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This paper investigates first-order nonlinear quantum di�erence equations

governed by a general β-di�erence operator, encompassing the Jackson

q-di�erence and Hahn di�erence operators as special cases. We establish

su�cient conditions for the existence and uniqueness of solutions using

fixed-point theory and examine their solvability under specific assumptions

to ensure well-posedness. Particular attention is given to various notions of

stability, including Hyers-Ulam, Hyers-Ulam-Rassias, and Mittag-Le	er type

stability. Under suitable Lipschitz conditions, we derive explicit error bounds

characterizing each type of stability, with Mittag-Le	er stability demonstrated to

be of exponential order α. Several illustrative examples are included to validate

the theoretical findings within the framework of quantum calculus and discrete

dynamical systems.
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1 Introduction

Quantum calculus, often referred to as q-calculus, generalizes classical calculus by

replacing the concepts of limits and infinitesimals with difference quotients involving

a parameter q. While its origins can be traced back to the works of Euler and Gauss,

quantum calculus gained significant attention in the 20th century due to its connections

with basic hypergeometric functions, special functions, and quantum groups [1, 2]. A

central tool in quantum calculus is the first-order quantum differential operator, which

plays a crucial role in various areas of modern mathematical and physical research. In

quantum mechanics, it serves as an alternative to classical derivatives, enabling discrete

models of physical systems where traditional continuous models may not be effective

[3]. Additionally, quantum calculus has contributed to the development of q-analogs of

orthogonal polynomials, such as the Askey-Wilson and q-Hermite polynomials, which are

fundamental in the theory of special functions and have extensive analytical applications

[3]. Furthermore, fractional calculus has incorporated the q-difference operator to define

new forms of fractional derivatives and integrals, enabling the modeling of systems with

memory and hereditary characteristics in discrete settings [4]. In this context, quantum

estimates are explored within the framework of fractional calculus, employing the quantum

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2025.1608177
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2025.1608177&domain=pdf&date_stamp=2025-05-22
mailto:chokri.chniti@ipein.rnu.tn
https://doi.org/10.3389/fams.2025.1608177
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2025.1608177/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


AlMutairi et al. 10.3389/fams.2025.1608177

Hahn integral operator and Jackson’s q-integral to solve

boundary value problems [4]. Recent studies, including [5], have

demonstrated the use of the generalized Mittag-Leffler function

in the kernel of fractional operators, offering a comprehensive

framework for analyzing fractional differential equations, and

enhancing the accuracy and efficiency of the results in applications

across various scientific and engineering domains. As highlighted

in the work by Zhou et al. [6], a new strategy has been proposed

to derive inequalities through the use of the Hilfer generalized

proportional fractional integral operators, which establishes

important connections between fractional differential equations

and statistical theory, offering a powerful tool for modeling

real-world problems. The study of quantum difference equations

has deep roots in the theory of difference equations and functional

analysis. Historically, quantum difference equations emerged

as generalizations of q-difference equations, which were first

introduced by Jackson [7] and Hahn [8]. These early works

established the foundation for the development of q-calculus, a

generalization of classical calculus. Quantum difference equations,

particularly those involving operators such as the Jackson q-

difference and Hahn difference operators, have proven crucial

in describing discrete systems in quantum mechanics, where

time evolution and state transitions are inherently discrete.

Furthermore, the introduction of the β-difference operator has

expanded the scope of these equations, allowing for the modeling

of more general discrete systems. These operators form the basis for

various stability results in quantum calculus, including the Hyers-

Ulam, generalized Hyers-Ulam, and Mittag-Leffler-type stability,

which are of central importance in the study of perturbation

theory and solution uniqueness. The historical significance of

these operators is underscored by their application in a wide

range of fields, from quantum field theory and signal processing

to dynamical systems and discrete time models. Thus, this paper

builds upon a rich legacy of work, contributing new results on the

stability of quantum difference equations in the context of modern

mathematics. In Wongcharoen et al. [9], the authors explore

the existence and uniqueness of solutions for a boundary value

problem involving a nonlinear fractional q-difference equation,

subject to novel boundary conditions that combine fractional

Hadamard and quantum integrals. Similarly, in Daribayev et al.

[10], the authors present a quantum algorithm for solving the one-

dimensional heat equation with Dirichlet boundary conditions,

utilizing quantum gates and the Trotter-Suzuki decomposition

to simulate heat propagation and assess the impact of quantum

simulations on heat conduction modeling. One important operator

in quantum difference calculus is the β-difference operator,

defined by

Dβg(t) =
g(β(t))− g(t)

β(t)− t
,

for each t such that β(t) 6= t. When β(t) = t, the operator

reduces to the classical derivative g′(t), provided that g′(t) exists.

This operator generalizes both the Jackson q-difference operator

and theHahn difference operator, two fundamental tools in discrete

analysis. In this study, β is a continuous function on an interval

I , and g is a function mapping I into a Banach space U. A

function g is β-differentiable on I if it is classically differentiable

at each point where β(t) = t. For example, if β(t) = qt with

q ∈ (0, 1), the operator Dq becomes the Jackson q-difference

operator, denoted Dq, and if β(t) = qt + ω with q ∈ (0, 1)

and ω > 0, it becomes the Hahn difference operator, denoted

Dq,ω . The study of quantum difference equations has garnered

significant interest due to their ability to handle non-differentiable

functions, thus eliminating the need for redundant proofs for both

q-difference and Hahn difference equations. For a comprehensive

treatment of the theory of quantum difference equations, we refer

to [11]. While quantum difference equations have emerged as a

powerful tool for handling non-differentiable functions, another

significant aspect of mathematical analysis, namely the stability

of functional equations, has also seen substantial development

in recent years. The concept of stability in functional equations

was first introduced by Ulam in 1940, who posed the problem

of determining conditions for the existence of linear mappings

near approximately linear mappings [12, 13]. Hyers extended this

by proving the stability of the Cauchy functional equation in

Banach spaces [14], leading to the concept of Hyers-Ulam stability,

which has since been widely studied due to its applications in
various fields, including control theory and numerical analysis. In
1978, Rassias further extended this concept by introducing Hyers-
Ulam-Rassias stability [15], broadening its scope to more general
conditions and applications in differential equations, recurrence

relations, and dynamic systems. The Hyers-Ulam stability of first-
order linear differential equations has been extensively studied

in the literature. Notably, it was investigated in [16, 17], where
foundational results were established. These findings were later

extended and generalized by Miura and collaborators in a series

of works [18–20], broadening the scope of applicability to more

general settings. In addition to differential equations, Hyers-

Ulam stability has also been explored in the context of discrete

systems. In Popa [21], the author investigates the Hyers-Ulam

stability of linear recurrence equations with constant coefficients,

establishing conditions under which small perturbations in initial

values or coefficients lead to bounded deviations in the solution.

Further studies on difference equations, which share structural

similarities with recurrence relations, can be found in [22, 23],

where various stability properties are examined. In [24], the authors

present a comprehensive study on the stability of multi-term

delay fractional differential equations, with a particular focus on

the analysis of integro-multipoint boundary conditions, offering

valuable insights into the dynamic behavior of these equations

under various conditions. More recently, there has been a growing

interest in the investigation of Hyers–Ulam stability within the

framework of dynamic equations on time scales. In [25], the

authors investigate the existence and stability results for multi-

term fractional delay differential equations, specifically focusing on

nonlocal multi-point and multi-strip boundary conditions. Several

contributions in this area have been made, including works such

as [26–37], which provide a unified approach to differential and

difference equations under a common mathematical framework.

For additional references and further developments, see also [38,

39]. This paper aims to investigate the existence and uniqueness of

solutions for quantum differential equations and explore the Hyers-

Ulam and Hyers-Ulam-Rassias stability of nonlinear quantum

difference equations.

The outline of the paper is the following: In Section 2, we

introduce the mathematical framework and provide the necessary

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2025.1608177
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


AlMutairi et al. 10.3389/fams.2025.1608177

preliminary definitions. In Section 3, we present the main problem

along with the existence and uniqueness results. Section 4 is

dedicated to stability results, including Hyers-Ulam stability,

Hyers-Ulam-Rassias stability, and Mittag-Leffler-type stability for

quantum difference equations. In Section 5, we present illustrative

examples. Finally, we conclude in Section 6.

2 Mathematical framework and
preliminary definitions

We assume that β is a continuous, increasing function on

I , with a unique fixed point t0 ∈ I , satisfying the following

conditions:

β(t) ≤ t for all t ∈ I , t ≥ t0,

and

β(t) ≥ t for all t ∈ I , t ≤ t0.

Additionally, U represents a Banach space equipped with the

norm ‖ · ‖.
A key concept in quantum difference calculus is the β-interval,

defined as:

[a, b]β = {βk(a) | k ∈ N0}∪{βk(b) | k ∈ N0}∪{t0}, where a, b ∈ I .

For a point d ∈ [a, b]β , the following behaviors are observed:

• If d > t0, then βk(d) decreases monotonically to t0 as k → ∞.

• If d < t0, then βk(d) increases monotonically to t0 as k → ∞.

This behavior leads to the definition β∞(t) = t0 for t ≥ t0,

which provides a natural extension for the behavior of β beyond its

fixed point. For a more comprehensive understanding of quantum

difference calculus, we direct the reader to [40–42]. In this section,

we outline the essential definitions and pivotal theorems that form

the foundation of our analysis, ensuring a clear and structured

framework for the subsequent discussions and results.

Example 1. 1. Dβ t
n =

∑n−1
k=0(β(t))

n−k−1tk, t ∈ (−1, 1), n ≥ 1.

2. Dβ
1
t = −1

tβ(t) , t 6= 0,β(t) 6= 0.

3. Let f (t) = at + b, where a, b ∈ R, and let β(t) = t + h for some

constant h 6= 0.

The β-difference operator applied to f (t) is:

Dβ f (t) =
f (β(t))− f (t)

β(t)− t
=

a(t + h)+ b− (at + b)

h

=
a(t + h− t)

h
= a.

Thus, Dβ f (t) = a.

Definition 1. Let g :I −→ U and c, d ∈ I . The β-integral of the

function g over the interval from [c, d] is defined by

∫ d

c
g(t)dβ t =

∫ d

t0

g(t)dβ t −
∫ c

t0

g(t)dβ t, (1)

where

∫ h

t0

g(t)dβ t =
∞
∑

k=0

(βk(h)− βk+1(h))g(βk(h)), h ∈ I , (2)

and this series is assumed to converge at both h = c and h = d. The

function g is said to be β-integrable on I if the series converges

for all c, d ∈ I . Clearly, if g is continuous at t0 ∈ I , then g is

β-integrable on I , as shown in [41].

Definition 2. Let b ∈ I, b > t0, and let (U, ‖ · ‖) be a Banach space.

The space of continuous functions from [t0, b] to U is denoted by

C([t0, b],U) = {ϕ :[t0, b] → U | ϕ is continuous},

equipped with the supremum norm

‖ϕ‖∞ = sup
t∈[t0 ,b]

‖ϕ(t)‖.

Definition 3. The β-exponential function Eζ (t, t0) is defined as the

solution to the following differential equation:

DβEζ (t, t0) = ζ (t)Eζ (t, t0), Eζ (t0, t0) = 1.

Theorem 1. [41] Let g :I −→ U be a function that is continuous

at t0. Define the function

G(t) =
∫ t

t0

g(s)dβ s, t ∈ I .

Then, G is continuous at t0, the β-derivative of G(t), denoted

DβG(t), exists for every t ∈ I , and we have

DβG(t) = g(t).

Theorem 2. [41] Suppose g :I → U is β-differentiable on I . Then,

the following identity holds:

∫ d

c
Dβg(η) dβη = g(d)− g(c), c, d ∈ I .

Theorem 3. [41] If Z :I → U is continuous at t0, then the series

∞
∑

k=0

‖(βk(t)− βk+1(t))Z(βk(t))‖

is uniformly convergent on every compact interval I ⊆ I that

contains t0.

Finally, the following β-Hölder inequality in quantum calculus

was established in [43], and further details can be found in [42].

Theorem 4. (β-Hölder inequality) If f ∈ Lp([a, b]β ,R) and g ∈
Lq([a, b]β ,U), where p > 1 and q = p

p−1 , then fg ∈ L1([a, b]β ,U),

and the following inequality holds:

‖fg‖1 ≤ ‖f ‖p‖g‖q,

or equivalently,

∫ b

a
‖f (t)g(t)‖dβ t ≤

(
∫ b

a
|f (t)|pdβ t

) 1
p
(
∫ b

a
‖g(t)‖qdβ t

) 1
q

.

In particular, when p = q = 2, this reduces to the β-Cauchy-

Schwarz inequality.

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2025.1608177
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


AlMutairi et al. 10.3389/fams.2025.1608177

Theorem 5. [42] Let y, f ,Z be continuous real-valued functions on

I , with Z ≥ 0. If the following inequality holds:

y(t) ≤ f (t)+
∫ t

t0

y(η)Z(η)dβη, t ∈ I ,

then it implies that

y(t) ≤ f (t)+
∫ t

t0

Eβ ,Z (t,β(η))f (η)Z(η)dβη, t ∈ I .

Corollary 1. [42] Let Z(t) ≥ 0 and µ ∈ R. If the inequality

y(t) ≤ µ +
∫ t

t0

y(η)Z(η)dβη, t ∈ I ,

holds, then it follows that

y(t) ≤ µEβ ,Z (t, t0).

Definition 4. [44] [Discrete fractional Grönwall inequality] Let α ∈
(0, 1], T ∈ N, and let {y(n)}Tn=0, {a(n)}Tn=0 be nonnegative real

sequences. Suppose b ≥ 0 is a constant and the inequality

y(n) ≤ a(n)+ b

n−1
∑

k=0

(n− k)α−1

Ŵ(α)
y(k), for all n = 1, 2, . . . ,T

holds. Then the function y(n) satisfies the bound:

y(n) ≤ a(n)+
n−1
∑

k=0

(n− k)α−1

Ŵ(α)
a(k)Eα

(

b(n− k)α
)

, ∀n = 1, . . . ,T,

where Eα(z) is the one-parameter Mittag–Leffler function defined

by

Eα(z) : =
∞
∑

k=0

zk

Ŵ(αk+ 1)
.

In particular, if a(k) ≤ A(k − t0)α for some constant A > 0,

then

y(n) ≤ A(n− t0)
αEα

(

b(n− t0)
α
)

.

Theorem 6. [40] If Z :I → U is continuous at t0, then the

following hold:

1. The β-derivative with respect to η, denoted Dβ ,η , satisfies

Dβ ,ηEβ ,Z (t, η) = −Z(η)Eβ ,Z (t,β(η)).

2. The following integral identity holds:

∫ t

t0

Eβ ,Z (t,β(η))Z(η) dη = Eβ ,Z (t, t0)− 1.

Lemma 1. [41] Let f :I → U and g :I → R be β-integrable

functions on I . If

‖f (t)‖ ≤ g(t) for all t ∈ [a, b]β , a, b ∈ I and a ≤ b,

then for x, y ∈ [a, b]β with x < t0 < y, the following inequalities

hold:
∥
∥
∥
∥

∫ y

t0

f (t) dβ t

∥
∥
∥
∥
≤
∫ y

t0

g(t) dβ t,

∥
∥
∥
∥

∫ x

t0

f (t) dβ t

∥
∥
∥
∥
≤ −

∫ x

t0

g(t) dβ t,

and
∥
∥
∥
∥

∫ y

x
f (t) dβ t

∥
∥
∥
∥
≤
∫ y

x
g(t) dβ t.

Moreover, if g(t) ≥ 0 for all t ∈ [a, b]β , then the following

inequalities hold:

∫ y

t0

g(t) dβ t ≥ 0 and

∫ y

x
g(t) dβ t ≥ 0.

We nowmake the following assumptions that will be used later.

• M1 : ζ ∈ C(I,R) and f ∈ C(I,U), where C(I,U) denotes the

space of continuous functions from I to U.

• M2 : The function F : I × U × U → U is Lipschitz

continuous with respect to its second and third arguments,

with a Lipschitz constant LF ≥ 0. Additionally, the function

h :U → U is Lipschitz continuous with a Lipschitz constant

Lh ≥ 0.

Specifically:

◦ ‖F(t, u, v)‖ ≤ LF (‖u‖ + ‖v‖),
◦ ‖f (t)‖ ≤ Cf for all t ∈ I,

◦ ‖h(u)‖ ≤ Lh‖u‖.

Specifically, for all x1, x2, y1, y2 ∈ U and for all t ∈ I, we have:

‖F(t, x1, h(x1))− F(t, x2, h(x2))‖ ≤ κ‖x1 − x2‖,

where κ : = LF (1+ Lh).

• M3: For every U0 ∈ U, Equation 4 has a solution.

• M4 : The constant θ = supt∈I
∫ t
t0
|ζ (t)|dβ s satisfies:

θ + κ(b− t0) < 1. (3)

• M5 : κ(b− a)Eζ (b, a) < 1.

• M6 : 1−
(

θ + κ + Cf

)

(b− t0) >
‖U0‖
R , with R > 0.

3 Existence and uniqueness of
solutions

In this section, we aim to establish sufficient conditions for

the existence and uniqueness of solutions to first-order nonlinear

quantum difference equations of the form:

DβU(t) = ζ (t)U(t)+ F(t,U(t), h(U(t)))+ f (t), t ∈ I,

U(t0) = U0, (4)
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where Dβ denotes the β-derivative, ζ is a given function, and

F : I × U × U → U represents a nonlinear interaction term.

The function f corresponds to an external forcing term, defined

on the interval I = [t0, b] with b > t0. Equation 4 represents a

crucial advancement in modeling quantum systems with nonlinear

interactions and discrete time steps. Its general form encompasses

a wide range of quantum dynamics, making it a powerful tool for

understanding complex behaviors in discrete quantum systems.

The main objective of this section is to derive the conditions

under which a solution exists and is unique. We also aim to express

the solution in integral form, which can provide additional insights

into its behavior.

Theorem 7. The function U is a solution to Equation 4 if and only

if it satisfies the following integral equation:

U(t) = U0 +
∫ t

t0

[

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)
]

dβ s, (5)

where U0 ∈ U is the initial value at t = t0.

Proof. (Forward direction): Assume thatU satisfies Equation 4, i.e.,

DβU(t) = ζ (t)U(t)+F(t,U(t), h(U(t)))+f (t), t ∈ I,U(t0) = U0.

By integrating both sides from t0 to t, we obtain:

∫ t

t0

DβU(s)dβ s =
∫ t

t0

[

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)
]

dβ s,

which leads to the following equation:

U(t) = U0 +
∫ t

t0

[

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)
]

dβ s.

Thus, U satisfies the integral form (Equation 5).

(Reverse Direction): Now, assume that U is given by

Equation 5, i.e.,

U(t) = U0 +
∫ t

t0

[

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)
]

dβ s.

Taking the Dβ -derivative of both sides, and applying the

fundamental theorem of quantum calculus, we obtain:

DβU(t) = ζ (t)U(t)+ F(t,U(t), h(U(t)))+ f (t),

and since U(t0) = U0, it is obvious that U satisfies the original

equation (Equation 4).

In Theorem 8, we establish the existence and uniqueness results

for the problem (Equation 4) by applying the standard tools of

fixed-point theory. Let us first transform the problem (Equation 4)

into a fixed-point problem:HU = U whereH :C(I,U) → C(I,U)

is the fixed operator defined by

(HU)(t) = U0 +
∫ t

t0

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)dβ s.

Theorem 8. Under the assumptions M1, M2 and M4, if U0 ∈
U, the quantum difference equation (Equation 4) has a unique

solution on the interval I.

Proof. Let U0 ∈ U. Using Theorem 7, define the operator

H :C(I,U) → C(I,U) by:

(HU)(t) = U0 +
∫ t

t0

[

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)
]

dβ s.

To prove that H is a contraction, let U1,U2 ∈ C(I,U). Then,

we have:

‖(HU1)(t)− (HU2)(t)‖ =
∥
∥
∥
∥

∫ t

t0

[

ζ (s)(U1(s)− U2(s))

+F(s,U1(s), h(U1(s)))

−F(s,U2(s), h(U2(s)))
]

dβ s
∥
∥

≤
∫ t

t0

|ζ (s)| ‖U1(s)− U2(s)‖dβ s

+
∫ t

t0

‖F(s,U1(s), h(U1(s)))

− F(s,U2(s), h(U2(s)))‖ dβ s.

By the Lipschitz conditionM2, we get

‖(HU1)(t)− (HU2)(t)‖ ≤
∫ t

t0

|ζ (s)|‖U1(s)− U2(s)‖ dβ s

+
∫ t

t0

κ‖U1(s)− U2(s)‖dβ s, t ∈ I.

After simple calculation, we obtain

‖(HU1)(t)−(HU2)(t)‖ ≤ (θ+κ(b−t0))‖U1−U2‖∞, t ∈ I. (6)

Since θ + κ(b − a) < 1 by condition M4, H is a contraction

mapping. By the Banach Fixed Point Theorem, H has a unique

fixed point U in C(I,U), which satisfies the integral equation

(Equation 5). This implies that U is the unique solution of the

quantum difference equation (Equation 4).

Theorem 9. Under the assumptions M0, M1, M2, and M4, if

U0 ∈ U, then Equation 4 has at least one solution U ∈ C(I,U).

Proof. We prove the existence of solutions using the Leray-

Schauder nonlinear alternative theorem.

Step 1: Uniform Boundedness ofH.

Firstly, we aim to demonstrate that the operator H :C(I,U) →
C(I,U), maps bounded sets into bounded sets within X = C(I,U).

For a positive number R, we consider a closed ball BR = {U ∈
X : ‖U‖ 6 R} be bounded set in X. For U ∈ C(I,U) with ‖U‖∞ ≤
R, we estimate:

‖(HU)(t)‖ ≤ ‖U0‖ +
∫ t

t0

(

|ζ (s)| ‖U(s)‖ + LF (‖U(s)‖

+Lh‖U(s)‖)+ Cf

)

dβ s

≤ ‖U0‖ + R
(

θ + κ + Cf

)

(b− t0).

Then usingM6, we get

‖(HU)(t)‖ ≤ R for all t ∈ I.

This indicates that the set H(BR) is uniformly bounded. Thus,

Hmaps bounded sets to bounded sets.
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Step 2: Continuity ofH.

We now claim thatH is continuous. To prove this, we consider

a sequence {Un} in BR that converges to U and show thatHUn →
HU as n 7→ ∞.

Using Equation 6, we have

‖(HUn)(t)− (HU)(t)‖ ≤
(

θ + κ(b− t0)
)

‖Un − U‖∞.

As n → ∞, ‖Un − U‖∞ → 0, then ‖HUn − HU‖ → 0 as

n → ∞.

Hence,H is continuous.

Step 3: Equicontinuity ofH.

We claim thatHmaps bounded set into a set of equicontinuous

functions.

Let t1, t2 ∈ I with t1 < t2. For ‖U‖∞ ≤ R:

‖(HU)(t2)− (HU)(t1)‖ ≤
∫ t2

t1

∥
∥ζ (s)U(s)+ F(s,U(s), h(U(s)))

+ f (s)
∥
∥ dβ s

≤
∫ t2

t1

(∣
∣ζ (s)

∣
∣R+ LF (1+ Lh)R

+‖f ‖‖∞
)

dβ s

≤
(

R (2θ + κ) + Cf

)

(t2 − t1).

The right-hand side tends to zero as |t2− t1| → 0, independent

of U. Hence,H is equicontinuous.

Step 4: Application of Leray-Schauder’s Theorem.

Now, we need to prove that there exists an open set A ⊆ X

such that U 6= λ∗H(U) for λ∗ ∈ (0, 1) and U ∈ ∂A. We suppose

U ∈ X such that U = λ∗H(U) for λ∗ ∈ (0, 1). For t ∈ [a, b], we

have U = λ∗HU for some λ∗ ∈ (0, 1). Using same technique as

Step 1, we arrive to:

‖U‖∞ ≤ ‖U0‖ +
(

θ + κ + Cf

)

(b− t0)‖u‖∞ = M.

Define the setA as

A = {U ∈ X : ‖U‖ 6 M+ 1} .

There is no U ∈ ∂A satisfying U = λ∗HU for some λ∗ ∈
(0, 1). Consequently, by the Leray-Schauder nonlinear alternative,

the operatorH has at least one fixed point inA, which corresponds

to a solution of problem (Equation 4).

The use of the Leray–Schauder nonlinear alternative in

Theorem 9 allows us to establish the existence of solutions

without requiring the strict contractive condition employed in

Theorem 8. This is particularly useful in cases where the

nonlinear term F does not satisfy a global Lipschitz condition,

or when the combined constant θ + κ(b − t0) is not

strictly less than one. However, if this contractive condition is

satisfied, then Banach’s Fixed Point Theorem applies directly,

ensuring both the existence and uniqueness of the solution.

Therefore, the two approaches serve complementary roles: the

Leray–Schauder method guarantees existence under broader

assumptions, while the Banach method provides uniqueness under

stronger ones.

Theorem 10. (Uniqueness via Grönwall Inequality [[42], Corollary

2.3]). Let the assumptions M1 and M2 hold, and suppose the

function U ∈ C(I,U) satisfies the integral equation (Equation 5).

Then the solution to the quantum difference equation (Equation 4)

is unique on the interval I.

Proof. Let U1 and U2 be two solutions of Equation 5, and define

their difference W(t) = U1(t)− U2(t). Then:

W(t) =
∫ t

t0

[

ζ (s)W(s)+ F(s,U1(s), h(U1(s)))

− F(s,U2(s), h(U2(s)))
]

dβ s.

Using the Lipschitz condition fromM2, we estimate:

‖W(t)‖ ≤
∫ t

t0

(

|ζ (s)| + κ
)

‖W(s)‖ dβ s.

Let φ(t) : = ‖W(t)‖. Then:

φ(t) ≤ φ(t0)+
∫ t

t0

(

|ζ (s)| + κ
)

φ(s) dβ s.

Applying the Grönwall-type inequality in the sense of quantum

calculus (see Corollary 1), we obtain:

φ(t) ≤ φ(t0) · Eβ ,|ζ |+κ (t, t0).

Since U1(t0) = U2(t0) = U0, it follows that φ(t0) = 0. Hence:

φ(t) = 0 ⇒ U1(t) = U2(t), ∀t ∈ I.

Therefore, the solution is unique.

4 Stability analysis

This section is devoted to the investigation of various

types of stability for the nonlinear quantum difference equation

(Equation 4). Throughout the analysis, the functions f , h, F , and

ζ are assumed to be continuous (see [45]).

Definition 5 (Hyers-Ulam stability). Equation 4 is said to have

Hyers–Ulam stability (HUs), if there is a positive numberM > 0, a

so-called HUs constant, with the following property: For any ǫ > 0,

if U ∈ C1(I,U) is such that

‖DβU(t)− ζ (t)U(t)− F(t,U(t), h(U(t)))− f (t)‖ ≤ ǫ, t ∈ I,

(7)

there exists a solution U∗ of Equation 4 such that

‖U(t)− U∗(t)‖ ≤ Mǫ, t ∈ I. (8)

Here, C1(I,U) is the space of all β−differentiable functions ϕ

such that Dβϕ is continuous.

Definition 6 (Generalized Hyers-Ulam stability). Equation 4 is

said to have Generalized Hyers-Ulam stability (GHUs) if there

exists a function φ :[0,∞) → [0,∞), continuous at 0 with

φ(0) = 0, such that for any ǫ > 0, if U ∈ C1(I,U) satisfies

∥
∥DβU(t)− ζ (t)U(t)− F(t,U(t), h(U(t)))− f (t)

∥
∥ ≤ ǫ, t ∈ I,

(9)
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then there exists a solution U∗ of Equation 4 satisfying

∥
∥U(t)− U∗(t)

∥
∥ ≤ φ(ǫ), t ∈ I. (10)

Theorem 11. If conditions (M1-M3), are satisfied, then the

problem (Equation 4) is both Ulam-Hyers and generalized Ulam-

Hyers stable.

Proof. Let ǫ > 0 and U ∈ C1(I,U) satisfies Equation 7. Then U

solves the approximate equation

DβU(t) = ζ (t)U(t)+ F(t,U(t), h(U(t)))+ f (t)+ σ (t), (11)

where σ is defined by

σ (t) = DβU(t)− ζ (t)U(t)− F(t,U(t), h(U(t)))− f (t). (12)

In view of Equation 7, we obtain

‖σ (t)‖ ≤ ǫ, t ∈ I. (13)

Condition M3 implies that Equation 4 has a solution U∗ with

U∗(t0) = U0. By Theorem 7, the corresponding integral formulas

for Equations 4, 11 are

U∗(t) = U0 +
∫ t

t0

(

ζ (s)U∗(s)+ F(s,U∗(s), h(U∗(s)))+ f (s)
)

dβ s,

(14)

and

U(t) = U0+
∫ t

t0

(

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)+ σ (s)
)

dβ s.

(15)

Next, subtracting Equation 14 from Equation 15, it follows that

‖U(t)− U∗(t)‖ ≤
∫ t

t0

‖σ (s)‖ dβ s+
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)

− U∗(s)‖ dβ s, t ∈ I, (16)

where we have applied condition M2. From Equation 13, we

deduce that

‖U(t)−U∗(t)‖ ≤ ǫ(b− t0)+
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)−U∗(s)‖ dβ s.

By Grönwall’s inequality [Corollary 1]

‖U(t)− U∗(t)‖ ≤ ǫ(b− t0)Eβ ,|ζ |+κ (b, t0), t ∈ I. (17)

Therefore, Equation 4 has Hyers–Ulam stability with HUs

constantM = ǫ(b− t0)Eβ ,|ζ |+κ (b, t0). Furthermore, one can notice

that the generalized Ulam-Hyers stability condition also holds valid

if we set φ(ǫ) = ǫ(b− t0)Eβ ,|ζ |+κ (b, t0).

We present the Hyers–Ulam–Rassias stability (HURs) of the

quantum difference equation (Equation 4). For more details, see

[45].

Definition 7 (Hyers–Ulam–Rassias stability). Let F be a family

of nonnegative continuous functions defined on I. We say that

Equation 4 exhibits Hyers–Ulam–Rassias stability (HURs) of type

F if there exists a functionK :F → C(I, [0,∞)), called theHURsF
function, that satisfies the following property: for every ϕ ∈ F , if

U ∈ C1(I,U) is such that

‖DβU(t)− ζ (t)U(t)− F(t,U(t), h(U(t)))− f (t)‖ ≤ ϕ(t), t ∈ I,

(18)

then there exists a solution U∗ of Equation 4 such that

‖U(t)− U∗(t)‖ ≤ K(ϕ)(t), t ∈ I. (19)

When F = C(I,R+), the Equation 4 is said to have Hyers–

Ulam–Rassias stability (HURs).

Theorem 12. If M1-M3 hold, then Equation 4 has Hyers–Ulam–

Rassias stability with the HURsF function given by:

K(ϕ)(t) = (b− t0) · Eβ ,|ζ |+κ (b, t0) · ‖ϕ(t)‖∞, t ∈ I.

Proof. Let ϕ ∈ OC , and suppose that U ∈ C1(I,U) satisfies

Equation 18. Define σ as in Equation 12, so that ‖σ (t)‖ ≤ ϕ(t).

Let U(t0) = U0. By Theorem 7, U satisfies the integral form:

U(t) = U0+
∫ t

t0

(

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)+ σ (s)
)

dβ s.

(20)

Let U∗ be the solution of the exact equation with U∗(t0) = U0.

Using the integral formulation (Theorem 7) for U∗:

U∗(t) = U0 +
∫ t

t0

[

ζ (s)U∗(s)+ F(s,U∗(s), h(U∗(s)))+ f (s)
]

dβ s.

Subtracting these two equations, we apply the triangle

inequality:

‖U(t)− U∗(t)‖ ≤
∫ t

t0

(

|ζ (s)|‖U(s)− U∗(s)‖

+ ‖F(s,U(s), h(U(s)))− F(s,U∗(s), h(U∗(s)))‖
+ ‖σ (s)‖

)

dβ s.

By the Lipschitz condition (H2), we have:

‖F(s,U(s), h(U(s)))− F(s,U∗(s), h(U∗(s)))‖ ≤ κ‖U(s)− U∗(s)‖,

where κ = LF (1+ Lh). Therefore:

‖U(t)− U∗(t)‖ ≤
∫ t

t0

(|ζ (s)| + κ)‖U(s)− U∗(s)‖ dβ s

+
∫ t

t0

ϕ(s) dβ s

≤
∫ t

t0

(|ζ (s)| + κ)‖U(s)− U∗(s)‖ dβ s

+ (b− t0)‖ϕ‖∞.

Thus, we have:

‖U(t)−U∗(t)‖ ≤ (b−t0)‖ϕ‖∞+
∫ t

t0

(|ζ (s)|+κ)‖U(s)−U∗(s)‖ dβ s.
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By Grönwall’s inequality (Corollary 1), we conclude that:

‖U(t)− U∗(t)‖ ≤ (b− t0) · Eβ ,|ζ |+κ (b, t0) · ‖ϕ‖∞, ∀t ∈ I.

Definition 8 (Functions of exponential order). Let δ > 0 be a fixed

constant. A function u : I → R is said to be of exponential order δ

(in the sense of quantum calculus) if there exists a constant C > 0

such that

|u(t)| ≤ C Eβ ,δ(t, t0), ∀t ∈ I,

where Eβ ,δ(t, t0) denotes the quantum exponential function with

rate δ. We define the class:

OC : =
{

u : I → R
∣
∣ ∃C > 0, ∃δ > 0, such that |u(t)|

≤ CEβ ,δ(t, t0), ∀t ∈ I
}

.

Theorem 13. If M1-M3 hold, then Equation 4 has Hyers–Ulam–

Rassias stability of typeOC with HURsOC function given by:

K(ϕ)(t) : =
C

δ

(

Eβ ,δ(b)− 1
)

Eβ ,|ζ |+κ (b, t0), t ∈ I. (21)

Proof. Let ϕ ∈ OC and U ∈ C1(I,U) be such that Equation 18

holds. Define σ as in Equation 12.

We assume that U(t0) = U0. By Theorem 7, U satisfies the

integral equation:

U(t) = U0 +
∫ t

t0

(

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)

+ σ (s)
)

dβ s. (22)

By assumption M3, there exists a solution U∗ of Equation 4

such that U∗(t0) = U0. Again, by Theorem 7, U∗ satisfies:

U∗(t) = U0 +
∫ t

t0

(

ζ (s)U∗(s)+ F(s,U∗(s), h(U∗(s)))+ f (s)
)

dβ s.

(23)

Next, subtract Equation 23 from Equation 22, yielding the

following inequality for all t ∈ I:

‖U(t)− U∗(t)‖ ≤
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)− U∗(s)‖dβ s

+
∫ t

t0

‖σ (s)‖dβ s, t ∈ I. (24)

Since ‖σ (s)‖ ≤ ϕ(s), we can substitute this into the inequality:

‖U(t)− U∗(t)‖ ≤
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)− U∗(s)‖dβ s

+
∫ t

t0

ϕ(s)dβ s, t ∈ I. (25)

This implies that:

‖U(t)− U∗(t)‖ ≤
∫ t

t0

ϕ(s)dβ s +
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)

− U∗(s)‖dβ s.

Thus, we have:

‖U(t)− U∗(t)‖ ≤
C

δ

(

Eβ ,δ(t)− 1
)

+
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)

− U∗(s)‖dβ s.

Next, using the fact that the exponential function is increasing

(as shown in [41]), we can simplify this further:

‖U(t)− U∗(t)‖ ≤
C

δ

(

Eβ ,δ(b)− 1
)

+
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)

− U∗(s)‖dβ s, t ∈ I.

Finally, by applying Grönwall’s inequality (Corollary 1), we

obtain the bound:

‖U(t)− U∗(t)‖ ≤
C

δ

(

Eβ ,δ(b, t0)− 1
)

Eβ ,|ζ |+κ (t, t0).

This can be further simplified as:

‖U(t)− U∗(t)‖ ≤
C

δ

(

Eβ ,δ(b)− 1
)

Eβ ,|ζ |+κ (b, t0), t ∈ I.

Hence, the required result follows.

Theorem 14. Let (F∗ = { ϕ ∈ C(I, (0,∞)) :ϕ is nondecreasing on

I}). If M1-M3 hold, then Equation 4 has Hyers–Ulam–Rassias

stability of type F∗ with HURsF∗ function:

K(ϕ)(t) : = (b− t0)Eβ ,|ζ (s)|+L(b, t0)ϕ(t), t ∈ I. (26)

Proof. Let ϕ ∈ F∗ and U ∈ C1(I,U) be such that Equation 18

holds. Define σ as in Equation 12. Assume that U(t0) = U0. By

Theorem 7, U satisfies the following integral equation:

U(t) = U0+
∫ t

t0

(

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)+ σ (s)
)

dβ s.

(27)

By assumption M3, there exists a solution U∗ to Equation 4

such that U∗(t0) = U0. Again, by Theorem 7, U∗ satisfies the

integral equation:

U∗(t) = U0 +
∫ t

t0

(

ζ (s)U∗(s)+ F(s,U∗(s), h(U∗(s)))+ f (s)
)

dβ s.

(28)

Next, subtract Equation 31 from Equation 32. This results in

the following inequality for all t ∈ I:

‖U(t)− U∗(t)‖ ≤
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)− U∗(s)‖dβ s

+
∫ t

t0

‖σ (s)‖dβ s, t ∈ I.

Since ‖σ (s)‖ ≤ ϕ(s), we substitute this into the inequality:

‖U(t)− U∗(t)‖ ≤
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)− U∗(s)‖dβ s

+ (b− t0)ϕ(t), t ∈ I. (29)
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Now, applying Grönwall’s inequality, we obtain the following

bound:

‖U(t)− U∗(t)‖ ≤ (b− t0)ϕ(t)

+
∫ t

t0

Eβ ,|ζ (s)|+κ (t,β(s))(|ζ (s)| + L)(b− t0)ϕ(s)dβ s

= (b− t0)ϕ(t)

(

1+
∫ t

t0

Eβ ,|ζ (s)|+κ (t,β(s))(|ζ (s)|

+ L)dβ s
)

≤ (b− t0)Eβ ,|ζ (s)|+κ (b, t0)ϕ(t), t ∈ I,

where we used the increasing property of the exponential function

Eβ ,|ζ (s)|+κ (t, t0), as established in Theorem 6. Thus, we have

established the desired bound.

Definition 9. For p ≥ 1 and ϑ ≥ 0, we define the family Fϑ
p as

follows:

F
ϑ
p : =

{

ϕ ∈ C(I, (0,∞)) :

∫ t

t0

ϕp(η)dβη ≤ ϑϕp(t) for all t ∈ I

}

.

Theorem 15. If assumptions M1-M3 are satisfied, then

Equation 4 exhibits Hyers-Ulam-Rassias (HURs) stability of

type F∗ ∩ F1
1 , with the corresponding HURs stability function

K
F∗∩F1

1
given by:

K(ϕ)(t) : = Eβ ,|ζ |+κ (b, t0)ϕ(t), t ∈ I. (30)

Proof. Let ϕ ∈ F∗∩F1
1 and assumeU ∈ C1(I,U) is a solution that

satisfies Equation 18. Define σ as in Equation 12. Assume U(t0) =
U0. By Theorem 7, U satisfies the integral equation:

U(t) = U0 +
∫ t

t0

(

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)

+ σ (s)
)

dβ s. (31)

By assumption M3, there exists a solution U∗ to Equation 4

such that U∗(t0) = U0. Similarly, by Theorem 7, U∗ satisfies:

U∗(t) = U0 +
∫ t

t0

(

ζ (s)U∗(s)+ F(s,U∗(s), h(U∗(s)))

+ f (s)
)

dβ s. (32)

Next, subtract Equation 31 from Equation 32. This gives the

following inequality for all t ∈ I:

‖U(t)− U∗(t)‖ ≤
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)− U∗(s)‖dβ s

+
∫ t

t0

‖σ (s)‖dβ s, t ∈ I.

Since ‖σ (s)‖ ≤ ϕ(s), we substitute this into the inequality:

‖U(t)− U∗(t)‖ ≤
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)− U∗(s)‖dβ s

+ (b− t0)ϕ(t), t ∈ I. (33)

Now, applying Grönwall’s inequality (Theorem 5), we obtain

the following bound:

‖U(t)− U∗(t)‖ ≤ (b− t0)ϕ(t)

+
∫ t

t0

Eβ ,|ζ (s)|+κ (t,β(s))(|ζ (s)| + κ)(b− t0)ϕ(s)dβ s

= (b− t0)ϕ(t)

(

1+
∫ t

t0

Eβ ,|ζ (s)|+κ (t,β(s))(|ζ (s)| + κ)dβ s

)

≤ (b− t0)Eβ ,|ζ (s)|+κ (b, t0)ϕ(t), t ∈ I,

where we used the increasing property of the exponential

function Eβ ,|ζ (s)|+L(t) and referenced Theorem 6. Thus, we

have demonstrated that Equation 4 exhibits Hyers-Ulam-Rassias

stability of type F∗ ∩ F1
1 , with the corresponding HURs stability

function given by Equation 30.

Theorem 16. Assume that conditions M1-M3 hold. Then, the

Equation 4 exhibits Hyers-Ulam-Rassias stability of type Fϑ
1 , with

the corresponding HURs functionK
F

ϑ
1
given by:

K(ϕ)(t) : =
(

1+ Eβ ,|ζ |+L(b, t0) (‖ζ‖∞ + κ)
)

ϑϕ(t), t ∈ I. (34)

Proof. Let ϕ ∈ Fϑ
1 , and assume that U ∈ C1(I,U) satisfies

Equation 18. We define σ as in Equation 12. Also, let U(t0) = U0.

By Theorem 7, the solution U satisfies the integral equation:

U(t) = U0+
∫ t

t0

(

ζ (s)U(s)+ F(s,U(s), h(U(s)))+ f (s)+ σ (s)
)

dβ s.

(35)

By assumption M3, there exists a solution U∗ to Equation 4

such that U∗(t0) = U0. Again, by Theorem 7, U∗ satisfies the

equation:

U∗(t) = U0 +
∫ t

t0

(

ζ (s)U∗(s)+ F(s,U∗(s), h(U∗(s)))+ f (s)
)

dβ s.

(36)

Now, subtract Equation 35 from Equation 36. This yields the

following inequality for all t ∈ I:

‖U(t)− U∗(t)‖ ≤
∫ t

t0

(

|ζ (s)| + L
)

‖U(s)− U∗(s)‖dβ s

+
∫ t

t0

ϕ(s)dβ s, t ∈ I.

Therefore, we obtain the following bound:

‖U(t)− U∗(t)‖ ≤ ϑϕ(t) +
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)− U∗(s)‖dβ s,

t ∈ I. (37)

Now, applying Grönwall’s inequality (Theorem 5), we get the

following estimate for t ∈ I:

‖U(t)−U∗(t)‖ ≤ ϑϕ(t)+
∫ t

t0

Eβ ,|ζ |+κ (t,β(s))
(

|ζ (s)| + κ
)

ϕ(s)dβ s.

(38)

Next, we bound the integral term:

‖U(t)− U∗(t)‖ ≤ ϑϕ(t)+ Eβ ,|ζ |+κ (b, t0) (‖ζ‖∞ + κ)

∫ t

t0

ϕ(s)dβ s.
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Now, since ϕ ∈ Fϑ
1 , we know that

∫ t
t0

ϕ(s)dβ s ≤ ϑϕ(t). Hence,

we get:

‖U(t)− U∗(t)‖ ≤ ϑϕ(t)+ Eβ ,|ζ |+κ (b, t0) (‖ζ‖∞ + κ) ϑϕ(t).

Thus, we have:

‖U(t)− U∗(t)‖ ≤
(

1+ Eβ ,|ζ |+κ (b, t0) (‖ζ‖∞ + κ)
)

ϑϕ(t).

Finally, we conclude that Equation 4 has Hyers-Ulam-Rassias

stability of type Fϑ
1 , with the stability functionK

Fϑ
1
(t) given by:

K(ϕ)(t) : =
(

1+ Eβ ,|ζ |+κ (b, t0) (‖ζ‖∞ + κ)
)

ϑϕ(t).

Thus, Equation 4 exhibits the desired stability.

Theorem 17 (Hyers–Ulam–Rassias Stability of Type Fϑ
p ). Let p >

1, and define q by 1
p + 1

q = 1. If assumptions M1–M3 hold, then

Equation 4 exhibits Hyers–Ulam–Rassias stability of type Fϑ
p .

More precisely, if U ∈ C1(I,U) satisfies the inequality

(Equation 18) for some ϕ ∈ Fϑ
p , then there exists a solution U∗

of Equation 4 such that

‖U(t)− U∗(t)‖ ≤ K(ϕ)(t), ∀t ∈ I,

where the stability functionK(ϕ) is given by:

K(ϕ)(t) : = p
√

ϑ
q
√

b− t0
(

1+ q
√

b− t0 · Eβ ,|ζ |+κ (b, t0) · (‖ζ‖∞ + κ)
)

ϕ(t).

(39)

Proof. Let ϕ ∈ Fϑ
p , and assume that U ∈ C1(I,U) satisfies

Equation 18. Define σ as in Equation 12. By applying the same steps

as in the proof of Theorem 15, we obtain:

‖U(t) − U∗(t)‖ ≤
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)− U∗(s)‖dβ s

+
∫ t

t0

ϕ(s)dβ s

≤ q
√
t − t0

p

√
∫ t

t0

ϕp(s)dβ s+
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)

− U∗(s)‖dβ s,

≤ q
√

b− t0
p
√

ϑϕp(t)+
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)− U∗(s)‖dβ s,

≤ q
√

b− t0
p
√

ϑϕ(t)+
∫ t

t0

(

|ζ (s)| + κ
)

‖U(s)− U∗(s)‖dβ s.

In the second step, we applied Hölder’s inequality. Now,

by applying Grönwall’s inequality (Theorem 5), we obtain the

following estimate for t ∈ I:

‖U(t)− U∗(t)‖ ≤ q
√

b− t0
p
√

ϑϕ(t)

+
∫ t

t0

Eβ ,|ζ |+κ (t,β(s))
(

|ζ (s)| + κ
) p
√

ϑ
q
√

b− t0ϕ(s)dβ s

≤ q
√

b− t0
p
√

ϑϕ(t)+ Eβ ,|ζ |+κ (b) (‖ζ‖∞ + κ)

q
√

b− t0
p
√

ϑ

∫ t

t0

ϕ(s)dβ s

≤ q
√

b− t0
p
√

ϑϕ(t)+ Eβ ,|ζ |+κ (b) (‖ζ‖∞ + κ)

p
√

ϑ
q
√

b− t0
q
√
t − t0

p

√
∫ t

t0

ϕp(s)dβ s

≤ q
√

b− t0
p
√

ϑϕ(t)+ Eβ ,|ζ |+κ (b) (‖ζ‖∞ + κ)

p
√

ϑ
q
√

b− t0
q
√

b− t0
p
√

ϑϕp(t)

≤ q
√

b− t0
p
√

ϑϕ(t)+ Eβ ,|ζ |+κ (b) (‖ζ‖∞ + κ)

p
√

ϑ
q
√

b− t0
q
√

b− t0
p
√

ϑϕ(t).

By simplifying the above expression, we arrive at the following

bound:

‖U(t) − U∗(t)‖ ≤ p
√

ϑ
q
√

b− t0

(

1+ q
√

b− t0 · Eβ ,|ζ |+κ (b, t0) ·

(‖ζ‖∞ + κ)
)

ϕ(t).

Thus, we conclude that Equation 4 exhibits Hyers-Ulam-

Rassias stability of type Fϑ
p , with the corresponding stability

functionK(ϕ)(t) given by Equation 39.

Since condition M4 implies M3, we conclude that Theorems

11 and 14–17 hold whenM3 is replaced byM4.

Definition 10 (Mittag-Leffler Stability). Let α ∈ (0, 1], and let

Eα(z) denote the one-parameter Mittag-Leffler function defined by

Eα(z) : =
∞
∑

k=0

zk

Ŵ(αk+ 1)
.

We say that the quantum difference equation (Equation 4) is

Mittag-Leffler stable of order α if there exist constants C > 0,

λ > 0, such that for every ǫ > 0, and for any functionU ∈ C1(I,U)

satisfying

∥
∥DβU(t)− ζ (t)U(t)− F(t,U(t), h(U(t)))− f (t)

∥
∥ ≤ ǫ, ∀t ∈ I,

there exists a solution U∗ of the exact equation such that

‖U(t)− U∗(t)‖ ≤ CǫEα(λ(t − t0)
α), ∀t ∈ I.

Theorem 18. (Mittag–Leffler-Type Stability Under Discrete β-

Integral). Let α ∈ (0, 1] and suppose that assumptions M1–M3

hold. Assume further that the backward shift operator β satisfies,

for all t ∈ I ,

βk(t)− βk+1(t) =
Cα

Ŵ(α)
(βk(t)− t0)

α−1, k ∈ N,

for some constant Cα > 0. Then Equation 4 exhibits Mittag–

Leffler-type Hyers–Ulam stability. More precisely, if U ∈ C1(I,U)
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satisfies Equation 9, then there exists a unique solution U∗ of the

exact equation with the same initial value such that:

‖U(t)− U∗(t)‖ ≤ ǫ(t − t0)
αEα

(

λ(t − t0)
α
)

, ∀t ∈ I,

where λ = Ŵ(α)(‖ζ‖∞ + κ), and Eα(·) is the Mittag–Leffler

function.

Proof. Let U ∈ C1(I,U) satisfy the inequality (Equation 9)

∥
∥DβU(t)− ζ (t)U(t)− F(t,U(t), h(U(t)))− f (t)

∥
∥ ≤ ǫ.

so that ‖σ (t)‖ ≤ ǫ for all t ∈ I.

Let U∗ be the exact solution of the unperturbed Equation 4

with the same initial value. Using the β-integral definition given

in Equation 2, we have:

∫ t

t0

g(s) dβ s =
∞
∑

k=0

(βk(t)− βk+1(t))g(βk(t)).

Using Theorem 7, the functions U and U∗ satisfy the integral

equations:

U(t) = U0 +
∞
∑

k=0

(βk(t)− βk+1(t))
[

ζ (βk(t))U(βk(t))

+ F(βk(t),U(βk(t)), h(U(βk(t))))+ f (βk(t))+ σ (βk(t))
]

,

U∗(t) = U0 +
∞
∑

k=0

(βk(t)− βk+1(t))
[

ζ (βk(t))U∗(β
k(t))

+ F(βk(t),U∗(β
k(t)), h(U∗(β

k(t))))+ f (βk(t))
]

.

Subtracting the second equation from the first and applying the

triangle inequality yields:

‖U(t)− U∗(t)‖ ≤
∞
∑

k=0

(βk(t)− βk+1(t))
[

‖ζ (βk(t))‖ · ‖U(βk(t))

− U∗(β
k(t))‖ + ‖F(βk(t),U(βk(t)), h(U(βk(t))))

− F(βk(t),U∗(β
k(t)), h(U∗(β

k(t))))‖ + ‖σ (βk(t))‖
]

.

Using the assumption M2 and setting L = ‖ζ‖∞ + κ , we

obtain:

‖U(t)− U∗(t)‖ ≤
∞
∑

k=0

(βk(t)− βk+1(t))
[

ǫ + L · ‖U(βk(t))

− U∗(β
k(t))‖

]

.

Now using the assumption:

βk(t)− βk+1(t) =
Cα

Ŵ(α)
(βk(t)− t0)

α−1,

we define:

y(t) : = ‖U(t)− U∗(t)‖,

and substitute into the inequality:

y(t) ≤
Cα

Ŵ(α)

∞
∑

k=0

(βk(t)− t0)
α−1

[

ǫ + Ly(βk(t))
]

.

y(t) ≤
Cαǫ

Ŵ(α)

∞
∑

k=0

(βk(t)− t0)
α−1

+
CαL

Ŵ(α)

∞
∑

k=0

(βk(t)− t0)
α−1y(βk(t))

= ǫ ·

(

Cα

Ŵ(α)

∞
∑

k=0

(βk(t)− t0)
α−1

)

︸ ︷︷ ︸

=: S1(t)

+ L ·

(

Cα

Ŵ(α)

∞
∑

k=0

(βk(t)− t0)
α−1y(βk(t))

)

︸ ︷︷ ︸

=: S2(t)

.

We have

S1(t) =
Cα

Ŵ(α)

∞
∑

k=0

(βk(t)− t0)
α−1

≤
Cα

Ŵ(α)
·
Ŵ(α)

Cα

(t − t0)
α = (t − t0)

α ,

since the series approximates the fractional power of the interval

length from t0 to t under the assumed kernel.

Moreover,

S2(t) =
Cα

Ŵ(α)

∞
∑

k=0

(βk(t)− t0)
α−1y(βk(t))

=
∞
∑

k=0

ωky(β
k(t)), where ωk : =

Cα

Ŵ(α)
(βk(t)− t0)

α−1.

Hence, the inequality becomes

y(t) ≤ ǫ(t − t0)
α + L

∞
∑

k=0

ωky(β
k(t)).

This is a discrete fractional-type inequality with convolution

kernel ωk. Using the discrete fractional Grönwall inequality

(Definition 4), we conclude that

y(t) ≤ ǫ(t − t0)
αEα

(

λ(t − t0)
α
)

, λ : = Ŵ(α)L.

5 Examples

In this section, we present illustrative examples that

demonstrate the applicability of the obtained stability results

under the framework of quantum difference equations.

Example 2. Let f ∈ C
(

[0, 15 ],U
)

, where C([0, 15 ],U) denotes the

space of continuous functions from the interval [0, 15 ] to the Banach

space U. Consider the quantum difference equation:

DβU(t) = ζU(t)+
(

cos3 U(t)+
1

1+ |U(t)|

)

+ f (t). (40)
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Using the general form of Equation 4, we have the following

parameters:

b =
1

5
, t0 = 0, F(t, x, y) = cos3 x+ y,

h(x) =
1

1+ |x|
, ζ (s) = ζ ∈ R.

We now apply the well-known properties of the cosine function

and the function h to estimate the Lipschitz constant:

| cos3 x1−cos3 x2| ≤ 3|x1−x2|,
∣
∣
∣
∣

1

1+ |x1|
−

1

1+ |x2|

∣
∣
∣
∣
≤ |x1−x2|.

Combining these results, we can bound the difference in F :

|F(t, x1, h(x1))− F(t, x2, h(x2))| ≤ 4|x1 − x2|.

Thus, we conclude that the Lipschitz constant κ = 4.

Additionally, from the condition on ζ (s), we observe that θ = |ζ |
5 .

For the condition M4 to hold, we require ζ ∈ (−1, 1). Therefore,

Theorems 11 and 14–17 hold.

Example 3. Let f ∈ C ([0, 1],U), and consider the quantum

difference equation:

D t
3
U(t) = tU(t)+

(

arctanU(t)+ sin2(U(t))
)

+ f (t), (41)

Using the general form of Equation 4, we have the following

parameters:

b t = 1, t0 = 0,β(t) =
t

3
, F(t, x, y) = arctan x+ y,

h(x) = sin2(x) ζ (t) = t ∈ R.

We now apply the well-known properties of the cosine function

and the function h to estimate the Lipschitz constant:

| arctan x1 − arctan x2| ≤ |x1 − x2|,
∣
∣sin2(x1)− sin2(x2)

∣
∣

≤ |x1 − x2|.

Combining these results, we can bound the difference in F :

|F(t, x1, h(x1))− F(t, x2, h(x2))| ≤ 2|x1 − x2|.

Thus, we conclude that the Lipschitz constant κ = 2. The

constant θ = supt∈[0,1]
∫ t
t0
|ζ (t)|dβ s = supt∈[0,1]

3t2

4 = 3
4 and

hence, the conditionM4 hold. Therefore, Theorems 11 and 14–17

hold under the condition.

Example 4. Consider the perturbed quantum difference equation:

DβU(t) = 1
2U(t)+

(
U(t)

1+ |U(t)|
+ tanh(U(t))

)

+ sin(t)+ σ (t),

where the perturbation satisfies |σ (t)| ≤ ǫ for all t ∈ I. Assume the

β-integral satisfies

βk(t)− βk+1(t) =
Cα

Ŵ(α)
(βk(t)− t0)

α−1, α ∈ (0, 1).

The function F(t, x, h(x)) = x
1+|x| + h(x) is Lipschitz with

constant κ = 2, and ‖ζ‖∞ = 1
2 . Setting L : = ‖ζ‖∞ + κ = 5

2 ,

Theorem 18 applies and yields

|U(t)− U∗(t)| ≤ ǫ(t − t0)
αEα

(

Ŵ(α)L(t − t0)
α
)

,

where U∗(t) is the exact solution of the unperturbed equation.

6 Conclusion

In this paper, we explored different kind of stability of

first-order nonlinear quantum difference equations, offering

a comprehensive analysis within the framework of quantum

difference calculus. By examining the behavior of solutions

to such equations under perturbations, we established the

necessary conditions for stability and uniqueness. The results

were derived using fixed-point theory and integral equations,

offering both theoretical insights and practical applications in

discrete mathematics and quantum calculus. Finally, the paper

presented examples to highlight the relevance and application of

these stability concepts, contributing to the broader understanding

of stability in quantum difference equations. Furthermore, the

methods and results derived here can be extended to higher-

order nonlinear quantum difference equations, broadening the

scope of applications in more complex quantum models and

dynamic systems. Further studies could focus on extending these

results to more complex quantum models and exploring additional

boundary conditions.
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