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Fourier-mixed window attention
for e�cient and robust long
sequence time-series forecasting

Nhat Thanh Tran* and Jack Xin

Department of Mathematics, University of California, Irvine, Irvine, CA, United States

We study a fast local-global window-based attention method to accelerate

Informer for long sequence time-series forecasting (LSTF) in a robust manner.

While window attention being local is a considerable computational saving, it

lacks the ability to capture global token information which is compensated by a

subsequent Fourier transform block. Our method, named FWin, does not rely

on query sparsity hypothesis and an empirical approximation underlying the

ProbSparse attention of Informer. Experiments on univariate and multivariate

datasets show that FWin transformers improve the overall prediction accuracies

of Informer while accelerating its inference speeds by 1.6 to 2 times. On

strongly non-stationary data (power grid and dengue disease data), FWin outperforms

Informer and recent SOTAs thereby demonstrating its superior robustness. We give

mathematical definition of FWin attention, and prove its equivalency to the

canonical full attention under the block diagonal invertibility (BDI) condition

of the attention matrix. The BDI is verified to hold with high probability on

benchmark datasets experimentally.
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window attention, Fourier mixing, global attention approximation, fast inference, time

series

1 Introduction

Recent progress in long sequence time-series forecasting (LSTF) has been led by

either transformers with component (attention) upgrade such as sparse attention ([1]

and references therein), attention in combination with signal processing (e.g., seasonal-

trend decomposition [2], adopting auto-correlation to account for periodicity in the data

[3], patching technique [4]) or architectural change [5]. In the category of advancing

component (attention) efficiency without making architectural change, Fourier transform

has been proposed as an alternative mixing tool in lieu of standard attention [6] to speed

up prediction in natural language processing (NLP) tasks (FNet, [7]). Though Fourier

transform is meant to mimic the mixing functions of multi-layer perceptron (MLP, [8]),

it is not well-understood why it works and when assistance from attention layers remain

necessary to maintain performance. In computer vision (CV), Fourier transform is also

used as a filtering step in early stages of transformer (GFNet,[9]) to enhance a fully

attention-based architecture. A recent advance in CV is to adopt window attention to

reduce quadratic complexity of full attention [6]. In shifted window attention (Swin [10]),

the attention is first computed on non-overlapping windows as a local approximation, then

on shifted window configurations to spread local attention globally in the image domain.

This local-global approximation of full attention occurs entirely in the image domain,

and is repeated over multiple stages in the network. The advantage is that the recipe is

independent of the data distribution. In contrast, the ProbSparse self-attention of Informer

[1, 11] relies on long tail data distribution to select the top few queries.
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We are interested in developing an efficient window-based

attention to replace ProbSparse attention and accelerate Informer

with no prior knowledge of data properties such as periodicity

(seasonality) so that our method is applicable in a general context

of time series. We also refrain from pre-processing data to increase

performance as this step can be added later. The main issue is how

to globalize the local window attention without performing shifts,

since Informer only has two attention blocks in the encoder and is

unable to facilitate repeated window shifting as in a deeper network

Swin [10].

We propose to replace ProbSparse attention of Informer

via a (local) window attention followed by a Fourier transform

(mixing) layer, a novel local-global attention which we call

Fourier-Mixed window attention (FWin). The resulting network,

FWin Transformer, aims to reduce the complexity of the full

attention [6] and approximate its functionality by mixing the

window attention. Instead of shifting windows for globalization

[10], we employ the parameter free fast Fourier Transform

(FFT) to generate connections among the tokens. The strategy

allows the window attention layer to focus on learning local

information, while the Fourier layer effectively mixes tokens

and spreads information globally. In the ablation study, we

find that the network prediction accuracy is lower if we

replace ProbSparse by only Fourier mixing as in FNet [7]

without the help of window attention. Besides conducting

extensive experiments on FWin to support our methodology,

we also provide a mathematical formulation of Fourier mixed

window attention and prove that it is equivalent to the

canonical attention.

Our main contributions in this paper are summarized below.

• We introduce FWin and replace the ProbSparse self attention

block (Figure 1 left) via a window self-attention block followed

by a Fourier mixing layer (Figure 1 right) in both the encoder

and decoder of Informer [1, 11].

• We show experimentally that FWin either increases or

maintains Informer’s performance level while significantly

accelerating its inference speed (by about 1.6 to 2 times) on

both uni/multi-variate LSTF data. The training times of FWin

are consistently lower than those of Informer across various

data sets. Inference speeds of FWin exceed those of FEDformer

[2] and Autoformer [3] by a factor of 5 with shorter training

times overall. On highly non-stationary power grid data [12,

13] and dengue data [14], FWin out-performs Informer and

other recent SOTAs, showcasing its superior robustness. See

Section 5.3.3 and Table 1.

• We propose FWin-S, a light weight version of FWin, by

removing Fourier mixing layer in the decoder (Figure 1 right);

and present its competitive performance with faster inference

speed and surprising robustness (which often comes at the

expense of speed instead).

• We provide a mathematical formulation of Fourier (or

related orthogonal transform) mixed window attention

which is proved to be equivalent to the canonical

attention under the block diagonal invertibility (BDI)

condition of the attention matrix. BDI is verified to

hold with high probability on the data sets in this paper

(see Section 5.5).

1.1 Organization

This paper will proceed as follows: In Section 2, we summarize

the related works, provide background on full attention, window

attention, Fourier mixing. In Section 3, we present FWin

methodology and its complexity. In Section 4, we mathematically

formulate mix window attention and prove its equivalency to

canonical attention. We show that FWin is a special case of mix

window attention. In Section 5, we present experimental results

and analysis with ablation studies, FWin approximation in a

nonlinear/non-parametric regression setting, and numerical results

to verify the BDI assumption.

2 Background

2.1 Related works

Several types of attention models are related to our work here.

First, MLP mixers relax the graph similarity constraints of

the self-attention and mix tokens with MLP projections. The

original MLP-mixer [8] reaches similar accuracy as self-attention

in vision tasks. However, such a method lacks scalability as a

result of quadratic complexity of MLP projection, and suffers from

parameter inefficiency for high resolution input.

Next, Fourier-based mixers apply Fourier transform to mix

tokens in NLP and vision tasks. FNet [7] resembles the MLP-mixer

with token mixer being the classical discrete Fourier transform

(DFT), without adaptive filtering on data distribution. Global

filter networks (GFNs [9]) learn filters in the Fourier domain to

perform depth-wise global convolution with no channel mixing

involved. Also, GFN filters lack adaptivity that could negatively

impact generalization. AFNO [15] performs global convolution

with dynamic filtering and channel mixing for better expressiveness

and generalization. However, AFNO network parameter sizes tend

to be much larger than those of the light weight vision transformer

(ViT) models such as GFN-T [9], shift-window mixer Swin-T

[10], and hybrid convolution-attention models MOAT-T [16], and

mobile ViT [17].

For long sequence time series forecasting, the Informer [1, 11]

has a hybrid convolution-attention design with a probabilistic

sparsity promoting function (ProbSparse) to reduce complexity

of the standard self-attention and cross-attention. We shall adopt

Informer as our baseline in this work, as it compares favorably

vs. efficient transformers in recent years (see Tables 1, 2 in Zhou

et al. [1]). More recent improvements on benchmark data sets

include Autoformer [3], FEDformer [2], and ETSformer [18],

which are designed with certain prior-knowledge of datasets,

e.g., using trend/seasonality decomposition and auto-correlation

functions. Additionally, PatchTST [4] and iTransformer [5] focus

on preserving variate information, employing independent channel

processing or inverting dimensions of the multivariate inputs.

However, they are not as robust on non-stationary time series as

Informer (see Table 2). Informer’s prediction is seen to generate

spurious peaks on power grid data (3rd frame of Figure 2), while

FWin predictions appear smoother and free from such distortions.

Comparing Informer with full Informer in the bottom frame of

Figure 2, we see that the cause of these distortionsmay be attributed
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FIGURE 1

Model comparison: Informer (left), FWin (right, orange color denotes our contributions); FWin-S (FWin with its decoder’s Fourier Mix block removed).

TABLE 1 Accuracy comparison on Singapore dengue data, best results highlighted in bold.

Metric 24 36 48 60

Methods MSE MAE MSE MAE MSE MAE MSE MAE

FWin 1.170 0.684 1.450 0.725 1.782 0.830 1.518 0.826

FWin-S 1.739 0.847 1.899 0.898 1.990 0.966 1.746 0.912

Informer 1.842 0.877 1.974 0.942 2.043 0.958 1.784 0.910

FEDformer 2.090 1.085 2.455 1.187 2.912 1.334 2.938 1.358

Autoformer 2.237 1.127 2.441 1.198 2.927 1.370 3.015 1.395

ETSformer 1.611 0.856 1.823 0.938 2.271 1.063 2.379 1.128

PatchTST 1.273 0.684 1.664 0.815 1.887 0.915 2.390 1.107

iTransformer 1.173 0.701 1.486 0.804 2.060 0.987 2.129 1.023

The results obtained from [14] with that of the iTransformer.

to Probsparse. Glassoformer [13] uses group lasso penalty to

enforce query sparsity and reduce complexity of full attention to

speed up inference. Though this method works well on power grid

data, its training time is higher than Informer since full attention is

involved in network training.

2.2 Preliminary

2.2.1 Canonical full attention
Given an input sequence x ∈ R

L×dmodel , where L is the sequence

length and dmodel is the embedded dimension of the model. The

input x is then converted into queries (Q), keys (K), values (V) as:

Q = xWQ + bQ, K = xWK + bK , V = xWV + bV ,

where WQ,WK ,WV ∈ R
dmodel×dattn are the weighted matrix, and

bQ, bK , bV ∈ R
L×dattn are the bias matrix. In most cases, we will

have dmodel = dattn, thus we will refer to dmodel for the remaining

of the paper.

We have

Attnf (Q,K,V) = softmax(QKT/
√

dmodel)V , (1)

where Attnf (·) is the attention function.

We refer to the function in Equation 1 as full attention [6],

because it involves the interaction of all the key and query pairs.

The final output is the weighted sum of all the values.

2.2.2 Window attention
The full attention computation involves the dot product

between each query and all the keys. However, for tasks with
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large sequence lengths such as processing of high resolution

images, the computational cost of full attention can be significant

[10]. As in Swin Transformer, we divide the sequence into

subsequences of smaller length, compute sub-attention for

each of the subsequences individually and then concatenate

all the sub-attention together. Namely, we divide sequence

x into N subsequences: x(1), x(2), . . . , x(N), such that x =
[x(1), x(2), . . . , x(N)]T . Each x(i) ∈ R

L/N×dmodel for i = 1, 2, . . . ,N,

where N = L/w, w is a fixed window size. This implies we divide

the queries, keys and values as follow Q = [Q(1),Q(2), . . . ,Q(N)]T ,

K = [K(1),K(2), . . . ,K(N)]T , V = [V(1),V(2), . . . ,V(N)]T . Thus we

compute attention for each subsequence as follows:

Attnf (Q
(i),K(i),V(i)) = softmax(

Q(i)K(i)T

√

dmodel

)V(i). (2)

After computing the attention for each subsequence, we

concatenate the sub attentions to form the window attention:

Attnw(Q,K,V) =









Attnf (Q
(1),K(1),V(1))

...

Attnf (Q
(N),K(N),V(N))









. (3)

In window attention, we compute attention on a window-by-

window basis. Within each window, all the keys are multiplied

with the corresponding query within that window. The output is

the weighted sum of the values within the same window, rather

than considering the entire set of values. This approach reduces the

computational cost of computing attention on a sequence of length

L fromO(L2) of full attention toO(Lw), where w is a fixed window

size. Figure 3 shows the overview of full attention versus window

attention.

Window attention restricts the interaction between queries and

keys by only allowing queries to attend to their local window keys.

As a result, window attention provides limited or local information.

On the other hand, full attention enables queries to attend to

keys that are further away, allowing for global interaction. If we

replace full attention with window attention, our model may lack a

comprehensive understanding of global information. Therefore, it

is desirable for our model to retain some level of global information

when using window attention as a substitute for full attention. To

incorporate global information, Swin Transformer [10] introduces

shifted window attention. In this approach, before dividing the

input sequence x into sub-sequences, one performs a circular

shift of the indices of x by certain value. This shift allows the

ending values of x to become the starting values of our input. The

circular shifting process is repeated for each consecutive window

attention layers.

2.2.3 FNet
Another way to promote global token interaction is by Fourier

transform as proposed in FNet [7]. Given input x ∈ R
L×dmodel ,

one computes Fourier transform along the model dimension

(dmodel), then along the time dimension (L), finally taking real

part to arrive at:

y = R(Ftime(Fmodel(x))), (4)

TABLE 2 Post-fault voltage prediction accuracy comparison on power

grid dataset [12, 13] with input length of 200 and prediction of 700.

Type Multivariate Univariate

Method MSE MAE MSE MAE

FWin 0.063 0.141 0.091 0.141

FWin-S 0.043 0.101 0.092 0.132

Informer 0.049 0.113 0.111 0.170

FEDformer 0.245 0.311 0.272 0.310

Autoformer 0.390 0.403 0.367 0.388

ETSformer 0.339 0.381 0.303 0.322

iTransformer 0.071 0.135 0.101 0.165

PatchTST 0.211 0.278 0.138 0.188

Best results highlighted in bold.

FIGURE 2

Univariate post fault prediction (voltage vs. time in second) on

power grid data [12, 13]. FWin, FWin-S have “smooth” predictions

while Informer has spurious jumps. Full in the bottom frame refers

to Informer using full attention instead of probsparse. The dashed

line to the left of 2 second is the input, to the right of which are the

model predictions vs. the ground truth (in black).

where F is 1D discrete Fourier transform (DFT), andR is the real

part of a complex number. Here Ftime,Fmodel denote the Fourier

transform apply along the sequence and hidden model dimension

respectively. Since DFT is free of learning parameter, one would

eventually pass the transformed sequence through a Feed Forward
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FIGURE 3

Overall structure of the full and window attention mechanisms. The symbol × denotes matrix multiplication between the query, key, and value

matrices, while ⊕ represents the concatenation of the output matrices along the sequence dimension. In full attention, each query interacts with all

of the keys and values, producing a dark blue output. In contrast, with window attention, the query interacts with only a subset of keys and values,

resulting in a lighter blue output.

fully-connected layer (FC). This approach can be interpreted as the

Fourier transform being an effective mechanism for mixing sub-

sequences (tokens) [7]. By applying the Fourier transform, the Feed

Forward layer gains access to all the tokens.

3 Methodology

3.1 Informer overview

The input x ∈ R
L×ddata passes through an embedding layer

to encode the time scale information and return X ∈ R
L×dmodel .

In the encoder, each layer consists of an attention block followed

by a distilling convolution with MaxPool of stride 2 and a down-

sampling to halve dimension. Thus, with 2 encoder layers, the time

dimension of the first attention block is L, while the second block

input is L/2. For both efficiency and causality, the decoder attention

has a masked multi-head ProbSparse self-attention structure, see

Figure 1 left for an overview. The ProbSparse self-attention [1]

relies on a sparse query measurement function (an analytical

approximation of Kullback-Leibler divergence) so that each key

attends to only a few top queries for computational savings. The

sparse query hypothesis or equivalently the long tail distribution

of self-attention feature map is based on softmax scores in self-

attention of a 4-layer canonical transformer trained on ETTh1 data

set (Appendix C, [1]).

3.2 Our approach

We introduce Fourier mixed window attention (FWin) to the

self-attention blocks in the encoder and decoder of Informer.

Specifically, we replace the ProbSparse self-attention blocks in

the encoder and decoder with window attention followed by a

Fourier mixing layer. We also replace multi-head cross-attention

in the decoder by a window multi-head cross-attention. Figure 1

right illustrates the key components of FWin Transformer.

Different from ProbSparse attention, our FWin approach does not

rely on whether the query sparse hypothesis holds on a data

set.

We remark that our model differs from the FNet architecture

in that Fourier transform is applied to the input along the model

and the time dimensions without a subsequent Feed Forward layer.

Partly this is due to the Feed Forward layer already present in the

decoder of Informer before the output (Figure 1 left). We denote

this specific component as Fourier Mix in our proposed FWin

architecture, as depicted in Figure 1 right frame. If the Fourier Mix

is removed from the decoder, we have a lighter model called FWin-

S, which turns out to be a competitive design as well (see Section 5).

3.3 Encoder

Each encoder layer is defined as either a window attention layer

or a Fourier Mix layer. The layers are interwoven, with the first

layer being a window attention. Subsequent layers are connected

by a distillation operation. For example, a 3-layer encoder will

consist of a window attention layer, a distillation operation, and

a Fourier Mix layer, another distillation operation, and finally

another window attention layer. Figure 1 illustrates an encoder with

2 layers.

3.4 Decoder

In the decoder, a layer composed of a masked window self-

attention followed by a Fourier Mix and then window cross
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attention with layer normalization in between. Toward the end

of the layer, convolutions and layer normalization are applied.

Figure 1 shows a decoder with one layer.

3.5 Window cross attention

In a self-attention layer, the query and key vectors have the same

time dimension, allowing us to use the same window size to split

these vectors. However, in the case of cross attention, this may not

hold true, especially if the encoder includes dimension reduction

layers. In such cases, the key and value vectors may have a smaller

time dimension compared to the query vectors, which originate

from the decoder. Additionally, the encoder and decoder inputs

may have different input time dimensions, as is the case in our

specific problem. To ensure equal number of attention windows in

cross attention, we divide the query, key, and value vectors based

on the number of windows rather than the window size. This

adjustment accounts for varying time dimensions and guarantees

a consistent number of attention windows for the cross attention

operation.

3.6 Complexity

With the replacements in the attention computation, our

approach offers significant complexity reduction compared to

Informer. In the encoder, the first attention layer partitions

the time dimension of the input by a window of size w, by

default w = 24, resulting in each window attention input

having dimensions of w × dmodel. Thus the cost of this layer

is O(Lwdmodel). Furthermore, in the second attention layer, the

computation of attention is completely replaced by the Fourier

Mix layer, eliminating three linear projections for query, key, and

value vectors. Since we apply the FFT over the time dimension

and the model dimension, the total cost for the Fourier Mix

layer is O(Ldmodel log(Ldmodel)). Overall Informer has complexity

of O(L log(L)dmodel + L log(L)dmodel +L log(L)dmodel + L2dmodel)

and FWin is O(Lwdmodel + Ldmodel log(Ldmodel) +Lwdmodel +
Ldmodel log(Ldmodel) +Lwdmodel). The L2dmodel cost of Informer

comes from full cross attention in its decoder (Figure 1 left). In

FWin, this cost is reduced to Lwdmodel by window cross attention

(Figure 1 right).

4 Theoretical results

In this section, we will present the mathematical

justification for our approach. The goal is to demonstrate

mixing tokens among the windows attention is a

good approximator of full attention. We begin with

preliminary definitions.

Definition 4.1. Let A ∈ R
L×L, with the (i, j)-th entry of A denoted

by aij. Let w ∈ N be a factor of L. For every n ∈ {1, . . . , L/w}, let An

be the sub-matrix of A such that the entries of An are composed of

(aij)
i=nw,j=nw

i=w(n−1)+1,j=w(n−1)+1
. We say A is block diagonally invertible

(BDI) if for every n, An is invertible.

Definition 4.2. Let Q,K ∈ R
L×d be the query, key matrix

respectively. Define the attention matrix as:

Attn(Q,K) : = softmax(QKT/
√
d). (5)

Definition 4.3. Let Q,K,V ∈ R
L×d be the query, key matrix

respectively. Define the full attention as:

Attnf (Q,K,V) : = softmax(QKT/
√
d)V = Attn(Q,K)V . (6)

Definition 4.4. Let Q,K,V ∈ R
L×d be the query, key, value matrix

respectively with qi, ki, vi the i-th row of the matrix Q,K,V . Let

w ∈ N be the window size, such thatw divides L. Define the window

attention as:

Attnw(Q,K,V ,w) : =













∑

j∈J(1)
exp(q1k

T
j /

√
d)vj

γ1
...

∑

j∈J(L)
exp(qLk

T
j /

√
d)vj

γL













. (7)

Here J(m) = {Mw+ 1, . . . , (M + 1)w}, whereM = ⌊m−1
w ⌋. And

γm =
∑

j∈J(m)

exp(qmk
T
j /

√
d). (8)

Definition 4.5. LetA ∈ R
L×L andQ,K,V ,w be the same as defined

inDefinition 4.4, define the mixed window attention as:

Attnmw(Q,K,V ,w,A) : = AAttnw(Q,K,V ,w). (9)

Theorem 4.6. Let Q,K,V ∈ R
L×d. Let w ∈ N such that w divides

L. If Attn(Q,K) is BDI, then there exists a matrix A ∈ R
L×L such

that

Attnf (Q,K,V) = Attnmw(Q,K,V ,w,A). (10)

In particular, we can construct the exact value of A.

Proof. We have the i-th row of full attention is

Attnif =
L

∑

j=1

exp(qTi kj/
√
d)vj

βi
, (11)

where βi =
∑L

j=1 exp(qik
T
j /

√
d). Let αim be the i,m entry of A, the

i-th row of mixed window attention is

Attnimw =
L

∑

m=1

αim

(M+1)w
∑

j=Mw+1

exp(qTmkj/
√
d)vj

γm
, (12)

where γm =
∑

j∈J(m) exp(qmk
T
j /

√
d), with J(m) = {Mw +

1, . . . , (M + 1)w}, whereM = ⌊m−1
w ⌋.

Consider the following cases:

• If i = m and j ∈ {Mw+ 1, . . . , (M + 1)w}, set 1

βi
= αii

γm
.

• If i 6= m and j ∈ {Mw + 1, . . . , (M + 1)w} and j ∈ {Iw +
1, . . . , (I + 1)w}, where I = ⌊ i−1

w ⌋, set αim = 0.
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• If i 6= m and j ∈ {Mw + 1, . . . , (M + 1)w} and j 6∈ {Iw +
1, . . . , (I + 1)w}, where I = ⌊ i−1

w ⌋. For each j we set

exp(qik
T
j /

√
d)

βi
=

∑

m∈J(j)

αim exp(qmk
T
j /

√
d)

γm
. (13)

For each i and set of {m, j} pairs, we have to solve a system of w

equations and unknowns.We now invoke the BDI assumption

of Attn(Q,K) to show that this system of equations has unique

solution. Let C be the coefficient matrix of the right hand side

of the system of equations in Equation 13. We observe that

CT is invertible, because each row of CT is a scaled version

of a square sub matrix along the diagonal of Attn(Q,K), and

each square sub-matrix along the diagonal of Attn(Q,K) is

invertible. The invertibility of C then follows from that of CT .

We completed the construction of A as claimed in the theorem.

Remark 4.7. The BDI assumption in Theorem 4.6 is a sufficient

condition and not a necessary condition. We only need BDI to

solve the system of Equation 13 in the proof. This may be solvable

even if BDI is not met. In this case, the solution will not be unique.

In particular, the theorem holds true under no assumption when

window size is 1. In Table 3, we showed that window size of 1

has competitive performance compare to others. In Section 5.5, we

will show in practice that BDI is satisfied by most of the datasets

presented in this paper.

A drawback of directly learn a mixing matrix is the computational

cost of matrix multiplication in which we want to alleviate from full

attention. Fourier transformation can be utilized as a mixingmatrix

with a lower cost. We will show that this is sufficient.

Definition 4.8. Let A ∈ R
L×L and Q,K,V ,w be the same

as defined in Definition 4.4, define the Fourier-mixed window

attention as:

AttnFwin(Q,K,V ,w,A) : = AF(Attnw(Q,K,V ,w)), (14)

where F is the discrete Fourier transform.

Corollary 4.9. Let Q,K,V and w be the same as defined in

Theorem 4.6. If Attn(Q,K) is BDI, then there exists a matrix A ∈
C
L×L such that

Attnf (Q,K,V) = AttnFwin(Q,K,V ,w,A). (15)

Proof. From Theorem 4.6, there exists B ∈ R
L×L such that

Attnf (Q,K,V) = Attnmw(Q,K,V ,w,B). (16)

Thus if we let A = BF−1, then we are done.

Definition 4.10. Let A ∈ R
L×L and Q,K,V ,w be the same

as defined in Definition 4.4, define the Hartley-mixed window

attention as:

AttnHwin(Q,K,V ,w,A) : = AH(Attnw(Q,K,V ,w)), (17)

whereH is the Hartley transform [19].

Corollary 4.11. Let Q,K,V , and w be the same as defined in

Theorem 4.6. If Attn(Q,K) is BDI, then there exists a matrix A ∈
R
L×L such that

Attnf (Q,K,V) = AttnHwin(Q,K,V ,w,A). (18)

Proof. From Theorem 4.6, there exists B ∈ R
L×L such that

Attnf (Q,K,V) = Attnmw(Q,K,V ,w,B). (19)

Thus if we let A = BH−1, then we are done.

Per usual in neural networks, the query, key, and value matrices

are linear projection of an input x, which could be randomly drawn

from some distribution. We will show under certain stochastic

conditions, Theorem 4.6 holds. We will begin with the definition

of the sufficient condition.

Definition 4.12. Let X1, . . . ,XL2 be random variables. The random

variables are jointly absolutely continuous if the random vector

X = (X1, . . . ,XL2 ) has a jointly absolutely continuous distribution,

that is there exists integrable function f :RL2 → R such that

P{X ∈ B} =
∫

B
f (x)dx, ∀B ∈ B

L2 . (20)

Here BL2 is the L2 dimensional Borel set.

We know that suppose the joint distribution of the entries

of a matrix A is absolutely continuous, then A is invertible with

probability 1. This is because the non-invertible matrices form a

low dimensional manifold M in R
L2 . The probability of A being

non-invertible is the probability that A is in M. This equals to the

integral of some density function f :RL2 → R overM, which equals

to zero since dimension ofM is less than L2.

Corollary 4.13. Let Q,K,V be R
L×d random matrices, and w is

a factor of L. If the entries of Attn(Q,K) is jointly absolutely

continuous, then with probability 1, there exists a matrix A ∈ R
L×L

such that

Attnf (Q,K,V) = Attnmw(Q,K,V ,w,A) (21)

Proof. It is clear that if Attn(Q,K) is jointly absolutely continuous,

then any marginal distributions is jointly absolutely continuous.

Thus it follows that Attn(Q,K) satisfies BDI property with

probability 1. Hence, the corollary follows from Theorem 4.6.

5 Experiments

5.1 Experimental data and details

The default setup of the model parameters is shown in Table 4.

For Informer, we used their up to date code,1 which incorporated

all the functionalities described recently in Zhou et al. [11]. In

our experiments, we average over 5 runs. The total number of

epochs is 6 with early stopping. We optimized the model with

1 https://github.com/zhouhaoyi/Informer2020
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TABLE 3 Accuracy comparison of FWin model using di�erent window sizes for various datasets on the multivariate task.

Window size 1 2 4 6 12 24

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

24 0.468 0.486 0.474 0.490 0.481 0.498 0.464 0.484 0.489 0.505 0.506 0.515

48 0.599 0.565 0.606 0.571 0.611 0.580 0.592 0.569 0.575 0.554 0.586 0.561

168 0.915 0.741 0.930 0.748 0.917 0.752 0.903 0.737 0.904 0.741 1.076 0.822

336 1.049 0.782 1.002 0.769 1.000 0.774 0.978 0.766 0.998 0.772 1.070 0.813

720 1.096 0.837 1.090 0.840 1.082 0.834 1.107 0.844 1.133 0.859 1.205 0.884

W
ea
th
er

24 0.310 0.361 0.310 0.365 0.311 0.364 0.308 0.361 0.308 0.362 0.309 0.362

48 0.382 0.419 0.380 0.421 0.378 0.420 0.380 0.420 0.381 0.421 0.381 0.421

168 0.561 0.542 0.561 0.542 0.570 0.547 0.558 0.539 0.550 0.535 0.561 0.539

336 0.631 0.592 0.626 0.586 0.610 0.577 0.629 0.587 0.612 0.578 0.618 0.580

720 0.705 0.619 0.699 0.623 0.702 0.627 0.685 0.617 0.679 0.611 0.691 0.620

E
xc
h
an
ge

96 0.738 0.695 0.798 0.723 0.793 0.717 0.714 0.683 0.775 0.717 0.806 0.729

192 1.195 0.910 1.066 0.869 1.297 0.951 1.261 0.941 1.132 0.891 1.136 0.886

336 1.314 0.964 1.244 0.941 1.340 0.970 1.270 0.940 1.389 0.992 1.302 0.962

720 1.916 1.134 2.034 1.166 1.944 1.137 1.885 1.128 2.225 1.225 2.055 1.176

Count 1 3 5 14 6 0

Best results highlighted in bold.

Adam optimizer, and the learning rate starts at 1e−4, decaying

two times smaller every epoch. For fair comparison, all of the

hyper-parameters are the same across all the models which were

trained/tested on a desktop machine with four Nvidia GeForce 8G

GPUs.

5.1.1 Benchmark datasets
Details of public benchmark datasets used in themain paper are

described below:

ETT (Electricity Transformer Temperature)2: The dataset

contains information of six power load features and target value

“oil temperature.” We used 2 h datasets ETTh1 and ETTh2, and the

minute level dataset ETTm1. The train/val/test split ratio is 6:2:2.

Weather (Local Climatological Data)3: The dataset contains

local climatological data collected hourly in 1,600 U.S. locations

over 4 years from 2010 to 2013. The data consists of 11 climate

features and target value “wet bulb.” The train/val/test split ratio

is 7:1:2.

ECL (Electricity Consuming Load)4: This dataset contains

electricity consumption (Kwh) of 321 clients. The data convert into

hourly consumption of 2 year and “MT_320” is the target value.

The train/val/test split ratio is 7:1:2.

Exchange5 [20]: The dataset contains daily exchange rates of

eight different countries from 1990 to 2016. The train/val/test split

ratio is 7:1:2.

2 https://github.com/zhouhaoyi/ETDataset

3 https://www.ncei.noaa.gov/data/local-climatological-data

4 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

5 https://github.com/laiguokun/multivariate-time-series-data

TABLE 4 Model default parameters.

dmodel 512 Window size 24

dff 2,048 Cross attn window

no.

4

n_heads 8 Epoch 6

Dropout 0.05 Early stopping

counter

3

Batch size 32 Initial Lr 1e-4

Enc. Layer no. 2 Dec.Layer no. 1

ILI6: The dataset contains weekly recorded influenza-like

illness (ILI) patients data from Centers for Disease Control and

Prevention of the United States from 2002 to 2021. This describes

the ratio of patients seen with ILI and the total number of the

patients. The train/val/test split ratio is 7:1:2.

5.1.2 Additional non-stationary data
In addition to the benchmark datasets, we also validate our

model on non-stationary datasets.

Power grid: Simulated New York/New England 16-

generator 68-bus power system [12, 13]. The system has

88 lines linking the buses, and can be regarded as a graph

with 68 nodes and 88 edges. The dataset has over 2,000

fault events, where each event has signals of 10 second

duration. These signals contain voltage and frequency from

6 https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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every bus, and current from every line. The train/val/test split

is 1,000:350:750.

Dengue [14]: The dataset contains 1,000 weeks of Singapore’s

weekly dengue data spanning from 2000 to 2019. Dataset includes

the climate and oceanic anomaly features. The train/val/test split

ratio is 6:2:2.

5.2 Setup of experiments

For all the experiments to compute the errors, the encoder’s

input sequence and the decoder’s start token are chosen from

{24, 48, 96, 168, 336, 720} for the ETTh1, ETTh2, Weather and ECL

dataset, and from {24, 48, 96, 192, 288, 672} for the ETTm dataset.

The default window size is 24. We use a window size of 12 when the

encoder’s input sequence is 24. For the Exchange, ILI, and Traffic

datasets, we use the same hyper-parameters as those provided in

Autoformer. The encoder’s input sequence is 96 and decoder’s input

sequence is 48. The window size is 24 for Exchange and Traffic.

For ILI, we use an input length of 36 for the encoder and 18 for

decoder, with window size of 6. The number of windows on the

cross attention is set to 3. The models are trained for 6 epochs with

learning rate adjusted by a factor of 0.5 every epoch.

For the power grid dataset [12, 13], the encoder and decoder

inputs are set to 200. The prediction length is 700, and the window

size is 25. The models are trained for 80 epochs with an early

stopping counter of 30. The learning rate is adjusted every 10

epochs by a factor of 0.85. For the dengue dataset, we use the same

hyper-parameters as in ILI dataset, because of its size and type.

5.3 Results and analysis

5.3.1 Benchmarks
We present a summary of the univariate and multivariate

evaluation results for all methods on 7 benchmark datasets in

Tables 5, 6. MAE = 1
n

∑n
i=1 |y − ŷ| and MSE = 1

n

∑n
i=1(y − ŷ)2

are used as evaluation metrics. The best results are highlighted in

boldface, and the total count at the bottom of the tables indicates

how many times a particular method outperforms others per

dataset.

For the univariate setting, each method produces predictions

for a single output over the time series. From Table 5, we observe

the following:

(1) FWin and FWin-S achieve comparable performance.

(2) When comparing FWin and Informer, FWin outperforms

the Informer by a margin of 50 to 16.

(3) FWin performs well on the ETT, Exchange, ILI datasets, it

remains competitive for the Weather dataset. However, it performs

not as well on the ECL dataset. This could be due to the differences

caused by the dataset, which is common in time-series model [21],

or Informer’s ProbSparse hypothesis satisfied well for this dataset.

(4) The average MSE reduction is 19.60%, and MAE is about

11.88%, when comparing FWin with Informer.

For the multivariate setting, each method produces predictions

based on multiple features over the time series. From Table 6, we

observe that:

(1) The light model FWin-S leads the count at 34 total, followed

closely by FWin with a total count of 30.

(2) In a head to head comparison, FWin outperforms Informer

by a large margin (59 to 7).

(3) Though FWin and FWin-S have close accuracies in

itemized-metric comparison on the benchmarks, FWin is overall

more robust (e.g., it behaves better on non-stationary dengue

disease dataset, see Table 1 and Section 5.3.3).

(4) The average MSE (MAE) reduction from Informer to FWin

is about 16.33% (10.96%).

5.3.2 Power grid
Informer’s prediction accuracies on the benchmark datasets

in Tables 5, 6 have been largely improved by recent transformers

such as iTransformer [5], PatchTST [4] designed to prioritize

variate information; and Autoformer [3], FEDformer [2], and

ETSformer [18] designed with certain prior-knowledge of datasets,

e.g., using auto-correlation or trend/seasonality decomposition.

Like Informer, FWin has no prior-knowledge based operation,

which helps to generalize better on non-stationary time series

where seasonality is absent. Such a situation arises in post-fault

decision making on a power grid where predicting transient

trajectories is important for system operators to take appropriate

actions [22], e.g., a load shedding upon a voltage or frequency

violation.We carry out experiments on a simulated New York/New

England 16-generator 68-bus power system [12, 13]. Table 2 shows

that FWin and FWin-S improve or maintain Informer’s accuracy

in a robust fashion while the five recent transformers pale in

comparison. Figure 4 illustrates model predictions on the power

grid dataset [12, 13]. FWin and Informer outperform FEDformer,

Autoformer, iTransformer, and PatchTST.

5.3.3 Singapore dengue
In Tran et al. [14], FWin transformer is successfully applied on

the dataset to study dengue disease prediction under the influence

of climate and ocean factors. In this multi-variate to uni-variate

prediction task, the goal is to predict the number of dengue

cases given multiple environmental features such as climate, ocean,

humidity and temperature. FWin performs better than Informer,

FEDformer, Autformer, ETSformer, and PatchTST. Extending this

work, we added the result of iTransformer on this Singapore

dengue dataset and compare all the above networks in Table 1.

The result shows that FWin and iTransformer are comparable on

short prediction length of 24 and 36, however FWin is better than

iTransformer on prediction length of 48 and 60.

5.3.4 Speed up
Besides performance and robustness, the inference and training

times of themodels (in particular the former) are also of our interest

and are summarized below:

(1) Compared to Informer, FWin achieves average speed up

factors of 1.7 and 1.4 for inference and training times respectively

(see Table 7). The ILI dataset has the lowest speed-up factor because

both the input and the prediction lengths are small.
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TABLE 5 Accuracy comparison on LSTF benchmark univariate data, best results highlighted in bold.

Methods Informer FWin FWin-S

Metric MSE MAE MSE MAE MSE MAE

E
T
T
h
1

24 0.116 0.273 0.060 0.196 0.116 0.272

48 0.170 0.333 0.102 0.257 0.141 0.302

168 0.149 0.311 0.150 0.308 0.252 0.401

336 0.160 0.323 0.108 0.261 0.397 0.519

720 0.258 0.428 0.105 0.253 0.270 0.434

Avg 0.171 0.334 0.105 0.255 0.235 0.386

E
T
T
h
2

24 0.086 0.225 0.082 0.221 0.075 0.212

48 0.164 0.318 0.125 0.277 0.140 0.299

168 0.270 0.416 0.220 0.375 0.277 0.422

336 0.324 0.458 0.244 0.396 0.277 0.425

720 0.294 0.438 0.261 0.412 0.266 0.423

Avg 0.228 0.371 0.186 0.336 0.207 0.356

E
T
T
m

1

24 0.025 0.122 0.015 0.096 0.021 0.112

48 0.055 0.181 0.031 0.132 0.032 0.135

96 0.181 0.356 0.050 0.175 0.086 0.234

288 0.279 0.450 0.179 0.341 0.173 0.334

672 0.396 0.559 0.133 0.286 0.152 0.314

Avg 0.187 0.334 0.082 0.206 0.093 0.226

W
ea
th
er

24 0.113 0.249 0.104 0.236 0.111 0.243

48 0.196 0.332 0.172 0.315 0.176 0.310

168 0.257 0.376 0.259 0.391 0.235 0.357

336 0.275 0.397 0.338 0.458 0.262 0.388

720 0.259 0.389 0.291 0.421 0.250 0.383

Avg 0.220 0.349 0.233 0.364 0.207 0.336

E
C
L

48 0.259 0.359 0.249 0.369 0.274 0.388

168 0.332 0.410 0.408 0.479 0.403 0.472

336 0.378 0.441 0.477 0.516 0.407 0.471

720 0.373 0.444 0.568 0.577 0.376 0.455

960 0.365 0.448 0.415 0.485 0.359 0.448

Avg 0.341 0.420 0.423 0.485 0.363 0.447

E
xc
h
an
ge

96 0.305 0.435 0.294 0.409 0.281 0.414

192 1.345 0.902 0.679 0.622 0.566 0.574

336 2.441 1.253 0.949 0.761 0.785 0.703

720 1.933 1.106 1.127 0.891 1.253 0.897

Avg 1.506 0.924 0.762 0.671 0.721 0.647

IL
I

24 5.404 2.057 3.727 1.648 3.491 1.597

36 4.384 1.849 3.124 1.534 3.023 1.528

48 4.487 1.886 3.697 1.680 3.293 1.605

60 5.179 2.035 4.141 1.788 3.767 1.734

Avg 4.864 1.957 3.672 1.663 3.394 1.616

Count 8 32 26

Avg means the average results from all prediction lengths.

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2025.1600136
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Tran and Xin 10.3389/fams.2025.1600136

TABLE 6 Accuracy comparison on LSTF benchmark multivariate data, best results highlighted in bold.

Methods Informer FWin FWin-S

Metric MSE MAE MSE MAE MSE MAE

E
T
T
h
1

24 0.528 0.525 0.483 0.499 0.507 0.517

48 0.764 0.665 0.638 0.592 0.695 0.626

168 1.083 0.836 1.004 0.786 0.885 0.742

336 1.270 0.920 1.094 0.821 1.022 0.814

720 1.447 0.977 1.181 0.873 1.087 0.846

Avg 1.018 0.785 0.880 0.714 0.839 0.709

E
T
T
h
2

24 0.455 0.508 0.550 0.566 0.551 0.568

48 2.368 1.241 0.774 0.664 0.792 0.680

168 5.074 1.910 2.309 1.136 2.767 1.327

336 3.116 1.460 2.461 1.187 2.663 1.337

720 4.193 1.778 2.847 1.286 3.258 1.530

Avg 3.041 1.379 1.788 0.968 2.006 1.088

E
T
T
m

1

24 0.346 0.397 0.305 0.375 0.322 0.389

48 0.480 0.482 0.408 0.444 0.436 0.467

96 0.555 0.531 0.517 0.517 0.573 0.553

288 0.943 0.746 0.831 0.688 0.794 0.691

672 0.903 0.729 1.119 0.838 0.890 0.741

Avg 0.645 0.577 0.636 0.572 0.603 0.568

W
ea
th
er

24 0.335 0.388 0.310 0.363 0.316 0.369

48 0.395 0.434 0.379 0.419 0.379 0.415

168 0.625 0.580 0.561 0.539 0.544 0.530

336 0.665 0.611 0.630 0.585 0.598 0.574

720 0.657 0.604 0.686 0.614 0.576 0.560

Avg 0.535 0.523 0.513 0.504 0.483 0.490

E
C
L

48 0.293 0.382 0.291 0.371 0.287 0.372

168 0.292 0.386 0.302 0.379 0.295 0.378

336 0.422 0.467 0.327 0.399 0.307 0.388

720 0.600 0.559 0.344 0.408 0.311 0.390

960 0.871 0.714 0.362 0.421 0.314 0.393

Avg 0.496 0.502 0.325 0.396 0.303 0.384

E
xc
h
an
ge

96 0.991 0.797 0.828 0.733 0.762 0.694

192 1.175 0.859 1.148 0.889 1.178 0.889

336 1.581 0.999 1.301 0.960 1.344 0.971

720 2.643 1.356 2.071 1.196 2.036 1.177

Avg 1.598 1.003 1.337 0.945 1.330 0.933

IL
I

24 6.048 1.698 3.881 1.308 3.849 1.298

36 5.871 1.681 4.036 1.331 4.024 1.316

48 5.171 1.551 4.334 1.404 4.431 1.406

60 5.273 1.553 4.547 1.443 4.600 1.438

Avg 5.591 1.621 4.200 1.372 4.226 1.365

Count 4 30 34

Avg means the average results from all prediction lengths.
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FIGURE 4

Multivariate post fault prediction comparison (voltage vs. time in second) on power grid data [12, 13]: {FWin,Informer} outperform (FED, Auto,

iTrans)formers and PatchTST. The dashed line under 2 second duration is the input, to the right of which are the predictions vs. the ground truth (in

black).

TABLE 7 Average inference/training speed-up factors of FWin vs.

Informer.

Data Feature Inference Train

ETTh1 Multivariate 1.66 1.34

ETTh1 Univariate 1.80 1.64

ETTm1 Multivariate 1.70 1.30

ETTm1 Univariate 1.68 1.34

Weather Multivariate 1.70 1.28

Weather Univariate 1.99 2.01

ECL Multivariate 1.59 1.10

ECL Univariate 2.01 1.53

Exchange Multivariate 1.77 1.25

Exchange Univariate 1.69 1.25

ILI Multivariate 1.56 1.19

ILI Univariate 1.62 1.29

Average 1.73 1.38

(2) FWin’s inference and training times are very close to

those of FWin-S. This indicates that the Fourier Mix layer in the

decoder adds a minimal overhead to the overall model. The FWin-S

model exhibits the fastest inference and training times, as expected

because it is the model with smallest parameter size here.

(3) FWin has approximately 8.1 million parameters, whereas

Informer has around 11.3 million parameters under default

settings, resulting in a reduction about 28%. On the ETTh1

prediction length task of 720, Informer has 5.85 GFLOPs, while

FWin has 5.32 GFLOPs under identical setting. This confirms our

analysis that Informer’s cross attention is full attention, whereas

FWin’s windowed cross attention is much more efficient.

(4) The inference time for Informer increases with prediction

length. FWin’s inference time exhibits minimal growth. The

Exchange dataset demonstrates this effect as we used the same input

length for all prediction lengths, and ran the models on a single

GPU (see Supplementary material).

(5) FWin’s inference time is about 1.6 to 6 times faster compared

to ETSformer, FEDformer, and Autoformer (see Table 8).

5.4 Ablation studies

5.4.1 Benefits of combining fourier and window
attention

We examined the benefits of combining window attention and

Fourier mixing by experiments on the ETTh1 andWeather dataset.

Table 9 shows that Fourier-mixed window attention outperforms

using Fourier mixing alone (FNet [7]) in accuracy. In addition,

it also suggests that Fourier-mixed window attention is better

overall than shifted window attentions in the encoder. In view

of Tables 5, 6, FWin-S is better than Swin on metric 720 in MSE

(comparable in MAE).

5.4.2 E�ect of window size parameter
Window size is an important parameter for FWin. In this

section we will explore the effect of window size to model

performance across many datasets presented in the paper. We

present the results in Table 3. We observe that across the datasets,
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TABLE 8 Average inference speed-up factors of FWin vs. SOTAs.

Data Feature Autoformer FEDformer ETSformer

ETTh1 Multivariate 7.29 6.18 1.87

ETTh1 Univariate 5.08 4.60 1.42

ETTm1 Multivariate 5.77 5.34 1.27

ETTm1 Univariate 6.14 5.86 1.38

ECL Multivariate 5.65 5.08 1.67

ECL Univariate 6.39 5.27 1.68

Average 6.05 5.39 1.55

TABLE 9 FWin vs. FNet [7] (replacing ProbSparse attention of Informer by Fourier-Mix followed by an FC layer) and FWin vs. Swin [10] (replacing Fourier

Mix in FWin by a shifted window attention) on multivariate data.

Methods FNet FWin Swin FWin

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

24 0.490 0.502 0.483 0.499 0.567 0.540 0.483 0.499

48 0.562 0.543 0.638 0.592 0.685 0.627 0.638 0.592

168 1.052 0.806 1.004 0.786 1.016 0.810 1.004 0.786

336 1.194 0.869 1.094 0.821 1.161 0.877 1.094 0.821

720 1.349 0.948 1.181 0.873 1.095 0.844 1.181 0.873

W
ea
th
er

24 0.331 0.378 0.310 0.363 0.310 0.362 0.310 0.363

48 0.432 0.459 0.379 0.419 0.409 0.443 0.379 0.419

168 0.596 0.561 0.561 0.539 0.630 0.576 0.561 0.539

336 0.609 0.580 0.630 0.585 0.635 0.580 0.630 0.585

720 0.724 0.640 0.686 0.614 0.637 0.592 0.686 0.614

Count 4 16 7 14

Best results highlighted in bold.

window size of 6 provides the best results overall. Window size of

1 provides competitive results compare to the best window size

of 6. In general, under various window sizes, the performance

is consistent. Optimizing the window size for each data set

may increase performance of our model. However, to keep the

experiments consistent, we decide to keep the window size at a

fixed constant 24. The time scale of a dataset may impact the choice

of window size. Many of the datasets have hourly time scale, thus

choosing a window size of 24 is meaningful in covering a daily

observation. The flexible choice of window size enables the practical

application of the method to various datasets with well-known

temporal dependencies, such as the lag patterns in the dengue

dataset.

5.4.3 FWin and non-parametric regression
The full self-attention function [6] can be conceptualized as

an estimator in a non-parametric kernel regression problem in

statistics [23]. Let the key vectors serve as the training inputs and

the value vectors as the training targets. The key-value pairs {kj, vj}
for j = 1, . . . ,N, come from the model

vj = f (kj)+ ǫj, (22)

where f is an unknown function to be estimated and ǫj are

zero mean independent noisy perturbations. Let the key vectors

k1, k2, . . . , kN be i.i.d. samples from a distribution function p(k),

and the key-value pairs (v1, k1), . . . , (vN , kN) be i.i.d. samples from

the joint density p(k, v). Since E[vj|kj] = f (kj), the classical

Nadaraya-Watson method [24–26] approximates p by a sum of

Gaussian kernels and gives the estimate of f below:

f̂σ (k) : =
N

∑

j=1

vjφσ (k− kj)
∑N

j=1 φσ (k− kj)
, (23)

where φσ (·) is the isotropic multivariate Gaussian density function

with diagonal covariance matrix σ 2ID. In particular if k = qi, and

the kj’s are normalized, one obtains f̂σ (qi) =
∑N

j=1 vj exp(qik
T
j /σ 2)

∑N
j=1 exp(qik

T
j /σ 2)

=
N

∑

j=1

softmax(qik
T
j /σ 2)vj. (24)

Letting σ 2 =
√

dmodel, where dmodel is the dimension of qi
(kj), turns estimator (Equation 24) into the softmax self-attention

(Equation 1).

To build a window attention, we allow the query vector qi to

interact only with nearby key and value vectors. Thus the window
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FIGURE 5

MSE error vs. query number comparison of full softmax attention (black), window attention (blue) and FWin attention (orange) in the non-parametric

regression model (Equation 22) based on key vectors of a full attention layer of Informer† [1] trained from the ETTh1 data set.

version of the softmax estimator is f̄σ (qi) : =
∑

j∈J(i) vj exp(qik
T
j /σ 2)

∑

j∈J(i) exp(qik
T
j /σ 2)

=
∑

j∈J(i)
softmax(qik

T
j /σ 2)vj

where J(i) is the index set that corresponds to the set of keys the

query qi interact with. In view of the fully connected (MLP) layer

after the Fourier mixing layer and before the output in Figure 1, we

define the analogous FWin estimator for the regression model as

f̃σ (qi) : = A ·R(F(f̄σ (qi))), (25)

where R takes the real part, F is the discrete Fourier transform,

· represents matrix multiplication, and A is a real matrix to be

learned from the training data by minimizing the sum of squares

error (MSE) of the regression model (Equation 22).

5.4.3.1 Kernel regression experiment

To examine the differences among the three estimators f̂ , f̄ , and

f̃ , we opt for the Laplace distribution function f = exp(−α|x|),
for α = 0.01, as the ground truth nonlinear function acting

componentwise on the input to the regressionmodel (Equation 22).
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We use a set of query, key, value vectors from Informer† [1] on

ETTh1 multivariate data set with prediction length (metric) of

720. We choose this particular data set because Informer† [1] with

full softmax self-attention has the best performance there. The

key vectors may not satisfy the theoretical i.i.d. assumption [23].

In this experiment, we have a set of 168 query and key vectors

from each of the 8 heads. Denote query qi, and key kj vectors for

i, j = 1, 2, . . . , 168. The value vectors are vj = f (kj). We divide the

data into 136 vectors for training and the remaining 32 for testing.

The mean square error (MSE) in testing of the estimator f̂ (qin ) for

n = 1, 2, . . . , 32, are labeled full estimator in Figure 5. Similarly, we

computeMSEs for f̄σ (qin ), and f̃ (qin ), using window size of 4, where

A is learned by solving a least squares problem. Figure 5 compares

theMSE of the three estimators over data from 8 heads.We observe

that the FWin estimator consistently outperforms the window

attention estimator, and approaches the full softmax attention. In

heads 0/1/4, FWin outperforms the full softmax attention estimator

which is not theoretically optimal for the regression task [23].

In conclusion, the regression experiment on the three estimators

indicates that FWin is a simple and reliable local-global attention

structure with competitive capability, lending added support to its

robust performance.

5.5 Condition number of attention matrix

Theorem 4.6 requires the attention matrix to be BDI. In this

section, we verify that in practice BDI is satisfied by many of the

datasets here. The experimental set-up is:

• Run simulations on the Informer model using full attention

instead of Probsparse.

• Collect the full attention matrix of the first encoder block of

the Informer.

• Given a window size w, compute the condition numbers of

w×w sub-matrices along the diagonal of the attention matrix.

• If the condition numbers are finite, then BDI is true and

this instance is collected for a histogram plot, otherwise it is

counted as a failure.

Using the procedure above, we plot all condition numbers

for all simulations of the ETTh1, Weather, and ILI dataset. For

all the simulations, we use the same hyper-parameters as in the

experiment sections. Due to memory space constraint, we report

the first 11 batches of the test datasets.

From Figure 6, we observe that ETTh1, Weather, ILI datasets

satisfy the assumption of the theorem relatively well. In particular,

ETTh1 has a few infinite condition number out of millions.

For ILI, approximately 0.4–0.5% of the condition numbers are

infinite, while theWeather dataset has around 3% infinite condition

numbers. We also noted that the condition numbers increase with

the window size for WTH dataset. We selected these three datasets

to demonstrate the robustness of the assumption, as they span

different temporal granularities from minutes in WTH, to hours

in ETTh1, and weeks in ILI. Combining this observation with the

results from Table 3, we suggest using a small window size, as it

maintains competitive performance compared to larger window

sizes while ensuring that the BDI condition is satisfied in practice.

A

B

C

FIGURE 6

Condition numbers under various window sizes for di�erent

datasets. On the top right corner of each subplot there is a label

“n/m (k %)” on the top right, it denotes the number of infinite

condition numbers (n) over the total condition numbers (m), with a

percentage (k). (A) ETTh1. (B) WTH. (C) ILI.

6 Conclusion

We introduced FWin Transformer and its light weight

version FWin-S to successfully reduce the complexity, and

improve/maintain the accuracy of Informer by replacing its

ProbSparse and full attention layers with window attention and
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Fourier mixing blocks in both encoder and decoder. The FWin

attention approach does not rely on sparse attention hypothesis or

periodic like patterns in the data, hence also achieves robustness

especially on highly non-stationary data. The experiments on

uni/multi-variate datasets and theoretical guarantees demonstrated

FWin’s merit in fast and reliable inference on LSTF tasks.

In future work, we plan to (1) embed FWin in an encoder only

architecture (e.g., iTransformer [5]) for acceleration and improved

generalization; (2) optimize the FWin approach toward accurate,

robust and fast transformers in challenging non-stationary real-

world LSTF applications.
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