issue by using the K-nearest neighbors method to
calculate local density [27]. While this approach eliminates the
need to determine d,, it overlooks the distribution around data
points, and using a fixed K-value can result in calculation errors
when identifying cluster centers. Therefore, this section introduces
a new method for local density calculation called mutual K-nearest
neighbors local density.

First, calculate the K-nearest neighbors set KNN(x;) of data
point x; using Equation 6 and sort it in ascending order by
Euclidean distance.

KNN(x;) = {x; € D |dix — djj = 0} (6)

where D represents the dataset, and djx represents the distance
between data point x; and its K-th nearest neighbor.
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The inverse K-nearest neighbors set RNN(x;) of data point x; is
defined as shown in Equation 7. RNN(x;) indicates the influence of
data point x; in the dataset. If point x; is in a high-density region,
it is usually surrounded by more data points. Conversely, if it is
in a sparse region, the number of inverse neighbors is less. The
size of the inverse K-nearest neighbors set is more likely to provide
feedback on the local distribution of the data points.

RNN(X,') = {x]' € D|x,‘ € KNN(XJ)} (7)

For a given data point x;, the mutual K-nearest neighbors
MKNN(x;) are defined based on the K-nearest neighbors and
inverse K-nearest neighbors. It represents the bidirectional local
relationship between data point x; and its neighboring points. The
set of mutual K-nearest neighbors for individual points is initially
empty. However, this paper suggests that the mutual K-nearest
neighbors set of these points should be the top 50% (Top[K/27,
K e Nt 1 < K < |D| — 1) of the K-nearest neighbor
set. The calculation method can be found in Equation 8.

and

KNN(x;) N RNN(x;), {KNN(x;) N RNN(x;)} # &
Topk/21 (KNN(x;)) , {KNN(x;) N RNN (x))} = @
(8)

Experimental analysis indicates that the number of mutual

MEKNN(x;) =

K-nearest neighbors for each data point varies, suggesting that
it is more appropriate to describe the local situation of points
using mutual K-nearest neighbors rather than fixed K-nearest
neighbors. Using mutual K-nearest neighbors provides the benefit
of accurately describing the local nearest neighbors structure of
each data point, particularly in distinguishing low-density areas.
Additionally, mutual K-nearest neighbors not only consider the
calculation of local density but also facilitate the assignment of
remaining points.

Equation 9 describes the number of mutual K-nearest
neighbors of data point x;, denoted as MK (x;), where |.| represents
the number of data points in the set MKNN(x;).

MK (x;) = IMKNN(x;)| &)

Based on mutual K-nearest neighbors, we have designed
a new method of local density p; for any data point x;, as
shown in Equation 10. This method is reconstructed from the
original local density calculation method, where the numerator
represents the number of mutual K-nearest neighbors. Due to
the inconsistency of mutual K-nearest neighbors for each data
point, it has adaptability, which is completely different from the
K-nearest neighbors method. The denominator in the equation is
the contribution of the K-nearest neighbors of the data point x; to
the local density. If the sum of the distances between x; and the
K-nearest neighbors is smaller, the local density will be larger.

MK (x;)
pi=— ’ (10)
VRG] 2jeMKNN(x) Fi
As per Equation 10, having more mutual K-nearest

neighbors between data points implies that the data point
is surrounded by more points, which significantly impacts
the local density. When multiple data points have the same
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mutual K-nearest neighbors, its important to consider the
local distribution around the data points, specifically the
Euclidean distance between the data points and their K-nearest
neighbors. This helps to better identify data with uneven
density distribution in different regions and select the correct
clustering center.

For example, Figure2 contains 20 data points, with two
diamond center points labeled A and B, and the remaining 18
as circular points. The black line represents the distance between
the data points and the center point. If the K-nearest neighbors
parameter K is set to 7, the circular points in the dashed ellipse
represent the K-nearest neighbors of A and B. We can conclude
that the actual local density at center point A is lower than that
at center point B, which is p4 < pp. For data point x; with

pi = ——K we can obtain a result where py = 4.05 is
K ijeKNN(xi) dij
greater than pgp = 3.04, which is inconsistent with reality. This

is the influence of using a fixed K-value in K-nearest neighbors,
and data point 17 also serves as the K-nearest neighbor of center
point B. If the local density calculation method designed in this
paper is used, point 17 will not be recognized as the mutual K-
nearest neighbors of center B. This method has adaptability and
can obtain pp = 6.43 greater than pa, which is more in line with
actual expectations.

3.2 A remaining points assignment method
based on weighted mutual K-nearest
neighbors

The incorrect assignment of remaining points in DPC can
trigger a chain reaction. The strategy used in the assignment should
prioritize high-density clusters which can lead to points from sparse
clusters being incorrectly assigned to dense clusters. In this paper,
a new method for assigning remaining points based on weighted
mutual K-nearest neighbors is proposed, inspired by FKNN-DPC
[23]. FKNN-DPC uses a fixed K-value for each assignment without
considering the local distribution around data points. Instead, our
proposed method utilizes weighted mutual K-nearest neighbors to
assign these remaining points. This approach, in contrast to FKNN-
DPC, is more suitable for capturing the local distribution of points
due to the flexibility of the weighted mutual K-nearest neighbors
for each data point.

The data points assignment method we propose consists of
two algorithms. Algorithm 1 uses mutual K-nearest neighbors and
breadth-first search of data points for initial priority assignment.
Building on Algorithms 1, 2 calculates the membership probability
of the remaining unassigned points using weighted mutual K-
nearest neighbors and then assigns high-probability data points to
the most suitable cluster. If there are still unassigned points, they
are classified based on their nearest neighbors. This method can
quickly assign remaining points in dense areas, where the number
of mutual K-nearest neighbors of data points is relatively large. In
sparse areas, the number of mutual K-nearest neighbors can be used
for small-scale assignments to reduce errors. It effectively adapts to
local conditions and demonstrates strong robustness.

The similarity S;; between data points x; and x; is defined as
follows: if the distance between data points is smaller and the S;;
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FIGURE 2
The influence of the K-nearest neighbors method on local density.
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value is larger, it indicates that the two data points are more similar,
as shown in Equation 11.

630)

To calculate the assignment probability p(x;, ¢;) of a data point
x; belonging to cluster ¢;, we define wj; as a weight. This weight is
obtained by the similarity S;; and the mutual K-nearest neighbors
of the data point x;j, as shown in Equation 12.

Sij

- (12)
queMKNN(Xj) Sqj

W,’j:

The value of w;;S;; represents the weighted contribution of
data point x;j to p(x;, ¢;). This consideration takes into account
the distance between data points x; and xj, as well as the
weighted mutual K-nearest neighbors distribution of data points
xj. This approach helps assign the remaining points to the most
suitable cluster. The calculation method for p(x;,c;) is shown in
Equation 13.

i) = ijEMKNN(x.)l =t wiiSij (13)
777X

where ¢; is a cluster center and belongs to the cluster center set C.
lxj = ¢y indicates that the label of data point x; belongs to c;. p(x;, ¢;)
is explicitly normalized using p (xj, ¢;) = p (xi,cr) / Y qecP (xiscr).

The following are the remaining points assignment
Algorithms 1, 2.

In Algorithm 1, there is a key criterion for initial assignment of
data point x,, which is Step 7. The purpose of step 7 is to ensure
the accuracy of initial assignment as much as possible. In other
words, when data point xp is unassigned, xp is the mutual K-nearest
neighbor of x; and the distance between data point x, and x; is
less than half of the sum of all mutual K-nearest neighbor distances
of xg.

Frontiers in Applied Mathematics and Statistics

Require: Cluster center set C, the set MKNN in dataset
D, distance matrix Dist.
Ensure: Clustering results of D.
1: for each c; eC do
2: Set the label of MKNN(c;) as I ;
3: AddQue (Que, MKNN(ci)); > Que is a queue, and
AddQue represents the enqueue operation
4: while Que # ¢ do
GetHead(Que, xq) ; S
GetHead represents the operation of getting the
head elements of the queue
for each x, e MKNN(xq) do
if 1y, ==0 and dpg < (X emamn(x,) daj ) /MK (Xq)
then
8: Set the label of x, as I, ;
9: AddQue (Que, xp) ) ;
10: end if
11: end for
12: RemoveHead(Que, xp)) ; >
RemoveHead represents the operation of removing
the head element of the queue
13: end while
14: end for

Algorithm 1. Initial assignment algorithm based on mutual K-nearest
neighbors and breadth-first search.

3.3 The procedure of WMKNNDPC

This section provides a detailed description of the
WMKNNDPC algorithm process. To illustrate the proposed
algorithm, Figure 3 presents a simple algorithm flowchart. The
WMKNNDPC algorithm can be divided into several steps: (1)
Input the dataset and calculate the Euclidean distance matrix
between the data. (2) Calculate the mutual K-nearest neighbors
for each data point by combining K-nearest neighbors and inverse
K-nearest neighbors. (3) Calculate the local density and relative
distance of each point. (4) Construct a two-dimensional decision
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Require: the unassigned remaining points set D, €D,
the set MKNN in dataset D, C.

Ensure: Clustering results of D.

1: for each x; €D, do

2: Calculate p(xj, ct) using Equations 11-13 for
all t=1,2,---,m;

3: Construct membership P, where P[i,t] =
p(xi, ct); > P is a n-by-m matrix

4: Construct max membership MP, where MP[i, 0] =
maX¢=1,.. mP[1, t] and MP[i, 1] =argmax¢_1, .. nP[I, t];
> MP is a n-by-2 matrix, MP[i, @] stores
maximum membership probability, MP[i, 1] stores
corresponding cluster label

5: end for

6: Select xp where p=argmax; MP[i, 0];

7: if P[p, MP[p, 1]] #0 then

8: flag=1;

9: end if

10: while flag do

11: Assign label 1., =MP[p, 1];

12: Update P[p, t] =0 for all t;

13: Update MP[p, 8] =0 and MP[p, 1] =0;

14: for each unassigned point x5 € MKNN(x,) do

15: Update Plq, MPlq, 111 =Plq, MP[q, 111 +WpqSpq;

16: Recompute MP[q, 0] =maxi—1. nPlqg, t];

17 Recompute MP[q, 1] =argmax¢—1. nPlq, t];

18: end for

19: Select x, where p=argmax; MP[i, 0];

20: if P[p, MP[p, 1]] ==0 then

21: flag=0;

22: end if

23: end while

24: while x; € D, and JXJ ==0 do

25: Assign label I, =1y, where xj e Top(MKNN(x;))
and Iy, #0;

26: end while

Algorithm 2. Membership assignment algorithm based on weighted
mutual K-nearest neighbors.

graph. (5) Perform initial priority assignment by Algorithm 1. (6)
Calculate the membership degree of the remaining points and
classify them using Algorithm 2. (7) Obtain the final clustering
result. Algorithm 3 provides a detailed implementation process.

3.4 Time complexity analysis

This section focuses on evaluating the time complexity of
WMKNNDPC. Assuming the size of the dataset is n, where
k represents the number of nearest neighbors. According to
the algorithm process, the time complexity is composed of
the following parts: (1) The time consumption for calculating
the Euclidean distance matrix is O(n?). (2) Calculate local
density, including calculating K-nearest neighbors, inverse K-
nearest neighbors, and mutual K-nearest neighbors, with time
complexity of O(klogn), O(kn), and o(n?), respectively. (3) The
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time complexity of calculating the relative density between data
points is O(#?). (4) The key to assignment Algorithm 1 is using
the breadth-first search, which requires one queue. In the worst-
case scenario, all data points are queued, with a time complexity of
O(n). (5) In Algorithm 2, two aspects need to be considered: first,
calculating the membership matrix of all unassigned points in the
dataset and selecting the data point with the highest membership
for category assignment, with a time complexity of O(kn); second,
updating the membership matrix and calculating the membership
probability of the data point, in the worst-case scenario is O(n?).

Based on the above analysis, we can conclude that the time
complexity of WMKNNDPC is approximately O(n?), which is
consistent with the original DPC algorithm.

4 Experiments and analyses

In this section, we will assess the performance of the
WMKNNDPC algorithm and compare it with several other
clustering algorithms, including K-means [16], DBSCAN [18],
DPC [21], and DPC-derived algorithms such as DPC-KNN [27],
FKNN-DPC [23], the density peaks clustering based on weighted
local density sequence and nearest neighbor assignment (DPCSA)
[41], and the density peaks clustering based on local fair density
and fuzzy K-nearest neighbor membership allocation strategy (LF-
DPC) [42]. To ensure the consistency of the experiment, all
tests were carried out in a consistent software and hardware
environment, utilizing an i5-11400H @ 2.70GHz CPU, 16GB RAM,
WIN10 x64 OS, and MATLAB 2015b programming software.

4.1 Test datasets

The test datasets consist of eight classic artificially synthetic
2D datasets (Abbreviation: synthetic datasets) [43] and ten real
datasets from the UCI database [44]. Testing the performance of
the proposed algorithm from different perspectives will be helpful
due to variations in data size, dimensions, and category numbers
in the test datasets. Detailed information about the datasets can be
found in Tables 1, 2.

4.2 Evaluation criteria and experimental
parameters

To assess the effectiveness of the proposed algorithm in this
paper, three classic external clustering evaluation indicators were
chosen as the metrics for the algorithm. These are the Adjusted
Rand Index [ARI [45]], Adjusted Mutual Information [AMI [46]],
and Folkes-Mallows Index [FMI [47]]. The closer the values of
these three evaluation indicators are to 1, the better the clustering
performance will be.

To compare different clustering algorithms, we fine-tuned their
parameters to achieve the best clustering performance. For K-
means clustering, the results are averaged over 10 runs due to
the initial center’s instability. The only parameter for K-means is
the number of clusters. DBSCAN requires two parameters: the
radius distance e and the minimum number MinPts. The parameter
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FIGURE 3
The WMKNNDPC algorithm flowchart.

(6)Membership assignment using weighted MKNN (5)Initial assignment using MKNN

Require: Dataset D = {xq,..., X5, ..., Xn}, preset

parameter K.
Label of D.
1: The dataset D is normalized and the Euclidean

Ensure:

distance between the data points is calculated;

2: Calculate the mutual K-nearest neighbors set of
data point x; using Equations 6-9;

3: Calculate the MKNN local density p; of data point
X; by using Equation 10;

4: Calculate the relative distance §; of data point
X; by using Equations 3, 4;

5: The
are used to construct the decision graph by

new local density and relative distance
using FEquation 5 and select the most suitable
clustering center (the number of clusters);

6: The unassigned data points are initially assigned
using mutual K-nearest neighbors and breadth-
first search by Algorithm 1;

7: The remaining
by the
membership by Algorithm 2;

unassigned points are assigned

weighted mutual K-nearest neighbors

8: Output a label for each point in dataset D.

Algorithm 3. WMKNNDPC.

of DPC is the truncation distance d., while the parameter for
DPC-KNN is a percentage p controlling the number of K-nearest
neighbors. Determining the optimal parameters for DPC and
DPC-KNN is challenging. DPCSA does not need any parameters.
WMKNNDPC, like FKNN-DPC and LF-DPC, only requires one
parameter for K-nearest neighbors, making it easier to determine
parameters compared to DPC. That is because the value of K is an
integer, while the parameter d. of DPC is a percentage, K is easier
to obtain than d,, especially for small datasets.
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TABLE 1 The details of artificially synthetic 2D datasets.

Dataset Records Attributes Clusters
Jain 373 2 2
Flame 240 2 2
Pathbased 300 2 3
Aggregation 788 2 7
Spiral 312 2 3
Compound 399 2 6
Smile 266 2 3
D31 3,100 2 31

08

4.3 Experiments on synthetic datasets

In this section, we will focus on exploring the clustering
results of various algorithms (WMKNNDPC, K-means, DBSCAN,
DPC, DPC-KNN, FKNN-DPC, DPCSA, and LF-DPC) on synthetic
datasets. We will visualize the best clustering results obtained by
each algorithm on eight datasets, as illustrated in Figures 4-11. All
algorithms, except DBSCAN, will be represented by red diamonds
for their cluster centers. Additionally, the performance of each
algorithm on the synthetic datasets will be compared based on
the ARI, AMI, and FMI clustering results in Table 3. The best
evaluation indicators have been highlighted in bold.

In the given dataset, named Jain, there is an uneven density
distribution, consisting of two semicircles. The cluster of data
points in the upper semicircle is much sparser than the cluster
in the lower semicircle. The clustering results of each algorithm
are presented in Figure 4. It is evident that DPC, DPC-KNN, and
DPCSA fail to find the correct cluster center primarily because
they do not take into account the local distribution of data points
when calculating local density. Though FKNN-DPC and LF-DPC
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TABLE 2 The details of real datasets from UCI.

Dataset Records Attributes Clusters
Seeds 210 7 3
Libras 360 91 15
WDBC 569 30 2
Parkinsons 195 23 2
Glass 214 9 6
Wine 178 13 3
SCADI 70 206 7
Ecoli 336 8 8
Dermatology 366 33 6
Banknote 1,372 4 2

can accurately locate cluster centers, some sparse data points
in the upper half circle are incorrectly assigned to the lower
half circle cluster due to the assignment strategy. K-means can
approximately find the cluster center, but due to the assignment
strategy considering only distance, some points have been assigned
incorrectly. DBSCAN is the best-performing algorithm among
the comparison algorithms, except for WMKNNDPC, which
can correctly identify two clusters, but there are individual
boundary points with category attribution errors. In contrast,
our algorithm not only accurately finds cluster centers but also
perfectly assigns remaining points. This is mainly due to the
proposed new local density calculation method and remaining
points assignment algorithm.

The Flame dataset consists of two evenly distributed clusters.
According to the experimental results shown in Figure 5, both the
original DPC and its derived algorithms (DPC-KNN, DPCSA, LF-
DPC, and WMKNNDPC) can accurately identify two class centers
and correctly assign the remaining points. However, FKNN-DPC
correctly identifies cluster centers but has an assignment error in
one data point on each side of the upper cluster. K-means can find
suitable clustering centers but incorrectly attribute the data points
in both clusters, resulting in the worst clustering performance.
DBSCAN can correctly classify most of the data points, but it
identifies 14 boundary points as noise.

The dataset Pathbased is a manifold dataset that consists of
one circular cluster wrapping around two spherical clusters. Due
to the proximity of data points on both sides of the spherical
cluster to the circular cluster, assignment errors are easily caused.
In Figure 6, both DPC and its DPC-derived algorithms can find
cluster centers. The data points on both sides of the circular cluster
in K-means, DPC, and DPC-KNN are incorrectly assigned to the
spherical cluster, which is due to the assignment strategy that
only considers distance. FKNN-DPC and DPCSA improved the
assignment strategy, but there was an error in dividing the data
points on the right side of the circular cluster. The clustering
performance of DBSCAN is similar to that of DPCSA, but six
spherical cluster boundary points are identified as noise. LF-DPC
and WMKNNDPC can correctly partition the data points on both
sides of a circular cluster, but there are still a few adhesive boundary
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point assignment errors, and our algorithm’s performance is only
inferior to LF-DPC.

Figure 7 illustrates the clustering performance of each
algorithm on the Aggregation dataset. DBSCAN, DPC, DPC-KNN,
FKNN-DPC, DPCSA, LF-DPC, and WMKNNDPC all demonstrate
the ability to achieve good clustering results and identify seven
clusters with different shapes. Our algorithm better than other
comparative algorithms and attains the highest evaluation values
for ARI, AMI, and FMI. K-means exhibits the poorest clustering
performance on this dataset, which may be a common issue in
partitioning clustering algorithms.

Spiral is composed of three spiral clusters, which are typical
nonspherical clusters. The accompanying Figure 8 illustrates that,
except K-means, all other algorithms such as DBSCAN, DPC, and
DPC-derived algorithms are able to cluster perfectly, with only
slight variations in cluster centers.

In Figure 9, the performance of WMKNNDPC and seven other
comparison algorithms on the Compound dataset is demonstrated.
The Compound dataset is a manifold dataset with an uneven
density distribution and six arbitrary shapes. Detecting clusters in
this dataset is a challenging task for many clustering algorithms.
For example, K-means failed to identify two cluster centers on
Compound, resulting in clustering errors for most points. DBSCAN
only found four clusters and identified a large number of sparse
boundary points as noise. DPC mistakenly identified two cluster
centers from one cluster in the bottom left corner, mainly due
to the local density calculation method. DPC-KNN could only
find one cluster center in the bottom left of two clusters, while
the sparse cluster on the right recognized two cluster centers,
showcasing typical challenges faced by local density calculation
methods. FKNN-DPC, DPCSA, and LE-DPC showed improved
performance, but still faced challenges in finding cluster centers
when dealing with sparse clusters and in identifying two cluster
centers in the geese-shaped cluster in the upper right corner. One
of the main reasons for these issues is the use of a fixed K-value,
which does not adapt to the local distribution of data points.
Although WMKNNDPC also faced challenges in identifying cluster
centers in geese-shaped clusters, it managed to find the cluster
centers of sparse clusters and correctly allocate sparse cluster data
points. Additionally, the evaluation indicators of WMKNNDPC
were significantly better than those of other algorithms.

The Smile dataset is surrounded by one semi-circular cluster
and two square clusters, similar to the Pathbased dataset. In
Figure 10, we can see the clustering results of each algorithm.
Although K-means identifies three cluster centers, it incorrectly
classifies the points of circular clusters into two square clusters.
Similar issues are observed with DPC and DPC-KNN, as they
also focus on assigning data points to the nearest neighbors in
high-density areas. Our WMKNNDPC algorithm has the same
performance as DBSCAN, FKNN-DPC, DPCSA, and LF-DPC, all
of which can achieve perfect clustering.

The D31 dataset consists of 31 clusters containing a total
of 3,100 data points. Several of these clusters are very close to
each other, with some even partially overlapping. Results from
the experiment shown in Figure 11 indicate that the K-means,
DPC, and DPC-derived algorithms demonstrate strong clustering
performance and are able to identify boundary points of different
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FIGURE 4
The clustering results of each algorithm on the Jain dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g) LF-DPC.
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The clustering results of each algorithm on the Flame dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g)
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categories to a certain extent. According to various evaluation
indicators, FKNN-DPC exhibits the best clustering performance,
with our algorithm being only slightly inferior to FKNN-DPC and
LF-DPC, but better than the other five algorithms.

In summary, the algorithm presented in this paper
demonstrated excellent clustering performance on six artificial

synthesis datasets. Our WMKNNDPC algorithm performed

Frontiers in Applied Mathematics and Statistics

second best on the Pathbased dataset, trailing only LF-DPC.
However, it still achieved impressive results, with an ARI of 0.9299,
AMI of 0.9004, and FMI of 0.9532. The results on the D31 dataset
were similar to those on the Pathbased dataset. Therefore, we
have confidence in the proposed algorithm, which is based on
mutual K-nearest neighbors local density and remaining points
assignment, and its strong clustering performance.
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The clustering results of each algorithm on the Aggregation dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e)
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4.4 Experiments on real datasets

In this section, we will evaluate the clustering performance
of WMKNNDPC using real datasets from various research
fields. These datasets vary in size, dimensions, and cluster
of
the proposed algorithm’s adaptability. Table 4 displays the

numbers, allowing for a comprehensive assessment

clustering results of eight different algorithms applied to ten

real datasets.
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Based on the data in Table 4, it is evident that the proposed
WMKNNDPC algorithm is better than the other seven algorithms
in ARI, AMI, and FMI evaluation indicators across the Libras,
WDBC, Parkinsons, SCADI, Ecoli, and Dermatology datasets.
Additionally, our algorithm shows superior performance in the
ARI and AMI indicators compared to other algorithms in the
Glass dataset.

In the Seeds dataset, the WMKNNDPC algorithm ranks second
among all algorithms and is very close to FKNN-DPC in the
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evaluation indicators. FKNN-DPC’s ARI value is 0.8024, while our
ARI value is 0.7913, indicating that they are very comparable.
Our algorithm performs far superior to the other six comparative
algorithms. This is because FKNN-DPC obtains the best clustering
result after parameter tuning, and our algorithm selects a K-value
that is slightly larger to ensure that each point has mutual K-nearest
neighbors with each other.

Frontiers in Applied Mathematics and Statistics

In comparing the Wine dataset, we observed that LF-DPC
achieved the best clustering performance based on various
indicators through local fair density, closely followed by FKNN-
DPC and our algorithm.

In the Banknote dataset, DPCSA without any parameters
achieved the best clustering performance, outperforming other
algorithms. Our algorithm ranked second in all comparison results,
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The clustering results of each algorithm on the Smile dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g)
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The clustering results of each algorithm on the D31 dataset. (a) K-means. (b) DBSCAN. (c) DPC. (d) DPC-KNN. (e) FKNN-DPC. (f) DPCSA. (g) LF-DPC.
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showing that DPCSA’s remaining points assignment algorithm is
well-suited for this dataset.

According to Table 4, the WMKNNDPC algorithm performs
better in clustering than other algorithms in most cases. It
achieved the highest ARI and AMI indicators on the 7/10 dataset
and the highest FMI on the 6/10 dataset. Even though the
comparison algorithms were optimized, they did not perform
as well as our WMKNNDPC algorithm. This is mainly due

Frontiers in Applied Mathematics and Statistics

to the unique method for calculating the density of mutual
K-nearest neighbors and the remaining points assignment
algorithm based on weighted mutual K-nearest neighbors.
Therefore, we can conclude that the WMKNNDPC algorithm
is not only effective in discovering cluster centers but also in
correctly assigning remaining points. It also demonstrates good
adaptability on both manifold datasets and datasets with uneven
density distribution.

frontiersin.org


https://doi.org/10.3389/fams.2025.1598165
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Ren et al.

TABLE 3 Cluster results on synthetic datasets.

10.3389/fams.2025.1598165

‘ Algorithm ARI AMI FMI Parm ARI AMI FMI Parm ‘
Jain Flame
K-means 0.5767 0.4916 0.8200 2 0.5116 0.4442 0.7646 2
DBSCAN 0.9887 0.9691 0.9956 0.05/9 0.9081 0.7570 0.9561 0.065/4
DPC 0.6183 0.5396 0.8386 1% 1 1 1 5%
DPC-KNN 0.7146 0.6183 0.8819 2% 1 1 1 0.50%
FKNN-DPC 0.8224 0.7092 0.9359 43 0.9666 0.9267 0.9845 5
DPCSA 0.0442 0.2167 0.5924 - 1 1 1 -
LF-DPC 0.4059 0.2936 0.8270 40 1 1 1 2
WMKNNDPC 1 1 1 30 1 1 1 3
Pathbased Aggregation
K-means 0.4613 0.5098 0.6617 3 0.7136 0.8048 0.7742 7
DBSCAN 0.5890 0.6884 0.7317 0.065/4 0.9779 0.9529 0.9827 0.04/6
DPC 0.4530 0.4997 0.6585 2% 0.9956 0.9922 0.9966 2%
DPC-KNN 0.4602 0.5080 0.6617 2% 0.9935 0.9892 0.9949 0.50%
FKNN-DPC 0.7323 0.7744 0.8226 8 0.9949 0.9907 0.9960 8
DPCSA 0.6133 0.7073 0.7511 - 0.9581 0.9537 0.9673 -
LE-DPC 0.9699 0.9525 0.9799 8 0.9949 0.9905 0.9960 7
WMKNNDPC 0.9299 0.9004 0.9532 10 0.9978 0.9955 0.9983 23
Spiral Compound
K-means -0.0057 -0.0052 0.3277 3 0.7687 0.7853 0.8276 6
DBSCAN 1 1 1 0.04/2 0.8402 0.7839 0.8850 0.08/14
DPC 1 1 1 2% 0.5989 0.7798 0.6963 2%
DPC-KNN 1 1 1 4% 0.8087 0.7913 0.8661 0.50%
FKNN-DPC 1 1 1 6 0.8426 0.8337 0.8898 8
DPCSA 1 1 1 - 0.5738 0.7117 0.6714 -
LF-DPC 1 1 1 5 0.8409 0.8231 0.8891 10
WMKNNDPC 1 1 1 5 0.9867 0.9703 0.9900 11
Smile D31
K-means 0.4875 0.5828 0.6650 3 0.9125 0.9501 0.9156 31
DBSCAN 1 1 1 0.08/5 0.8078 0.8895 0.8186 0.04/40
DPC 0.7210 0.7799 0.8166 4% 0.9332 0.9539 0.9354 2%
DPC-KNN 0.7179 0.7794 0.8148 6% 0.9357 0.9549 0.9378 2%
FKNN-DPC 1 1 1 6 0.9516 0.9653 0.9531 23
DPCSA 1 1 1 - 0.9353 0.9552 0.9374 -
LE-DPC 1 1 1 6 0.9473 0.9620 0.9490 20
WMKNNDPC 1 1 1 10 0.9362 0.9553 0.9382 30

Bold values indicate that the corresponding algorithm achieved optimal performance on specific evaluation metric (ARI, AMI, FMI) of the synthetic dataset.

4.5 Experiments on Olivetti face dataset

To further evaluate the performance of WMKNNDPC, we
conducted experiments on the Olivetti face dataset to detect density
peaks, complete clustering and compare with DPC, FKNN-DPC,
and DPCSA. The Olivetti face dataset [48, 49] is a widely used test
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dataset in density peak clustering and machine learning. It consists
of 40 types of faces, with each type having 10 different images.

To reduce experimental costs and computational load, we
randomly selected 100 pictures of 10 types of faces for the
experiment. In Figure 12, it is observed that DPC and DPCSA
identified 11 and 12 density peaks, respectively, but did not
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TABLE 4 Cluster results on real datasets.

10.3389/fams.2025.1598165

Algorithm ARI AMI FMI Parm A AMI FMI Parm
Seeds Libras
K-means 0.7049 0.6705 0.8026 3 0.3032 0.5230 0.3528 15
DBSCAN 0.5291 0.5302 0.6711 0.24/16 0.2348 0.3598 0.2799 0.9/1
DPC 0.7341 0.7172 0.8231 2% 0.2984 0.5138 0.3682 0.40%
DPC-KNN 0.7448 0.7144 0.8297 1% 0.3051 0.5471 0.3666 1%
FKNN-DPC 0.8024 0.7684 0.8680 4 0.3211 0.5367 0.3943 10
DPCSA 0.6873 0.6609 0.7918 - 0.2683 0.4939 0.3572 -
LE-DPC 0.7777 0.7381 0.8516 8 0.3437 0.5406 0.3996 5
WMKNNDPC 0.7913 0.7607 0.8605 8 0.4137 0.6016 0.4754 11
WDBC Parkinsons
K-means 0.7302 0.6110 0.8770 2 0.0520 0.2129 0.5957 2
DBSCAN 0.4786 0.3581 0.7570 0.46/38 0.0252 0.0071 0.5775 0.5/17
DPC 0.4705 0.4146 0.7860 0.40% 0.2686 0.1772 0.8140 0.20%
DPC-KNN 0.4552 0.4017 0.7813 1% 0.2686 0.1772 0.8140 2%
FKNN-DPC 0.4452 0.3932 0.7783 6 0.2686 0.1772 0.8140 5
DPCSA 0.3771 0.3361 0.7595 - 0.2686 0.1772 0.8140 -
LE-DPC 0.4756 0.4189 0.7875 4 0.2686 0.1772 0.8140 6
WMKNNDPC 0.7613 0.6423 0.8894 2 0.3632 0.2151 0.8190 5
Glass Wine
K-means 0.1363 0.2113 0.3766 6 0.8471 0.8301 0.8984 3
DBSCAN 0.0697 0.167 0.3197 0.1/2 0.5292 0.5484 0.7121 0.5/21
DPC 0.1337 0.1758 0.5379 2% 0.6724 0.7065 0.7835 2%
DPC-KNN 0.1809 0.1652 0.5395 2% 0.6990 0.7228 0.8006 8%
FKNN-DPC 0.2209 0.2385 0.5165 7 0.8819 0.8566 0.9215 8
DPCSA 0.1818 0.1646 0.5402 - 0.7414 0.7480 0.8283 -
LE-DPC 0.1806 0.1669 0.5311 7 0.9150 0.8800 0.9436 7
WMKNNDPC 0.2316 0.2836 0.5317 10 0.8685 0.8473 0.9126 8
SCADI Ecoli
K-means 0.4583 0.4910 0.5805 7 0.4957 0.5192 0.6174 8
DBSCAN - - - - 0.0947 0.0696 0.5203 0.2/6
DPC 0.5618 0.4966 0.6684 2% 0.7054 0.5816 0.7983 1%
DPC-KNN 0.5627 0.4759 0.6690 2% 0.6913 0.5817 0.7939 5%
FKNN-DPC 0.6191 0.5319 0.7122 6 0.5914 0.5596 0.7071 7
DPCSA 0.5939 0.4988 0.6932 - 0.4883 0.4229 0.6787 -
LE-DPC 0.6953 0.5872 0.7736 6 0.7060 0.5877 0.8014 6
WMKNNDPC 0.7621 0.6419 0.8216 4 0.7185 0.6067 0.8037 6
Dermatology Banknote
K-means 0.7312 0.8741 0.7856 6 0.0223 0.0168 0.5139 2
DBSCAN 0.4161 0.5176 0.5293 0.98/2 0.8260 0.7542 0.9099 0.1/5
DPC 0.6622 0.7167 0.7487 0.40% 0.8008 0.7751 0.8968 1%
DPC-KNN 0.6349 0.7731 0.7089 1% 0.3955 0.3575 0.6524 0.8%
(Continued)
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TABLE 4 (Continued)

10.3389/fams.2025.1598165

‘ Algorithm ARI AMI FMI Parm ARI AMI FMI Parm ‘
FKNN-DPC 0.8654 0.8741 0.8994 6 0.7702 0.7576 0.8793 20
DPCSA 0.6062 0.7451 0.6896 - 0.9653 0.9359 0.9828 -
LE-DPC 0.8288 0.8345 0.8704 8 0.7702 0.7576 0.8793 10
WMKNNDPC 0.8703 0.8747 0.9035 9 0.9321 0.8717 0.9664 15

Bold values indicate that the corresponding algorithm achieved optimal performance on specific evaluation metric (ARI, AMI, FMI) of the real dataset.

a. b.

FIGURE 12

Select clustering centers in the Olivetti face dataset. (a) DPC (p = 3%). (b) KNN-DPC (k = 3). (c) DPCSA. (d) WMKNNDPC (k = 4).

C. d.

FIGURE 13
Graphical display of clustering results on Olivetti face dataset. (a) DPC (p = 3%). (b) KNN-DPC (k = 3). (c) DPCSA. (d) WMKNNDPC (k = 4).

accurately find the ideal 10 density peaks. Our WMKNNDPC
performed similarly to FKNN-DPC in density peak detection,
efficiently identifying 10 density peaks. Therefore, WMKNNDPC
is better than DPC and DPCSA in locating cluster centers in the
Olivetti face dataset.

We evaluated the clustering performance of WMKNNDPC on
10 different types of faces. We chose 10 density peaks of DPC,
FKNN-DPC, DPCSA and WMKNNDPC as the clustering centers.
The final clustering results can be seen in Figure 13, where white
box dots indicate the clustering centers. It is evident that DPC
is only able to accurately identify six cluster centers. However,
in groups 3 and 6, multiple cluster centers appear due to its
local density calculation method. FKNN-DPC and DPCSA can
identify seven cluster centers, but there may still be multiple
peaks problem. This is mainly because they use a fixed K-value
for local density without considering the local distribution of the

Frontiers in Applied Mathematics and Statistics

samples. However, our algorithm can efficiently identify 9 cluster
centers. As shown in the clustering indicators results in Figure 14,
WMKNNDPC is far superior to the other three algorithms in
ARI, AMI, and FMI evaluation indicators. This further confirms
the good performance of the proposed algorithm in cluster center
recognition and remaining points assignment, mainly due to the
adaptive ability of weighted mutual K-nearest neighbors.

4.6 Analyze different parameters of
WMKNNDPC

This section will discuss the impact of the unique parameter K
of WMKNNDPC on clustering performance. Four typical mainfold
datasets and datasets with uneven density distribution (Jain,
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0.8 Comparison results on Olivetti face dataset
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FIGURE 14
Comparison results of evaluation indicators on Olivetti face dataset.
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FIGURE 15
Results on four synthetic datasets with different parameter. (a) Jain dataset. (b) Pathbased dataset. (c) Aggregation dataset. (d) Compound dataset.
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FIGURE 16
Results on four real datasets with different parameter. (a) Libras dataset. (b) Parkinsons dataset. (c) SCADI dataset. (d) Dermatology dataset.
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TABLE 5 Comparison results of running time.

10.3389/fams.2025.1598165

Dataset Records FKNN-DPC DPCSA LF-DPC WMKNNDPC
Jain 373 0.1954 0.1287 0.2077 0.3061
Flame 240 0.1975 0.1204 0.2719 0.3105
Pathbased 300 0.2094 0.1235 0.2202 0.2523
Aggregation 788 0.6702 0.1668 0.7621 0.8369
Spiral 312 0.2169 0.1297 0.2243 0.2722
Compound 399 0.2016 0.1438 0.2077 0.3072
Smile 266 0.2940 0.1312 0.2844 0.3614
D31 3100 5.8327 1.0205 6.2774 7.8623
Seeds 210 0.2255 0.1255 0.1759 0.2423
Libras 360 0.2108 0.1445 0.3529 0.3716
WDBC 569 0.4724 0.1510 0.8468 0.4890
Parkinsons 195 0.2303 0.1182 0.2123 0.2893
Glass 214 0.1786 0.1291 0.1939 0.2504
Wine 178 0.1603 0.1247 0.1734 0.2323
SCADI 70 0.1408 0.1252 0.1511 0.1488
Ecoli 336 0.2078 0.1388 0.2747 0.3945
Dermatology 366 0.2349 0.1320 0.2465 0.3177
Banknote 1372 4.1260 0.3005 4.6558 5.7752
Olivetti face 400 0.2326 0.1864 0.2456 0.3056

Pathbased, Aggregation and Compound), and four real datasets
from UCI (Libras, Parkinsons, SCADI, and Dermatology) were
used for experimental analysis.

Figure 15 displays the experimental results of parameters on
the synthetic datasets. Differently colored lines represent various
clustering indicators. The parameter K-value of the Jain dataset in
Figure 15a ranges from 29 to 38. It is evident that WMKNNDPC
performs clustering exceptionally well, except when K-values are
31, 37, and 38. Even in the worst case scenario, when K =
37, the Adjusted Rand Index is 0.9887. From Figure 15b, it is
evident that the overall performance of WMKNNDPC is generally
stable, except for K-values of 12 and 15. In the Aggregation
parameter experiment, it was observed that WMKNNDPC is not
significantly affected by the parameter K, and it exhibits a very
good clustering effect. Upon examining Figure 15d, itis evident that
the performance of WMKNNDPC experiences a slight decrease
with an increase in the K-value, but overall performance remains
relatively stable. However, in some extreme cases, such as in the Jain
dataset, when the K-value is relatively small (K = 6), our algorithm
obtains an ARI value of 0.5222. This is mainly because the K-
value is small and there are fewer mutual K-nearest neighbors,
making it difficult to capture the local distribution of data points.
In the Aggregation dataset (with a size of 788), when the K-
value is relatively large (K = 50,60,70), our algorithm obtains
ARI values of 0.9095, 0.9072, and 0.9095, respectively. We can
observe that when the K-value is relatively large, the clustering
performance of WMKNNDPC on the Aggregation dataset remains
relatively stable.

Frontiers in Applied Mathematics and Statistics

In Figure 16, the experimental results of the parameters on real
datasets are presented. It was found that the optimal parameter
value for the Libras dataset is K = 11. There are slight
fluctuations in the performance of WMKNNDPC on both sides
of the optimal parameter. In Figure 16b, our algorithm achieved
the best clustering performance when K = 5. The clustering
performance of WMKNNDPC is very stable when K > 5. Similarly,
in the testing of SCADI and Dermatology datasets, it is observed
that WMKNNDPC is basically not affected by parameter and has
good clustering performance.

According to parameter testing, the parameter of the
WMKNNDPC algorithm is within a reasonable range, and its
clustering performance is basically not affected by synthetic and
real datasets. The main reason is that mutual K-nearest neighbors
have adaptability and can effectively discover the true cluster
centers. Moreover, our proposed remaining points assignment
method based on weighted mutual K-nearest neighbors can
effectively improve clustering accuracy.

4.7 Running time analysis

This section mainly analyzes the running time of the proposed
algorithm and the comparative algorithm. DPC is a basic algorithm
with significantly lower running time; DPC-KNN has recently
improved local density and its running time is relatively low; The
clustering principles of K-means and DBSCAN are inconsistent
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with the density peak clustering principle and lack comparability.
Therefore, the reason for choosing FKNN-DPC, DPCSA, and LF-
DPC as comparison algorithms is that these three algorithms
simultaneously improve local density and optimize the remaining
point allocation mechanism, which has comparative analysis value.

The running time of WMKNNDPC algorithm and comparative
algorithms (FKNN-DPC, DPCSA, and LF-DPC) is shown in
Table 5. The running time is the average of three runs of each
algorithm, rounded to four decimal places, in seconds. We
can see that DPCSA has the lowest running time because the
algorithm uses a fixed K-value to calculate local density and allocate
remaining points, without preset parameters. The running time
of FKNN-DPC and LF-DPC is at the same level because the
clustering principles of these two algorithms are very similar.
Although WMKNNDPC has higher running time on most datasets
compared to other algorithms, this is because our algorithm
requires calculating weighted mutual K-nearest neighbors, which
increases the time overhead in calculating local density and
allocating remaining points. However, the clustering results are
relatively good.

5 Conclusion

This paper introduces a novel density peak clustering algorithm
called WMKNNDPC, which is based on weighted mutual K-
nearest neighbors. It includes a local density calculation method for
mutual K-nearest neighbors to address DPC’s difficulty in finding
cluster centers in unevenly distributed clusters. Additionally, a
remaining points assignment method based on weighted mutual
K-nearest neighbors is designed, which is more adaptive than
FKNN-DPC and LE-DPC. The initial assignment is carried out
using mutual K-nearest neighbors and breadth-first search, and
the remaining points are further assigned using the membership
assignment algorithm of weighted mutual K-nearest neighbors.
Extensive experimental testing shows that WMKNNDPC performs
better than the original DPC and DPC-derived algorithms on most
datasets, and its clustering results also surpass those of classical K-
means and DBSCAN. However, it's worth noting that, while the
algorithm has certain advantages, the selection of cluster centers
still requires manual intervention. Future research will focus on
automating the selection of cluster centers, especially in clusters
with uneven distribution.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories and
accession number(s) can be found at: http://archive.ics.uci.edu/.
The relevant data and source code of this article can be found in
the Supplementary material folder.

Frontiers in Applied Mathematics and Statistics

19

10.3389/fams.2025.1598165

Author contributions

CR: Writing - review & editing, Writing - original draft. CL:
Writing - review & editing, Supervision. YY: Formal analysis,
Supervision, Writing - review & editing. WY: Supervision, Writing
- review & editing. RG: Writing - review & editing, Methodology.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This work
was supported by the High-Level Departure Project of Yibin
University (Grant No. 2023QHO02) and Science and Technology

Project of Sichuan Province (Grant Nos. 2024ZYD0089
and 2024YFHZ0022).
Acknowledgments

The authors express their gratitude to the researchers who
provided the source codes of the comparative algorithms and the
experimental data for this paper.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen Al was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.2025.
1598165/full#supplementary-material

frontiersin.org


https://doi.org/10.3389/fams.2025.1598165
http://archive.ics.uci.edu/
https://www.frontiersin.org/articles/10.3389/fams.2025.1598165/full#supplementary-material
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Ren et al.

References

1. Frey BJ, Dueck D. Clustering by passing messages between
data points. Science. (2007) 315:972-6. doi: 10.1126/science.11
36800

2. Borlea ID, Precup RE, Borlea AB, Iercan D. A unified form of fuzzy C-means
and K-means algorithms and its partitional implementation. Knowl-Based Syst. (2021)
214:106731. doi: 10.1016/j.knosys.2020.106731

3. Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview, IL.
Wiley Interdiscip Rev: Data Min Knowl Discov. (2017) 7:e1219. doi: 10.1002/widm.1219

4. Bai L, Cheng X, Liang J, Shen H, Guo Y. Fast density clustering
strategies based on the k-means algorithm. Pattern Recognit. (2017) 71:375-86.
doi: 10.1016/j.patcog.2017.06.023

5. Zhao ], Tang J, Fan T, Li C, Xu L. Density peaks clustering based on
circular partition and grid similarity. Concurr Comput Pract Exp. (2019) 32:e5567.
doi: 10.1002/cpe.5567

6. Yang MS, Chang-Chien S], Nataliani Y. Unsupervised fuzzy model-based
Gaussian clustering. Inf Sci. (2019) 481:1-23. doi: 10.1016/j.ins.2018.12.059

7.Yin H, Benson AR, Leskovec J, Gleich DF. Local higher-order graph
clustering. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York, NY: ACM (2017). p. 555-64.
doi: 10.1145/3097983.3098069

8. Li Y, Chu X, Tian D, Feng J, Mu W. Customer segmentation using K-means
clustering and the adaptive particle swarm optimization algorithm. Appl Soft Comput.
(2021) 113:107924. doi: 10.1016/j.as0¢.2021.107924

9. Huang L, Ruan S, Denceux T. Application of belief functions to medical image
segmentation: a review. Inf Fusion. (2023) 91:737-56. doi: 10.1016/j.inffus.2022.11.008

10. Lei T, Liu B, Jia X, Zhang X, Meng H, Nandi AK. Automatic fuzzy clustering
framework for image segmentation. IEEE Trans Fuzzy Syst. (2019) 28:2078-92.
doi: 10.1109/TFUZZ.2019.2930030

11. Tu B, Zhang X, Kang X, Wang J, Benediktsson JA. Spatial density peak clustering
for hyperspectral image classification with noisy labels. IEEE Trans Geosci Remote Sens.
(2019) 57:5085-97. doi: 10.1109/TGRS.2019.2896471

12. Kolhe L, Jetawat AK, Khairnar V. Robust product recommendation system
using modified grey wolf optimizer and quantum inspired possibilistic fuzzy C-means.
Cluster Comput. (2021) 24:953-68. doi: 10.1007/s10586-020-03171-6

13. Cai Q, Gong M, Ma L, Ruan S, Yuan F, Jiao L. Greedy discrete particle swarm
optimization for large-scale social network clustering. Inf Sci. (2015) 316:503-16.
doi: 10.1016/.ins.2014.09.041

14. Qiu T, Li YJ. Fast LDP-MST: an efficient density-peak-based clustering
method for large-size datasets. IEEE Trans Knowl Data Eng. (2023) 35:4767-80.
doi: 10.1109/TKDE.2022.3150403

15. Lv Z, Di L, Chen C, Zhang B, Li N. A fast density peak clustering method for
power data security detection based on local outlier factors. Processes. (2023) 11:2036.
doi: 10.3390/pr11072036

16. Nie F, Li Z, Wang R, Li X. An effective and efficient algorithm for K-means
clustering with new formulation. IEEE Trans Knowl Data Eng. (2022) 35:3433-43.
doi: 10.1109/TKDE.2022.3155450

17. Ester M, Kriegel HP, Sander ], Xu X. A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD’96). Portland, OR: AAAI
Press (1996). p. 226-231.

18. Schubert E, Sander J, Ester M, Kriegel HP, Xu X. DBSCAN revisited, revisited:
why and how you should (still) use DBSCAN. ACM Trans Database Syst. (2017)
42:1-21. doi: 10.1145/3068335

19. Shi D, Wang ], Cheng D, Gao J. A global-local affinity matrix model via
EigenGap for graph-based subspace clustering. Pattern Recognit Lett. (2017) 89:67-72.
doi: 10.1016/j.patrec.2016.12.023

20. Asheri H, Hosseini R, Araabi BN. A new EM algorithm for flexibly tied
GMMs with large number of components. Pattern Recognit. (2021) 114:107836.
doi: 10.1016/j.patcog.2021.107836

21. Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science.
(2014) 344:1492-6. doi: 10.1126/science.1242072

22. Peterson  LE.  K-nearest
doi: 10.4249/scholarpedia.1883

23. Xie J, Gao H, Xie W, Liu X, Grant PW. Robust clustering by detecting density
peaks and assigning points based on fuzzy weighted K-nearest neighbors. Inf Sci. (2016)
354:19-40. doi: 10.1016/.ins.2016.03.011

neighbor.  Scholarpedia. ~ (2009)  4:1883.

24. Liu R, Wang H, Yu X. Shared-nearest-neighbor-based clustering by fast search
and find of density peaks. Inf Sci. (2018) 450:200-26. doi: 10.1016/j.ins.2018.03.031

25. Ren C, Sun L, Yu Y, Wu Q. Effective density peaks clustering algorithm based
on the layered k-nearest neighbors and subcluster merging. IEEE Access. (2020)
8:123449-68. doi: 10.1109/ACCESS.2020.3006069

Frontiers in Applied Mathematics and Statistics

10.3389/fams.2025.1598165

26. Wu C, Lee J, Isokawa T, Yao ], Xia Y. Efficient clustering method based on density
peaks with symmetric neighborhood relationship. IEEE Access. (2019) 7:60684-96.
doi: 10.1109/ACCESS.2019.2912332

27. Du M, Ding S, Jia H. Study on density peaks clustering based on k-nearest
neighbors and principal component analysis. Knowl-Based Syst. (2016) 99:135-45.
doi: 10.1016/j.knosys.2016.02.001

28. Cheng D, Zhu Q, Huang J, Yang L. Natural neighbor-based clustering algorithm
with density peeks. In: 2016 International Joint Conference on Neural Networks
(IJCNN). Vancouver, BC: IEEE (2016). p. 92-8. doi: 10.1109/IJCNN.2016.7727185

29. Yaohui L, Zhengming M, Fang Y. Adaptive density peak clustering based on
K-nearest neighbors with aggregating strategy. Knowl-Based Syst. (2017) 133:208-20.
doi: 10.1016/j.knosys.2017.07.010

30. Li Z, Tang Y. Comparative density peaks clustering. Expert Syst Appl. (2018)
95:236-47. doi: 10.1016/j.eswa.2017.11.020

31. Xu X, Ding S, Xu H, Liao H, Xue Y. A feasible density peaks
clustering algorithm with a merging strategy. Soft Comput. (2019) 23:5171-83.
doi: 10.1007/s00500-018-3183-0

32. Parmar M, Wang D, Zhang X, Tan AH, Miao C, Jiang ], et al. REDPC: a residual
error-based density peak clustering algorithm. Neurocomputing. (2019) 348:82-96.
doi: 10.1016/j.neucom.2018.06.087

33. Wang Y, Wang D, Pang W, Miao C, Tan AH, Zhou Y. A systematic density-
based clustering method using anchor points. Neurocomputing. (2020) 400:352-70.
doi: 10.1016/j.neucom.2020.02.119

34. Wang Y, Yang Y. Relative density-based clustering algorithm for identifying
diverse density clusters effectively. Neural Comput Appl. (2021) 33:10141-57.
doi: 10.1007/s00521-021-05777-2

35. Xu T, Jiang J. A graph adaptive density peaks clustering algorithm for automatic
centroid selection and effective aggregation. Expert Syst Appl. (2022) 195:116539.
doi: 10.1016/j.eswa.2022.116539

36. Zhao ], Wang G, Pan JS, Fan T, Lee I. Density peaks clustering algorithm based
on fuzzy and weighted shared neighbor for uneven density datasets. Pattern Recognit.
(2023) 139:109406. doi: 10.1016/j.patcog.2023.109406

37. Xie J, Liu X, Wang M. SFKNN-DPC: standard deviation weighted
distance based density peak clustering algorithm. Inf Sci. (2024) 653:119788.
doi: 10.1016/.ins.2023.119788

38. Yan H, Wang M, Xie J. ANN-DPC: density peak clustering by
finding the adaptive nearest neighbors. Knowl-Based Syst. (2024) 294:111748.
doi: 10.1016/j.knosys.2024.111748

39. Fan]JC, Jia PL, Ge L. Mk-NNG-DPC: density peaks clustering based on improved
mutual K-nearest-neighbor graph. Int J Mach Learn Cybern. (2019) 11:1179-95.
doi: 10.1007/513042-019-01031-3

40. Li C, Ding S, Xu X, Hou H, Ding L. Fast density peaks clustering algorithm
based on improved mutual K-nearest-neighbor and sub-cluster merging. Inf Sci. (2023)
647:19. doi: 10.1016/j.ins.2023.119470

41. Yu D, Liu G, Guo M, Liu X, Yao S. Density peaks clustering based on
weighted local density sequence and nearest neighbor assignment. IEEE Access. (2019)
7:34301-17. doi: 10.1109/ACCESS.2019.2904254

42. Ren C, Sun L, Gao Y, Yu Y. Density peaks clustering based on local fair density
and fuzzy k-nearest neighbors membership allocation strategy. J Intell Fuzzy Syst.
(2022) 43:21-34. doi: 10.3233/JIFS-202449

43. Wang Y, Qian J, Hassan M, Zhang X, Zhang T, Yang C, et al. Density peak
clustering algorithms: a review on the decade 2014-2023. Expert Syst Appl. (2024)
238:121860. doi: 10.1016/j.eswa.2023.121860

44. Dua D, Graff C. UCI Machine Learning Repository. Irvine, CA: University of
California, School of Information and Computer Sciences (2017). Available online at:
http://archive.ics.uci.edu/ml (Accessed September 19, 2024).

45. Franti P, Rezaei M, Zhao Q. Centroid index: cluster level similarity measure.
Pattern Recognit. (2014) 47:3034-45. doi: 10.1016/j.patcog.2014.03.017

46. Vinh NX, Epps J, Bailey J. Information theoretic measures for clusterings
comparison: variants, properties, normalization and correction for chance. ] Mach
Learn Res. (2010) 11:2837-54.

47. Boudane F, Berrichi A. Gabriel graph-based connectivity and density
for internal validity of clustering. Prog Artif Intell. (2020) 9:221-38.
doi: 10.1007/s13748-020-00209-z

48. Cambridge AL. The Database of Faces. AT&T Laboratories Cambridge (1992).
Original dataset release with 400 images of 40 subjects. Available online at: https://
www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (Accessed September 19,
2024).

49. Ding S, Du W, Xu X, Shi T, Wang Y, Li C. An improved density peaks
clustering algorithm based on natural neighbor with a merging strategy. Inf Sci. (2023)
624:252-76. doi: 10.1016/j.ins.2022.12.078

frontiersin.org


https://doi.org/10.3389/fams.2025.1598165
https://doi.org/10.1126/science.1136800
https://doi.org/10.1016/j.knosys.2020.106731
https://doi.org/10.1002/widm.1219
https://doi.org/10.1016/j.patcog.2017.06.023
https://doi.org/10.1002/cpe.5567
https://doi.org/10.1016/j.ins.2018.12.059
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1016/j.asoc.2021.107924
https://doi.org/10.1016/j.inffus.2022.11.008
https://doi.org/10.1109/TFUZZ.2019.2930030
https://doi.org/10.1109/TGRS.2019.2896471
https://doi.org/10.1007/s10586-020-03171-6
https://doi.org/10.1016/j.ins.2014.09.041
https://doi.org/10.1109/TKDE.2022.3150403
https://doi.org/10.3390/pr11072036
https://doi.org/10.1109/TKDE.2022.3155450
https://doi.org/10.1145/3068335
https://doi.org/10.1016/j.patrec.2016.12.023
https://doi.org/10.1016/j.patcog.2021.107836
https://doi.org/10.1126/science.1242072
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.1016/j.ins.2016.03.011
https://doi.org/10.1016/j.ins.2018.03.031
https://doi.org/10.1109/ACCESS.2020.3006069
https://doi.org/10.1109/ACCESS.2019.2912332
https://doi.org/10.1016/j.knosys.2016.02.001
https://doi.org/10.1109/IJCNN.2016.7727185
https://doi.org/10.1016/j.knosys.2017.07.010
https://doi.org/10.1016/j.eswa.2017.11.020
https://doi.org/10.1007/s00500-018-3183-0
https://doi.org/10.1016/j.neucom.2018.06.087
https://doi.org/10.1016/j.neucom.2020.02.119
https://doi.org/10.1007/s00521-021-05777-2
https://doi.org/10.1016/j.eswa.2022.116539
https://doi.org/10.1016/j.patcog.2023.109406
https://doi.org/10.1016/j.ins.2023.119788
https://doi.org/10.1016/j.knosys.2024.111748
https://doi.org/10.1007/s13042-019-01031-3
https://doi.org/10.1016/j.ins.2023.119470
https://doi.org/10.1109/ACCESS.2019.2904254
https://doi.org/10.3233/JIFS-202449
https://doi.org/10.1016/j.eswa.2023.121860
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.patcog.2014.03.017
https://doi.org/10.1007/s13748-020-00209-z
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://doi.org/10.1016/j.ins.2022.12.078
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Density peak clustering algorithm based on weighted mutual K-nearest neighbors
	1 Introduction
	2 Related works
	2.1 DPC analysis
	2.2 Research progress of DPC

	3 WMKNNDPC algorithm
	3.1 Mutual K-nearest neighbors local density
	3.2 A remaining points assignment method based on weighted mutual K-nearest neighbors
	3.3 The procedure of WMKNNDPC
	3.4 Time complexity analysis

	4 Experiments and analyses
	4.1 Test datasets
	4.2 Evaluation criteria and experimental parameters
	4.3 Experiments on synthetic datasets
	4.4 Experiments on real datasets
	4.5 Experiments on Olivetti face dataset
	4.6 Analyze different parameters of WMKNNDPC
	4.7 Running time analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


	Button1: 
	Button2: 
	Button3: 
	Button4: 
	Button5: 
	Button6: 
	Button7: 
	Button8: 
	Button10: 
	Button11: 
	Button13: 
	Button14: 
	Button16: 
	Button17: 
	Button18: 
	Button19: 


